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Abstract

Large language models predominantly rely on the Transformer archi-
tecture, whose self-attention mechanism incurs a quadratic computational
cost O(N2) with respect to input length, leading to significant memory and
computation bottlenecks when processing ultra-long contexts. This work
proposes LanguageFold, a hierarchical sparse attention mechanism inspired
by the Self-Returning Random Walk model of genome foldingHuang et al.
[2020]. LanguageFold decomposes global attention into dynamically con-
structed tree attention with a theoretical scaling of O(NlogN). Preliminary
experiments on prompt-based generation and the DROP reading comprehen-
sion benchmark indicate that this tree-structured attention enables efficient
language processing while preserving accuracy and enhancing structural in-
terpretability. These results highlight the promise of genome-inspired atten-
tion mechanisms for optimizing the scalability of large language models.

1 Introduction

The Transformer architecture Vaswani et al. [2017] has become the dominant back-
bone of large language models (LLMs), achieving state-of-the-art performance
across machine translation, reasoning, and open-domain text generation. Its self-
attention mechanism, however, incurs quadratic memory and time complexity with
respect to the sequence length N :

O(N2d), (1)

*Corresponding author.
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where d denotes the hidden dimensionality. This scaling poses a fundamental bot-
tleneck for long-context modeling.

Natural language exhibits strong hierarchical and compositional structure, yet
standard dense attention lacks explicit inductive biases for representing multi-level
dependencies efficiently. Prior work on structured or hierarchical attention Wang
et al. [2019], Strubell et al. [2018], He et al. [2024] suggests that embedding struc-
tural priors into the attention mechanism may improve interpretability and gener-
alization.

As the language of life, the genome processes vast amounts of biological in-
formation with remarkable efficiency. How such information processing emerges
from the folding of chromatin in space and time has long attracted broad research
interest, including our own. Drawing inspiration from principles of genome fold-
ing, we develop LanguageFold, a model that introduces hierarchical structured
sparsity through Tree Attention. This sparse attention mechanism is inspired by
the Self-Returning Random Walk (SRRW) model of chromatin folding Huang et al.
[2020]. As a minimal physical model, SRRW recursively combines expansion and
self-returning dynamics, generating multiscale structures that account for a wide
range of genomic features. Analogously, Tree Attention incorporates a hierarchi-
cal, tree-structured sparsity into Transformer attention, decomposing global atten-
tion into structured subgraphs that capture the hierarchical organization of token
interactions.

Contributions. Our main contributions are summarized as follows:

• We propose a biologically inspired hierarchical sparse attention mechanism,
Tree Attention, derived from principles of the Self-Returning Random Walk
(SRRW) model.

• We introduce two dynamic sparsity-construction strategies—expansion and
returning—which generate tree-shaped hierarchical interaction patterns with-
out predefined structural templates.

• We develop an end-to-end framework including dynamic tree construction,
sparse mask generation, and sparsity-balanced filling. We analyze its the-
oretical computational complexity and hierarchical sparsity characteristics,
and we demonstrate that Tree Attention can be integrated into existing Trans-
former modules with minimal modification.

• Through proof-of-concept experiments on prompt generation and DROP rea-
soning tasks, we show that Tree Attention produces interpretable hierarchi-
cal structure while achieving GPU memory usage comparable to optimized
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SDPA kernels. Although the current operator implementation does not yield
measurable memory reduction or acceleration, the results validate the feasi-
bility of dynamic hierarchical sparsity and provide a promising direction for
future operator-level optimization.

2 Related Work

2.1 Sparse Attention Mechanisms

The self-attention mechanism in Transformers exhibits a quadratic complexity with
respect to sequence length N , i.e., O(N2), which limits scalability in long-text
modeling. To alleviate computational and memory costs, various sparse and ap-
proximate attention mechanisms have been proposed, which can be broadly cate-
gorized as follows.

Fixed-pattern sparsity. Longformer Beltagy et al. [2020] employs a combina-
tion of sliding windows and a small number of global tokens to achieve near-linear
complexity. BigBird Zaheer et al. [2020] further incorporates random connections
and global nodes while maintaining theoretical guarantees of full connectivity.
These models are structurally simple and stable but constrained by fixed sparsity
patterns.

Block-wise and low-rank sparsity. Sparse Transformer Child et al. [2019] and
Linformer Wang et al. [2020] partition the attention matrix into predefined blocks
or approximate it via low-rank projections, achieving linear-time performance for
long sequences by reducing redundant attention computations.

Kernel-based and linear approximations. Linear Transformer Katharopoulos
et al. [2020] and Performer Choromanski et al. [2020] approximate softmax atten-
tion using kernelizable feature maps, achieving theoretical complexity of O(N) or
O(N logN). However, these methods may struggle to capture high-frequency or
long-range dependencies and are prone to numerical instability.

Dynamic and content-driven sparsity. Reformer Kitaev et al. [2020] employs
locality-sensitive hashing (LSH) to cluster similar tokens, while Routing Trans-
former Roy et al. [2020] dynamically routes attention heads based on semantic
similarity, allowing the sparsity pattern to adapt to content dynamically. Instead
of enforcing a fixed sparsity pattern, Sparge AttentionZhang et al. [2025] predicts
token importance during the prefill stage and selectively activates only a subset
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of key-value pairs. The resulting sparsity structure is therefore fully dynamic and
input-dependent, enabling substantial acceleration without modifying the model
architecture.

Hybrid structured–dynamic sparsity. MInference Jiang et al. [2024] falls be-
tween fixed and fully dynamic sparsity. Its sparsity patterns are predetermined (A-
shape, Vertical-Slash, Block-Sparse), but the actual sparse indices are constructed
dynamically for each input, allowing efficient long-context inference while pre-
serving accuracy.

Hierarchical and structure-aware sparsity. The recent Hierarchical Document
Transformer (HDT; He et al., 2024) organizes multi-level sparse attention accord-
ing to document sections and paragraphs, significantly enhancing long-document
discourse modeling and highlighting the potential of structural priors in sparse at-
tention design.

Summary. Overall, existing sparse attention mechanisms explore different trade-
offs between efficiency and expressivity. Fixed patterns facilitate engineering opti-
mization, dynamic sparsity offers adaptability, and structure-aware sparsity opens
new avenues for modeling long-range dependencies. However, most approaches
rely on positional or semantic similarity and lack self-organizing hierarchical struc-
ture. In contrast, LanguageFold employs Tree Attention, inspired by the SRRW
model, to dynamically construct hierarchical structure and enable structurally aware
sparse attention.

2.2 Structured and Hierarchical Attention

To explicitly encode hierarchical information in Transformers, various structured
attention mechanisms have been explored. Tree Transformer Wang et al. [2019]
introduces a constituent-attention module that induces latent syntactic trees in an
unsupervised manner. Shiv and Quirk Shiv and Quirk [2019] further propose
Tree-Structured Positional Encoding, enabling Transformers to operate over se-
quence–tree and tree–tree tasks.

Beyond latent structure induction, some approaches incorporate explicit syn-
tactic signals. LISA Strubell et al. [2018] uses multi-task learning to train an atten-
tion head to attend to syntactic parents, while Dependency Transformer Grammar
(DTG; Zhao et al., 2024) modifies attention masks to emulate dependency parsing
behavior.
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These studies collectively show that hierarchical or dependency structures can
improve Transformer modeling. However, most depend on external parsers or pre-
defined rules. In contrast, Tree Attention uses hierarchical sparsity patterns end-
to-end, providing structure-aware modeling without explicit syntactic supervision.

2.3 Biological Inspiration from Chromatin Folding

The Self-Returning Random Walk (SRRW) model, proposed by Huang et al. [2020],
was designed to simulate the hierarchical topology of chromatin folding in three-
dimensional space. Its central idea allows a spatial random walk to probabilistically
“return” to previously visited positions, thereby producing multi-scale structures
that balance local aggregation with global connectivity.

Drawing from this concept, we interpret the attention propagation process as
a random traversal in semantic space, introducing a self-returning mechanism to
form hierarchical organization in attention computation. This analogy underlies the
design of Tree Attention, where the hierarchical contraction of information flow
mimics the folding and compaction behavior of chromatin, enabling the emergence
of biologically inspired multi-level sparsity.

2.4 Scaling Laws of Chromatin Contacts

High-throughput chromosome conformation capture (Hi–C) experiments Lieberman-
Aiden et al. [2009] demonstrate that the contact probability P (s) between two ge-
nomic loci decays as a power law of their genomic separation s, typically following
P (s) ∼ s−1. Consequently, the expected number of significant contacts for a given
locus scales as ∫ N

1
s−1 ds ∼ lnN,

and the total number of biologically plausible interactions across a genome of size
N is therefore bounded by O(N logN), far below the naive O(N2) dense interac-
tion assumption.

The Self-Returning Random Walk (SRRW) model was introduced as a com-
putational surrogate that reproduces this property of chromatin folding. Through
recursive expansion and probabilistic self-returning dynamics, SRRW generates
contact patterns exhibiting a power-law decay of the form P (s) ∼ s−1, reproduc-
ing the characteristic O(N logN) sparsity. This provides an algorithmic mecha-
nism for producing hierarchical, distance-biased connectivity.

Tree Attention inherits this sparsity pattern indirectly: it adopts the hierarchical
topology generated by SRRW. The resulting attention graph contains on the order
of O(N logN) expected interaction edges under the SRRW generative process.
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By iterating primarily over these SRRW-inspired sparse pairs—rather than the full
N2 attention matrix—Tree Attention approximates an effective computational cost
closer to O(N logN) while preserving multiscale contextual pathways.

3 Methodology

3.1 Overview

The overall pipeline of Tree Attention consists of five stages: (1) tree node defini-
tion, (2) dynamic tree construction and update, (3) tree-to-mask mapping, (4) spar-
sity balancing, and (5) attention computation under hierarchical mask constraints.

Analogous to the SRRW model that describes hierarchical folding of chromatin
in 3D space, Tree Attention maps this mechanism to neural attention computation,
enabling structure-aware multi-level sparsity formation. Unlike full attention that
computes all pairwise token interactions, Tree Attention dynamically constructs an
adaptive tree structure, performing token-level expansion and returning operations
to generate a hierarchical sparse attention mask. This structure preserves key infor-
mation flow paths while significantly reducing matrix density, achieving a balance
between computational efficiency and structural expressivity.

3.2 Tree Node Definition

We define a basic node data structure TreeNode as follows:

TreeNode = { indices, parent, children, node rep, is merged, visited }.

Here:

• indices: the set of token indices contained in the node;

• parent: a pointer to the parent node;

• children: the list of child nodes;

• node rep: the aggregated node representation;

• is merged: flag indicating whether the node is merged;

• visited: traversal status indicator.

Each attention head maintains its own independent tree structure during forward
propagation to capture the tree patterns at different granularities.
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3.3 Dynamic Tree Construction and Update (SRRW-Inspired)

The core of Tree Attention is to simulate the SRRW behavior of local traversal,
self-returning, and hierarchical folding. For each query vector qi, the algorithm
computes similarity scores over a candidate node set C = {ncurrent, nparent}:

score(qi, n) = mean

(
softmax

(
qiK

⊤
n√
d

))
, (2)

where Kn denotes the key representation of node n.
If score(qi, ncurrent) > score(qi, nparent), an expansion step is executed to create

a new node; otherwise, a returning step merges the token into its parent node. This
process corresponds to the probabilistic balance between exploration and folding
in SRRW, allowing dynamic formation of multi-level adaptive clusters.

3.4 Tree-to-Mask Mapping

After constructing the tree structure, we derive a sparse attention mask M ∈
{0, 1}N×N via a Tree-to-Mask function:

Mi,j =

{
1, j ∈ indices(ni) ∪ indices(adjacent layer nodes),
0, otherwise.

(3)

A parameter rounding controls the propagation depth, analogous to the contact
distance in chromatin, determining the range of information diffusion. Empirically,
rounding = 4–6 achieves a good trade-off between sparsity and coverage.

3.5 Sparsity Balancing

To prevent the mask from becoming excessively sparse, we introduce two balanc-
ing strategies:

1. Stride-based filling: Adjusts mask density according to a target sparsity
ρtarget by inserting uniform stride-based activations.

2. Random filling: Randomly activates zero entries to emulate stochastic self-
returning behavior in SRRW according to ρtarget.

These strategies balance sparsity and information coverage. Empirical results sug-
gest that setting ρtarget ≈ 0.4−0.6 yields optimal trade-offs between model perfor-
mance and memory efficiency.
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3.6 Attention Computation Under Hierarchical Mask Constraints

To accommodate the dynamic hierarchical tree structure, the proposed Tree At-
tention can be formulated in two logically equivalent but computationally distinct
ways: (i) mask-based logical sparsification, and (ii) index-based sparse multiplica-
tion.

Method 1: Mask-based Sparsification (Logical View). This formulation keeps
the standard attention pipeline while using a binary mask M ∈ {0, 1}N×N to prune
inactive connections.

1. Scaled dot-product attention:

A = softmax

(
QK⊤
√
d

+B

)
, (4)

2. Masking inactive entries:

A′ = A⊙M, (5)

3. Output aggregation:
O = A′V. (6)

Note: This method requires constructing the full N ×N attention matrix, resulting
in O(N2) memory usage.

Method 2: Index-based Sparse Multiplication (Efficient Implementation). This
implementation avoids dense matrix construction and computes only the active in-
teractions defined by the tree-derived index sets.

1. Sparse QK computation over active sets: For each query token i, let its
active key index set be Si:

Ai =
QiK

⊤
Si√
d

+ bi. (7)

2. Sparse softmax normalization:

A′
i = softmax(Ai). (8)

3. Sparse output aggregation:

Oi = A′
iVSi . (9)

Note: The complexity is reduced from O(N2) to O(|E|), where E denotes the set
of active edges in the hierarchical tree.
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3.7 Model Integration and Compatibility

The Tree Attention module can directly replace standard attention in existing Trans-
formers without altering the backbone architecture. Each attention head maintains
its own tree state to support autoregressive generation. For instance, in the Qwen
series models:

• A distinct Tree Attention module is injected at each layer;

• Replace the original attention operator;

• Tree states are incrementally updated during inference for autoregressive de-
coding.

3.8 Complexity Analysis

The computational efficiency of the proposed method is grounded in its hierar-
chical design. Theoretically, the core Tree-only Attention mechanism exhibits an
intrinsic complexity of O(N logN · d), derived from the LanguageFold paradigm
that organizes token interactions into a hierarchical tree structure.

In practice, to balance computational sparsity with representation power, we
introduce a balancing hyperparameter ρ to regulate the attention mask, resulting in
an effective complexity of O(ρN2d). While ρ is typically set between 40%–60%
to ensure optimal performance, the tree construction process itself remains highly
efficient with a complexity of O(Nd).

Unlike naive sparse implementations that often suffer from excessive mem-
ory overhead, our approach is designed to be memory-efficient. By employing an
index-based sparse computation strategy, the mechanism achieves structural spar-
sity while maintaining a memory footprint comparable to highly optimized dense
kernels. A detailed empirical analysis of runtime memory and operator efficiency
is provided in Section 4.6.

4 Experiments

4.1 Experimental Setup

To evaluate the effectiveness of Tree Attention in terms of computational efficiency,
memory optimization, and semantic preservation, we conduct systematic experi-
ments on the Qwen2.5 model family with parameter scales ranging from 1.5B to
14B. Our objective is to assess whether the proposed mechanism can retain core
language understanding and generation capabilities while keeping memory usage
on par with standard baselines. We consider three categories of evaluation tasks.
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Complexity Scaling and Energy Capture. This evaluation quantifies the
trade-off between computational sparsity and information retention. We measure
the number of active edges in the Tree-only Attention mask across varying se-
quence lengths N (from 210 to 213) to empirically verify the O(N logN) com-
plexity scaling against the quadratic O(N2) baseline. To assess the ”quality” of
this sparsity, we introduce the Energy Capture Ratio (ECR), defined as the propor-
tion of cumulative attention mass from the original dense model that is preserved
within the sparse Tree-only Attention pathways. This metric allows us to determine
if the tree successfully concentrates its attentional budget on the most significant
multiscale dependencies while filtering out redundant noise.

DROP Reading Comprehension. The DROP benchmark contains long pas-
sages requiring arithmetic reasoning and multi-hop dependencies, making it a nat-
ural stress test for sparse attention. This task allows us to examine how structured
sparsification affects compositional reasoning, numerical operations, and cross-
sentence consistency.

Prompt-based Text Generation. This task evaluates long-form generation
quality, contextual fidelity, hierarchical organization, and instruction following. It
serves as a diagnostic tool for detecting potential semantic drift, degradation of
structural coherence, or hallucination introduced by sparsity.

Structural Interpretability and Operator Efficiency. For interpretability, we
go beyond heatmap inspection and apply graph-theoretic analysis. Tree Attention
masks at multiple depths (e.g., Layers 7, 11, 12) are clustered via the Louvain
community detection algorithm to determine whether consistent semantic modules
emerge. For efficiency, we benchmark VRAM usage across three implementations:
a naive mask-based variant, a standard PyTorch SDPA baseline, and our sparse
operator. This comparison reveals whether Tree Attention maintains structured
sparsity without incurring additional memory overhead.

Unless otherwise specified, all experiments are conducted on a single compute
node equipped with two NVIDIA RTX 3090 GPUs (24GB each). All benchmarks
use FP32 precision. This setup simulates resource-constrained environments such
as consumer-level or edge devices, highlighting the practical utility of lightweight
attention mechanisms.

All comparisons are performed between the original full-attention model and
its Tree Attention variant under identical hyperparameters to ensure fairness.

4.2 Empirical Validation of Biomimetic Scaling Laws

To verify whether Tree Attention inherits the structural properties predicted by
the fractal–globule model, we conduct an empirical analysis of attention weight
distributions using the Qwen2.5–1.5B model. We select a long-context input se-
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quence (N = 8567) from the Qasper dataset within the LongBench benchmark,
enabling us to probe attention behaviors across a wide range of genomic-like token
distances.

4.2.1 Power-Law Decay of Attention Weights

A defining property of genomic organization is that the contact probability between
two genomic loci decays as a power law,

P (s) ∼ s−γ , γ ≈ 1, (10)

where s denotes genomic separation.
To test whether tree structure exhibits analogous scaling behavior, we extract

tree-only attention matrices from multiple layers of the model and compute the
mean attention weight as a function of token distance s. Figure 1 visualizes the
resulting decay profile on a log–log scale.

The empirical results show a striking agreement with the theoretical s−1 scal-
ing law, indicated by the dashed reference line. In the short-to-medium range
(1 < s < 103), the mean attention weight across all heads closely follows a
slope of γ = 1. This behavior suggests that the SRRW-inspired hierarchical topol-
ogy imposes an explicit distance-biased inductive bias, prioritizing biologically
(or linguistically) meaningful “contacts” while naturally sparsifying the interac-
tion graph.

4.2.2 Complexity Scaling and Information Retention

To quantitatively validate the efficiency of the Tree-only Attention mask, we eval-
uate the growth of active interaction edges and the corresponding Energy Cap-
ture Ratio (ECR) for Layers 1, 7, and 12 (Figure 2).As shown in Figure 2(a),
the number of active edges in the Tree-only Attention mask closely follows the
O(N logN) trajectory, maintaining a significant gap below the quadratic O(N2)
baseline of standard Transformers. This confirms that tree structure effectively
achieves the theoretical computational sparsity.Crucially, Figure 2(b) demonstrates
that this sparsity does not entail a proportional loss of information. In Layer 1, the
model retains an ECR of 77.0% even at a sequence length of N = 8192. While the
ECR naturally decreases as sequence length increases—due to the widening gap
between O(N logN) and O(N2)—the model consistently captures the majority
of the attention mass (e.g., 54.9% in Layer 12 at 8k length) using only a fraction
of the theoretical dense connections. This stability confirms that tree structure suc-
cessfully concentrates on the most critical multiscale contextual pathways while
filtering out O(N2) dense noise.

11

Langtaosha (LTS) Preprint doi: https://doi.org/10.65215/LTSpreprints.2026.01.28.000108. This version posted January 29, 2026. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder. Creative Commons license: CC Attribution-NonCommercial-NoDerivatives 4.0

https://creativecommons.org/licenses/by-nc-nd/4.0



Figure 1: Layer-wise Tree-only Attention Decay and Scaling Consistency. At-
tention weights per head (colored lines) for Layers 1, 9, 18, and 23 are plotted
against token distance s on a log-log scale. The solid black line denotes the all-
head mean, while the red dashed line indicates the theoretical s−1 biomimetic scal-
ing law.

4.3 DROP Results and Analysis

Table 1 summarizes the performance of four Qwen2.5 model scales (1.5B, 3B, 7B,
14B) on the DROP dataset.

We adopt the parameter rounding = 6 and the target sparsity coefficient of
ρtarget = 0.5. Under this configuration, Tree Attention exhibits an average rela-
tive performance drop of approximately 49.8% with respect to the dense baseline.

This degradation reflects an inherent structural trade-off. As later shown in
Section 4.6, the total VRAM footprint of Tree Attention is comparable to that of
the highly optimized PyTorch SDPA kernel. Despite introducing hierarchical con-
straints and structured sparsity, the method maintains memory usage on par with
industrial dense operators.
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Figure 2: Complexity Scaling and Information Retention Analysis. Quantita-
tive evaluation of the Tree-only Attention mask across Layers 1, 7, and 12. (a)
Complexity Scaling: The number of active interaction edges in the Tree-only
Attention mask (blue line) strictly follows the theoretical O(N logN) trajectory
(red dashed line), maintaining a substantial efficiency gap compared to the O(N2)
dense baseline. (b) Information Retention: The Energy Capture Ratio (ECR)
demonstrates the proportion of attention mass preserved within the sparse mask.
Even at N = 8192, the model retains a significant portion of the global attention
energy (e.g., 77.0% in Layer 1 and 54.9% in Layer 12), confirming that the hierar-
chical mask accurately captures the most critical multi-scale contextual pathways.
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Model Variant Total Correct Score

Qwen2.5–1.5B Original 5000 1705 0.3410
Tree-Attn 5000 831 0.1662

Qwen2.5–3B Original 5000 1941 0.3882
Tree-Attn 5000 1004 0.2008

Qwen2.5–7B Original 5000 2248 0.4496
Tree-Attn 5000 1030 0.2060

Qwen2.5–14B Original 5000 2803 0.5606
Tree-Attn 3126 954 0.3052

Table 1: DROP performance across Qwen2.5 model scales.

To better understand where performance diverges and whether core linguistic
competencies are preserved, we conduct a detailed qualitative analysis on 5000
predictions from Qwen2.5–7B:

Numerical Reasoning. DROP places strong emphasis on arithmetic and multi-
hop reasoning. Most Tree-Attention-specific errors occur in cases requiring long-
range aggregation of scattered operands. Example. For a subtraction problem in-
volving “53 yards” and “24 yards,” the dense model correctly outputs 29, whereas
the sparse variant fails due to missing cross-sentence connections, illustrating that
numerical operations are sensitive to sparsity-induced dependency breaks.

Entity Extraction. In contrast, Tree Attention preserves robustness in entity-
centric reasoning. Example. For the question “Who scored the longest rushing
touchdown?”, both variants identify Felix Jones. This suggests that Tree Attention
maintains strong semantic salience tracking even under high sparsity.

Conservativeness and Reduced Hallucination. A notable pattern is that Tree
Attention tends to produce more conservative outputs. When critical context is
masked out, the model often responds with “unanswerable” or “not enough infor-
mation”. This indicates reduced hallucination and a bias toward safer predictions
under uncertainty.

Sparsity Configuration. All DROP evaluations employ Tree Attention with
stride-based balancing, ensuring deterministic local connectivity. Such stability
is important for low-variance linking between adjacent tokens in reasoning-heavy
tasks.

4.4 Prompt Generation: Impact of Structured Sparsity

To understand how structured sparsity influences long-form generation—particularly
contextual fidelity and global coherence—we conduct stress tests on Qwen2.5–
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1.5B under high sparsity levels (≥ 50%). Using a news article on U.S. tariff policy
as input, we compare four configurations:

• Full Attention (baseline)

• Random-only sparsity

• Tree + Stride

• Tree + Random

Failure of Unstructured Sparsity. When sparsity is applied through random
dropping alone (50%), the model collapses and produces nonsensical text. This
highlights the necessity of Tree Attention’s hierarchical scaffold for maintaining
stability under severe sparsity.

Local Bias in Tree + Stride. Although Tree+Stride performs well on struc-
turally grounded tasks such as DROP, its behavior degrades in abstractive summa-
rization. Observed behavior: It repeatedly hallucinates a nonexistent “25% tariff
on steel” phrase. Cause: The deterministic locality of Tree+Stride amplifies pa-
rameterized priors when global context is inaccessible, producing structured but
incorrect repetitions.

Tree + Random: Improved Abstraction. Introducing randomness atop the
tree structure relaxes local bias while preserving global anchors, yielding sum-
maries with higher abstraction potential but greater output variance. Example (best
case):

“President Trump’s Tariff Hike: A Game-Changing Moment for the
Global Economy.”

This suggests that the combination of hierarchical structure and stochastic connec-
tivity facilitates flexible global reasoning.

Method Sparsity Sample Output Interpretation

Full 0% Faithful summary Baseline
Random-only 50% Gibberish Model collapse
Tree+Stride 50% Output repetition Local-bias failure
Tree+Random 50–60% Accurate headline High-variance success

Table 2: Comparison of sparsity strategies on summarization.
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4.5 Interpretability: Semantic Topology and Functional Modularity

To investigate the structural organization introduced by the Tree Attention mecha-
nism, we interpret each attention mask as a semantic connectivity graph and apply
Louvain community detection to analyze emergent modularity. Figure 3 visual-
izes the attention matrices for Layers 3, 11, and 28, along with their corresponding
community clusters.

Emergence of Strong Diagonal Modularity. As shown in the heatmaps, the
attention patterns exhibit a pronounced block-diagonal structure across all sampled
layers. The Louvain community clusters (visualized as colored bars at the bottom
of each plot) align precisely with these dense square blocks along the diagonal.
This alignment confirms that the model is attending to information within discrete,
localized ”semantic neighborhoods” rather than maintaining a diffuse global con-
text.

Layer-wise Evolution of Semantic Clusters. All three layers display a simi-
lar block-diagonal structure, and Louvain clustering consistently identifies separa-
ble communities. Although cluster boundaries and densities vary with depth, the
global modular pattern persists, indicating that the Tree Attention mask provides a
stable yet flexibly refined semantic partition of the input.

Case Study: Semantic Coherence at Layer 11. To further illustrate the inter-
pretability benefits introduced by Tree Attention, we analyze the community struc-
ture at Layer 11, Head 0 (Figure 1). The Louvain algorithm partitions the input
news into several highly cohesive semantic communities. The color bar at the bot-
tom clearly delineates these boundaries, which, when aligned with the source text,
correspond precisely to the four major logical segments of the news article. Table 3
summarizes the mapping between community clusters, textual segmentation, and
their semantic roles.

Cluster Textual Segment Semantic Function

Community
Brown-1

Trump’s tariff remarks, Rose Garden
announcement, end of globalization

Thesis Establishment

Community
Light Blue

Missile-like tariffs, 20% rate, recip-
rocal mechanisms, VAT discussion

Mechanism Specification

Community
Dark Blue

G7 negotiations, UK economic con-
traction, Aston University study

Quantitative Consequences

Community
Brown-2

Smoot–Hawley Act, Vance’s re-
marks, historical synthesis

Philosophical Synthesis

Table 3: Semantic alignment of Louvain clusters at Layer 11 (Head 0).

Structural Basis for Hallucination Suppression. The visualization confirms
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Figure 3: Attention Modularity across Layers. Layers 3, 11, and 28 exhibit
similar block-diagonal attention patterns. Louvain clustering identifies comparable
but not identical communities across depth, indicating that the Tree Attention mask
induces stable yet layer-dependent modular structure.

that Tree Attention induces a rigid, interpretable topology. By enforcing this block-
wise locality, the architecture:

1. Restricts Attention Bleed: Tokens are physically prevented from attending
to semantically irrelevant blocks, reducing the probability of hallucinating
unrelated facts.

2. Mimics Hierarchical Reading: The progression from broad blocks to finer
cluster definitions mirrors a human-like decomposition of text into chapters
and paragraphs.

4.6 Efficiency and Memory Overhead of Sparse Operators

We evaluate the runtime memory characteristics of different implementation strate-
gies for Tree Attention under Float32 precision. All measurements are per-
formed on two GPUs using the Qwen2.5–1.5B model, with prompt lengths aver-
aging ≈ 613 tokens.

To quantify the benefit of our “activation-index-based sparse multiplication” in
Methodology 3.6, we compare:

1. Standard Qwen Baseline. The dense PyTorch SDPA implementation rep-
resenting the lower-bound memory cost of standard attention.

2. Naive Mask (Method 1). A Python-level implementation that explicitly
constructs the N×N attention mask.
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3. Tree Attention (Method 2). Our fused sparse operator that performs atten-
tion via dynamic index selection without materializing dense intermediates.

Table 4: Peak memory usage under Float32 precision. Static weights occupy
∼5889 MiB; dynamic memory is computed as Peak minus Static.

Method Operator Type Peak
Memory

Dynamic
Memory

Standard Qwen Baseline PyTorch SDPA 6876 MiB 987 MiB
Naive Mask (Method 1) Python Explicit 13556 MiB 7667 MiB
Tree Attention (Method 2) Sparse Operator 6967 MiB 1078 MiB

Naive Mask Implementation. The explicit mask construction leads to large
intermediate tensors, including the full attention matrix and multiple broadcasted
masks. These artifacts inflate dynamic memory to 7.6 GiB, illustrating that unfused
sparsity mechanisms are unsuitable for realistic deployment.

Efficiency of the Sparse Operator. Our fused implementation achieves the
intended sparsity without incurring notable overhead:

• Substantial reduction over naive mask. Dynamic memory drops by more
than 85%, and peak usage is reduced by nearly half.

• Near-dense memory footprint. Tree Attention requires only ∼90 MiB
more than the optimized SDPA kernel—a 1.3% difference—despite its dy-
namic indexing and sparse data flow.

Although sparse attention designs commonly introduce additional buffers or
irregular access patterns, our operator demonstrates that Tree Attention can be im-
plemented with negligible memory overhead. Its memory profile remains compa-
rable to dense SDPA, enabling practical integration into large-scale LLMs while
retaining structural sparsity benefits.

5 Discussion

5.1 The Trade-off Between Structural Inductive Bias and Dense Nu-
meracy

Our experiments reveal a distinct trade-off introduced by Tree Attention. While
the mechanism successfully reduces the computational complexity to O(ρN2d)
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and maintains memory footprints comparable to optimized dense kernels, this effi-
ciency comes at a cost to granular numerical reasoning. The performance drop on
the DROP benchmark (≈ 49.8%) suggests that tasks requiring the aggregation of
scattered operands (e.g., arithmetic over long contexts) rely heavily on the diffuse,
fully connected nature of standard attention. However, the model’s retained ability
to extract entities and facts indicates that Tree Attention successfully captures the
“semantic skeleton” of the text, even if it loses some of the “numerical flesh.”

5.2 Biological Fidelity and the Role of Stochasticity

The comparison between “Tree + Stride” and “Tree + Random” configurations
highlights the importance of the biological inspiration behind this work. The
SRRW model in chromatin dynamics Huang et al. [2020] balances local folding
with global accessibility. Similarly, we found that strictly deterministic sparsity
(“Tree + Stride”) led to local bias and hallucination in generation tasks. Reintro-
ducing stochasticity (“Tree + Random”)—analogous to the probabilistic dynam-
ics that establish long-range, non-local contacts in chromatin structure—restored
global coherence and allowed for better abstraction. This suggests that effective
sparse attention must balance rigid hierarchical structures with flexible, stochastic
connections to model the full complexity of natural language.

5.3 Emergent Modularity and Interpretability

A significant advantage of Tree Attention is the unsupervised emergence of in-
terpretable structures. Without external syntactic parsers, the model self-organized
into block-diagonal communities that align with human-perceivable document seg-
ments (e.g., thesis establishment, mechanism specification). This confirms that the
SRRW dynamics successfully induce a hierarchical prior that mirrors the compo-
sitional structure of language. Furthermore, this physical restriction of attention
flow appears to function as a regularizer, reducing hallucinations by preventing the
model from attending to semantically irrelevant blocks during uncertain genera-
tion.

6 Conclusion

In this work, we presented Tree Attention, a hierarchical sparse attention mecha-
nism inspired by the Self-Returning Random Walk (SRRW) model of chromatin
folding. By dynamically constructing tree-constrained attention masks, our ap-
proach introduces controllable structural sparsity into Large Language Models
without requiring pre-trained structural templates.
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Our empirical evaluation on the Qwen2.5 model family demonstrates that Tree
Attention achieves a pragmatic balance between memory efficiency and semantic
preservation. While there is a notable degradation in complex numerical reason-
ing tasks, the method maintains precise entity capture and reduces hallucination
through conservative “unanswerable” predictions when context is ambiguous. Cru-
cially, we developed a fused sparse operator that matches the memory footprint of
highly optimized dense SDPA kernels (within ≈ 1.3%), proving the practical fea-
sibility of dynamic, index-based sparse attention.

Future research will focus on five key areas:

1. Towards Asymptotically Optimal Complexity: While Tree-only Atten-
tion is inherently hierarchical and supports O(N logN) scaling, our current
”Tree + Random” and ”Tree + Stride” configurations still rely on a simplified
masking approach that does not fully exploit this theoretical bound. Future
work will focus on refining the balancing algorithms to ensure the complex-
ity is strictly bounded by O(N logN).

2. From Inference-time Priors to Trainable Dynamics: Currently, Tree At-
tention is applied as a dynamic prior during inference based on pre-defined
SRRW rules. To further enhance performance, we plan to make this hier-
archical structure end-to-end trainable. By parameterizing the formation of
tree, the model can learn to optimize its own attention topology. This would
allow it to adaptively balance between sparse paths and the dense connec-
tions needed for complex tasks, effectively learning the most efficient atten-
tion pattern during training.

3. Kernel Optimization: While memory usage is optimized, the current op-
erator does not yet yield wall-clock acceleration. Developing specialized
CUDA kernels for the tree-based sparse matrix multiplication is a priority to
realize the theoretical time complexity benefits.

4. Stochasticity and Robustness Optimization: Given that the “Tree + Ran-
dom” configuration outperforms the deterministic “Tree + Stride” config-
uration in maintaining global coherence and abstraction capability, future
work will also focus on integrating adaptive stochastic controllers or learn-
able probabilistic parameters into the attention construction to enhance the
model’s accuracy and generalization ability in complex reasoning tasks.

5. Long-Context Scaling: We intend to apply Tree Attention to ultra-long
contexts (> 100k tokens), where the quadratic bottleneck of standard Trans-
formers is most acute and the hierarchical priors of Tree Attention may prove
most beneficial.
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