

1 **PD-L1-Binding Antigen Presenters: Redirecting Vaccine-Induced**
2 **Antibodies for Tumor-Agnostic Immunotherapy**

3

4 *Huixin Gao¹, Lijuan Lu², Xiaoxiao Xiong³, Yi Li³, Donghui Hu⁴, Duo Zhang³,*
5 *Zhiwei Feng³, Cong Liu³, Nannan Liu³, Xiaoli Li³, Jizhou Tan⁵, Ting Liu⁶, Ling*
6 *Peng⁷, Lu Lu⁷, Huiyi Feng⁸, Yan Zhong⁹, Guisen Tan¹⁰, Zhicheng Zhang¹¹, Liqin*
7 *Huang¹², Chao Su¹³, Ying Xue^{3*}, Shuo Song^{14*}, Wenxia Fan^{3*}, Wei Wang^{15*},*
8 *Fan Zou^{3*}*

9

10 ¹Department of Clinical Laboratory, Guangzhou Women and Children Medical
11 Center, Guangzhou Medical University, Guangzhou, Guangdong 510600, P.R.
12 China.

13 ²Department of Medical Oncology, the Third Affiliated Hospital of Sun Yat-sen
14 University, Guangzhou, Guangdong 510665, P. R. China.

15 ³Faculty of Pharmaceutical Sciences, Shenzhen University of Advanced Technology,
16 Shenzhen, Guangdong 518107, P.R. China.

17 ⁴Department of Traditional Chinese Medicine, The Third People's Hospital of Hubei
18 Province, Wuhan, Hubei 430033, P.R. China

19 ⁵The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, P.R.
20 China.

21 ⁶The Second Clinical Medical College, Guangzhou University of Chinese Medicine,
22 Clinical Laboratory/State Key Laboratory of Traditional Chinese Medicine Syndrome,
23 Guangdong Provincial Hospital of Chinese Medicine, Guangzhou 510120, P.R.
24 China.

25 ⁷Beijing Luzhu Biotechnology Co. Ltd., Beijing 101149, P.R. China.

26 ⁸Department of Oncology, Shenzhen Hospital of Southern Medical University,
27 Shenzhen, Guangdong 518110, P.R. China.

28 ⁹Department of Pathology, Shenzhen Hospital of Southern Medical University,
29 Shenzhen, Guangdong 518110, P.R. China.

30 ¹⁰The First Affiliated Hospital of Guilin Medical University, Guilin, Guangxi 541001,
31 P.R. China.

32 ¹¹Zhongshan Institute for Drug Discovery, Zhongshan, Guangdong 528451, P.R.
33 China.

34 ¹²Shenzhen Blood Center, Shenzhen, Guangdong 518035, P.R. China.

35 ¹³Jilin Province Jilin Hospital of Integrated Traditional Chinese and Western Medicine,
36 Jilin, Jilin 132000, P.R. China.

37 ¹⁴Faculty of Life and Health Sciences, Shenzhen University of Advanced Technology,
38 Shenzhen, Guangdong 518107, P.R. China.

39 ¹⁵Department of Thoracic Surgery, the Second Affiliated Hospital of Guangzhou
40 Medical University, Guangzhou, Guangdong 510260, P.R. China.

41

42 **H.X.G., L.J.L., X.X.X., Y. L., and D.H.H.** contributed equally to this work.

43 *Correspondence: xueying@suat-sz.edu.cn; songshuo@suat-sz.edu.cn; fanwenxia@suat-sz.edu.cn; 2011682026@gzhu.edu.cn; zoufan@suat-sz.edu.cn

45

46

47 **ABSTRACT**

48 The efficacy of immunotherapy in enhancing antitumor immunity in solid tumors
49 remains limited, primarily due to the insufficient immunogenicity of tumor cells. In
50 contrast, vaccination and natural viral infections can generate durable, high-titer
51 antiviral antibodies. A modular Programmed Death-Ligand 1 (PD-L1)-binding antigen
52 presenter (PBAP-gE) has been engineered to tether varicella-zoster virus glycoprotein
53 E (gE) to PD-L1 expressed on tumor cell surfaces. This innovative construct
54 leverages pre-existing anti-gE antibodies to trigger antibody-dependent effector
55 mechanisms. PBAP-gE effectively bound to PD-L1-positive tumor cells and, together
56 with vaccine-induced anti-gE antibodies, potentiated NK cell-mediated
57 antibody-dependent cellular cytotoxicity (ADCC) *in vitro* and induced significant
58 tumor regression in murine models. The PBAP platform is modular and versatile. For
59 example, a PBAP-Her2 construct synergized with Trastuzumab and Kadcyla to kill
60 Human Epidermal growth factor Receptor 2 (HER2)-negative, PD-L1-positive cells.
61 This strategy represents an innovative strategy for enhancing PD-L1-targeted
62 therapies by leveraging pre-existing antibodies induced by viral infections or vaccines,
63 alongside commercially available antibody-based therapies.

64

65 **Keywords:**

66 PD-L1-binding antigen presenter (PBAP); Tumor-agnostic immunotherapy;
67 Vaccine-induced antibodies; Antibody-dependent cellular cytotoxicity (ADCC);
68 Antibody drug conjugates (ADC)

69

70 **1. Introduction**

71 Recent advances in high-throughput technologies, particularly single-cell sequencing,
72 spatial transcriptomics, and multiplex immunohistochemistry, have significantly
73 deepened our understanding of the tumor microenvironment (TME), offering a more
74 nuanced view of how tumors evade immune surveillance.¹⁻³ Despite the infiltration of
75 various immune cell populations, such as cytotoxic T lymphocytes (CTLs) and natural
76 killer (NK) cells, the ability of these cells to effectively recognize and eliminate tumor
77 cells is often hindered. This failure is primarily due to immune evasion mechanisms,
78 such as antigen loss, defects in antigen presentation, and the establishment of an
79 immunosuppressive TME.^{3,4} Notably, viral antigen-specific bystander T cells within
80 the TME remain functional but cannot effectively target tumor cells due to the lack of
81 tumor-specific antigens.⁵⁻¹⁴ This highlights a critical gap in the immune response,
82 where the presence of functional immune cells is insufficient to overcome the tumor's
83 immune evasion strategies.

84 To address these issues, innovative therapeutic approaches, including the use of
85 oncolytic viruses (OVs) and engineered bacteria, have emerged as promising
86 platforms for personalized cancer vaccines. These strategies aim to enhance immune
87 recognition by "tagging" tumor cells with exogenous antigens. For example, OVs
88 engineered to carry the ovalbumin (OVA) antigen, in combination with OVA T-cell
89 receptor-1 (OT-1) T cells or OT-1 peptide vaccines, have demonstrated synergistic
90 tumor-killing effects in preclinical mouse models.¹⁵ Beyond Major Histocompatibility
91 Complex (MHC)-peptide complex presentation, OVs can also deliver large exogenous
92 proteins on tumor cell surfaces. For example, OVs based on Newcastle disease virus
93 (NDV) have been modified to express porcine α 1,3-galactosyltransferase (α 1,3GT) on
94 the surfaces of infected tumor cells. This modification triggers hyperacute rejection

95 through pre-existing anti- α Gal antibodies, thereby leading to the effective elimination
96 of tumors.¹⁶

97 Similarly, a novel dual-virus strategy has been developed, engineering OVs to express
98 truncated HER2 antigens on the surface of tumor cells. This innovative approach
99 enables the use of Her2-targeted antibody-drug conjugates (ADCs, such as Kadcyla)
100 even in cancers that are HER2 negative, effectively overcoming the limitations posed
101 by the absence of HER2 antigens.¹⁷ Additionally, engineered bacteria delivering
102 non-tumor neoantigens have also shown promise in training the immune system to
103 target and destroy cancer cells presenting identical antigens.¹⁸ Remarkably, a
104 significant proportion of bystander T cells have been observed to recognize
105 virus-related antigens rather than tumor-specific antigens within the TME. These
106 bystander T cells play a crucial role in shaping the TME and influencing antitumor
107 immune responses.⁵⁻¹⁴ Studies have demonstrated that viral-specific T cells, induced
108 by Lymphocytic Choriomeningitis Virus (LCMV) infection or Severe Acute
109 Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) vaccination, can function as
110 bystander T cells within the TME of tumor-engrafted mice, and OVs engineered to
111 express relevant viral peptides effectively "tag" the tumors with these viral antigens,
112 thereby repurposing the viral-specific T cells to target and eliminate the tumors in the
113 engrafted mice.¹⁹ These findings motivate a tumor-agnostic strategy: present an
114 immunogenic, non-tumor antigen on tumor surfaces to recruit pre-existing humoral
115 effectors and bypass antigen-loss mediated evasion.

116 PD-L1 is abundantly expressed on tumor cells, tumor-suppressive cells and
117 antigen-presenting cells, making it a key target for immunotherapy.^{20,21} Therapeutic
118 agents targeting PD-L1, including monoclonal antibodies and ADCs, not only
119 function through immune checkpoint blockade, which relieves inhibition of T cells,

120 but also directly kill tumor cells via antibody-dependent cellular cytotoxicity (ADCC)
121 and the targeted delivery of cytotoxic agents by ADCs.²²⁻²⁶ Nevertheless, the objective
122 response rates achieved by PD - L1 blockade monotherapy in solid tumors are still
123 relatively low, highlighting the urgent need for more effective therapeutic
124 strategies.^{27,28} Thus, the development of PD-L1-targeted therapies, such as ADCs and
125 bispecific antibodies, has gained increasing attention.^{22,29,30} Several PD-L1 ADCs,
126 including SGN-PDL1V (PF-08046054), HLX43 (EOC Pharma), and DB-1419
127 (DualityBio), are currently in clinical trials, offering the potential to broaden
128 treatment options.³¹⁻³⁴

129 Building upon the promising "tagging tumor cells with viral antigen peptides"
130 strategy, which has demonstrated the potential to repurpose bystander T cells for
131 tumor eradication¹⁹, we propose an innovative approach to enhance tumor-targeted
132 immune responses. This strategy leverages the long-term stability of antibodies
133 induced by viral infections or vaccines, including those against pathogens such as
134 measles virus, mumps virus, rubella virus, varicella-zoster virus (VZV), Epstein-Barr
135 virus (EBV), Clostridium tetani (tetanus-causing bacterium), and Corynebacterium
136 diphtheriae (diphtheria-causing bacterium). Notably, these antibodies remain
137 detectable for decades, even in cancer patients.³⁵⁻⁴¹ In previous experiments, we
138 introduced the recombinant zoster protein vaccine LZ901 (Beijing Luzhu
139 Biotechnology Co., Ltd.), which has been confirmed to exhibit robust
140 immunogenicity in both mice and humans.^{42,43} In tumor-bearing C57BL/6 mice
141 immunized with LZ901, we observed enrichment of B cells within tumor tissues.
142 Notably, tumor-infiltrating B cells produced significantly higher levels of anti-gE IgG
143 antibodies than B cells isolated from the spleen (Fig. S1).

144 Drawing from these findings, we describe a modular platform termed PD-L1 binding
145 antigen presenter (PBAP), designed to tether viral antigen to tumor cells through
146 PD-L1 binding. As a proof of concept, we engineered PBAP-gE by fusing the
147 extracellular domain of PD-1 (soluble PD - 1, sPD-1) to gE of VZV and included an
148 Fc domain to boost stability. This design leverages two key principles: (i) PD-L1 is
149 broadly expressed across diverse tumor types, and (ii) varicella vaccination elicits
150 durable anti-gE antibody responses in most adults. Critically, this enables antibodies,
151 whether induced by vaccination or natural VZV infection, to specifically target tumor
152 cells and redirect the immune response against them ([Scheme 1](#)).

153

154 **2. Results**

155 **2.1 PBAP-gE Combined with Vaccine-Induced Endogenous Antibodies Exhibits**
156 **Anti-Tumor Activity *In Vitro***

157 The PBAP-gE fusion protein was constructed by fusing the extracellular domain of
158 murine PD-1 (sPD-1) to gE using a flexible linker. An Fc domain was included at the
159 C-terminus of the construct to prolong its circulation half-life in the bloodstream and
160 to enhance its stability and efficacy ([Fig. 1A, Fig. S2A, B](#)). Structural modeling of
161 PBAP-gE using AlphaFold 3 revealed no significant steric hindrance between the
162 sPD-1 domain and the gE domain ([Fig. 1B](#)). PBAP-gE could be stably detected in
163 mice over 72 hours; in contrast, the stable existence time of sPD-1-gE in mice is
164 significantly shortened, being only 8 hours ([Fig. 1C](#)).

165 To validate that PBAP-gE competitively blocks the binding of PD-L1 to PD-L1
166 antibodies *in vitro*, recombinant PD-L1 protein and 4T1 cells engineered to stably
167 overexpress murine PD-L1 (designated 4T1-PD-L1-OE) via lentiviral transduction
168 and subsequent enrichment were employed. The results of ELISA and flow cytometer

169 analysis confirmed that PBAP-gE effectively inhibited the interaction of PD-L1
170 antibodies with both soluble PD-L1 protein and cell surface PD-L1 (Fig. 1D, E).

171 To produce serum enriched with gE-specific antibodies for subsequent *in vitro*
172 experimental use, C57BL/6 mice were immunized with the recombinant zoster
173 protein vaccine (LZ901, Beijing Luzhu Biotechnology Co., Ltd.) on days 0 and 21, at
174 a dose of 5 µg per mouse. On Day 28, serum samples were collected via retro-orbital
175 bleeding for subsequent assays. The *in vitro* anti-tumor activity of the PBAP-gE
176 construct in combination with vaccine-induced antibodies was initially evaluated
177 using a lactate dehydrogenase (LDH) release assay. Murine KIL C.2 cells (an NK cell
178 line) were co-incubated with PBAP-gE and serum from LZ901-immunized mice. The
179 ability of these cells to lyse 4T1-PD-L1-OE tumor cells was then assessed. KIL C.2
180 cells, co-incubated with PBAP-gE and serum from LZ901-immunized mice, exhibited
181 significantly enhanced cytotoxicity against 4T1-PD-L1-OE tumor cells (Fig.1F, left
182 panel). Control groups, including KIL C.2 cells alone, KIL C.2 cells treated with gE
183 protein and serum from LZ901-immunized mice, or KIL C.2 cells treated with
184 PBAP-gE and serum from saline-immunized mice, exhibited negligible cytotoxicity.
185 These findings underscore the essential role of PBAP-gE in concert with
186 vaccine-induced antibodies in augmenting NK cell - mediated immune responses.

187 To further confirm the specificity of NK cell-mediated cytotoxicity via PBAP-gE,
188 CRISPR - Cas9 was employed to generate a PD-L1 knockout variant of the 4T1 cell
189 line (designated 4T1-PD-L1-KO). After PD-L1 knockout in 4T1 cells
190 (4T1-PD-L1-KO), PBAP-gE and vaccine serum failed to enhance KIL C.2-mediated
191 killing of 4T1-PD-L1-KO cells (Fig.1F, right panel), highlighting the essential role of
192 PD-L1 expression on tumor cells for PBAP-mediated immune engagement.

193 This result underscores the necessity of PD-L1 recognition in the mechanism of action
194 of PBAP-gE, which facilitates immune targeting and tumor eradication through the
195 recruitment of viral-specific antibodies. The functional activation of KIL C.2 cells
196 was further analyzed. Specifically, the production of IFN- γ and the expression of
197 inhibitory receptors in KIL C.2 cells, which were previously assessed in the
198 cytotoxicity assay, were evaluated using flow cytometer. Compared to control groups,
199 KIL C.2 cells in the experimental group exhibited significantly higher levels of IFN- γ
200 expression, which is a hallmark of NK cell activation. Additionally, the experimental
201 group also demonstrated a significant increase in the proportion of NKG2A-negative
202 KIL C.2 cells (Fig. 1G, Fig. S3), indicating reduced inhibition and enhanced
203 activation of KIL C.2 cells. This suggests that the combination of PBAP-gE and
204 vaccine-induced antibodies not only enhances KIL C.2 cell-mediated tumor lysis but
205 also reprograms KIL C.2 cells toward a more potent and less inhibited effector
206 phenotype.

207 **2.2 PBAP-gE Delivered via Chimeric Antigen Receptor T-Cells (CAR-T Cells)**
208 **and Intratumoral Injection Exhibits Anti-Tumor Activity in Murine Tumor**
209 **Models**

210 In our previous research, A range of CAR - T cells were engineered utilizing
211 strategies including the knockout of inhibitory receptors, the overexpression of
212 functional proteins, and the implementation of combination therapies. achieving
213 effective clearance of virus-infected cells and solid tumors in both animal models and
214 clinical trials.⁴⁴⁻⁴⁹ In contrast to complex oncolytic virus (OV) systems, we propose
215 utilizing chimeric antigen receptor T (CAR-T) cells to selectively deliver PBAP to
216 tumor sites, ensuring that PBAP expression is activated only upon CAR-T cell
217 activation. This approach not only minimizes off-target effects but also mitigates the

218 risk of PBAP-gE being neutralized by vaccine-induced antibodies in the bloodstream.
219 Furthermore, this “living drug” delivery system could establish immunological
220 memory, enabling CAR-T cells to patrol and surveil tumor cells for extended periods.
221 To this end, a multicistronic expression system was developed. In this system, the
222 CAR gene, which includes an anti-CD19 single-chain variable fragment (scFv) used
223 as a control and an anti-Trop2 scFv, was designed for sustained expression.
224 Meanwhile, the PBAP-gE expression was controlled by an NFAT promoter, ensuring
225 that PBAP-gE expression is restricted to conditions of CAR-T cell activation (Fig.
226 2A). Although CAR-T cells have been integrated with various treatment modalities,
227 including chemotherapy, radiotherapy, and immune checkpoint inhibitors (ICIs), their
228 combination with NK cells remains largely unexplored. In the current study, we
229 conceptualized a novel approach that integrates CAR-T and NK cells via secreted
230 PBAP “tagging” synergized with vaccine-induced antibodies, aiming to leverage both
231 CAR-T and NK cells in a combined therapeutic strategy (Fig. 2B).

232 To evaluate the effectiveness of Trop2-CAR-T cells (Trop2-CAR) and Trop2-CAR-T
233 cells expressing PBAP-gE (Trop2-CAR-PBAP) *in vitro*, the properties and functions
234 of these cells, including cytotoxicity and PBAP-gE secretion, were assessed.
235 Trop2-CAR-PBAP cells exhibited a slight yet nonsignificant decrease in retroviral
236 transduction efficiency (transduction rate) and CAR expression (mean fluorescence
237 intensity, MFI), likely due to the inclusion of additional PBAP cistrons (Fig. S4A).
238 B16 cells engineered to overexpress Trop2 (B16-Trop2), which can stably express the
239 Trop2 protein, can be used to evaluate the cytotoxic effects of CAR-T cells against
240 Trop2-positive tumors. Notably, both Trop2-CAR and Trop2-CAR-PBAP
241 demonstrated comparable cytotoxicity against B16-Trop2 cells, indicating that the
242 minor reduction in CAR expression did not compromise their ability to lyse target

243 cells (Fig. S4B). Furthermore, Trop2-CAR-PBAP cells secreted minimal PBAP when
244 co-cultured with B16-F10 cells (a murine melanoma cell line, as a negative control),
245 likely driven by cytokines secretion from the CAR-T cells themselves upon activation.
246 However, when cocultured with B16-Trop2 cells, the concentration of secreted PBAP
247 was significantly elevated, highlighting the specific activation of Trop2-CAR-PBAP
248 cells by Trop2-expressing target cells (Fig. S4C).

249 Next, the dual-targeting combination strategy was tested in syngeneic tumor models.
250 B16-Trop2 cells were injected intratumorally into 6-8 week-old male C57BL/6 mice.
251 Experimental groups included Trop2-CAR-T cells expressing PBAP-gE
252 (Trop2-CAR-PBAP), control groups with CD19-CAR-T cells (CD19-CAR), and
253 non-PBAP-expressing Trop2-CAR-T cells (Trop2-CAR). Additionally, the effect of
254 different PBAP-gE administration routes was evaluated by combining Trop2-CAR-T
255 cells with PBAP-gE delivered intravenously (*i.v.*), intraperitoneally (*i.p.*), or
256 intratumorally (*i.t.*), creating three experimental groups: Trop2-CAR + PBAP (*i.v.*),
257 Trop2-CAR + PBAP (*i.p.*), and Trop2-CAR + PBAP (*i.t.*). All CAR-T cell infusions
258 were administered intravenously. Mice were immunized with the recombinant zoster
259 vaccine LZ901 on Days 0 and 21 (5 μ g/mouse/dose), and serum was collected on Day
260 27. On Day 28, mice were subcutaneously injected with B16-Trop2 cells. When
261 average tumor volumes reached approximately 100 mm³ (Day 35), treatments were
262 initiated as per the experimental protocol, which included intravenous infusion of
263 various CAR-T cells (1×10^6) and concurrent administration of PBAP-gE via *i.v.*, *i.p.*,
264 or *i.t.* routes. Tumor growth was monitored until Day 42, at which point mice were
265 euthanized for collection of serum and tumor tissues (Fig. 2C). Results demonstrated
266 that the Trop2-CAR-PBAP group and the Trop2-CAR + PBAP (*i.t.*) group exhibited
267 significant tumor control and regression. In contrast, intravenous and intraperitoneal

268 PBAP-gE administration resulted in only modest anti-tumor effects (Fig. 2D, E). This
269 indicates that PBAP may be vulnerable to interference from endogenous antibodies,
270 which could potentially undermine its anti-tumor efficacy. In contrast, CAR-T cells
271 seem to serve as a more effective delivery vehicle for PBAP-gE, thereby enhancing its
272 therapeutic potential. Further analysis of tumor-infiltrating immune cells revealed that
273 while CAR-T cell infiltration did not differ significantly across groups, the number of
274 CAR-T cells was notably lower in the Trop2-CAR-PBAP treatment group compared
275 to the Trop2-CAR group. However, the frequencies of B cells and NK cells were
276 significantly elevated in both the Trop2-CAR-PBAP and Trop2-CAR + PBAP (*i.t.*)
277 groups (Fig. 2F, Fig. S5). Moreover, tumor burden inversely correlated with
278 gE-specific IgG antibody levels in these groups, suggesting that ADCC mediated by
279 vaccine-induced antibodies and NK cells played a key role in anti-tumor efficacy (Fig.
280 2G, H, Fig. S6). In conclusion, the integration of CAR-T and NK cells through
281 secreted PBAP, synergized with vaccine-induced antibodies, demonstrated superior
282 anti-tumor efficacy both *in vitro* and *in vivo*.

283 **2.3 Endogenous Vaccine-Induced Antibodies, Rather than Virus-Specific T Cells,
284 Are the Primary Effectors in PBAP-gE-Mediated Tumor Suppression**

285 LZ901 have previously been shown to elicit both robust humoral and cellular immune
286 responses, including the generation of high titers of anti-gE antibodies, as well as
287 strong CD4⁺ and CD8⁺ T-cell responses. These immune responses are crucial for
288 protection against VZV infection, with T-cell immunity potentially playing a key
289 role.^{42,43} Given the potential of PBAP-gE to be processed and presented by
290 antigen-presenting cells (APCs) via major histocompatibility complex (MHC) class I
291 pathways, which could activate gE-specific cytotoxic CD8⁺ T cells, we sought to
292 evaluate the contributions of antibodies versus CD8⁺ T cells to the anti-tumor efficacy

293 of PBAP-gE. Moreover, tumor cells may also internalize and process PBAP-gE
294 directly, adding complexity to the interplay between immune effectors and tumor
295 cells.

296 To address these questions, mice were immunized with the recombinant zoster
297 vaccine LZ901 on Days 0 and 21 to generate vaccine-induced immune responses. On
298 Day 28, mice were subcutaneously inoculated with B16-fLuc cells, a murine
299 melanoma cell line engineered to express firefly luciferase. To selectively deplete B
300 cells or CD8⁺ T cells, mice were treated with specific blocking antibodies. B cell
301 depletion was achieved through intraperitoneal injection of anti-CD19 (clone 1D3),
302 anti-CD22 (clone CY34.1), and anti-B220 (clone RA3-6B2) antibodies (150 µg of
303 each antibody per mouse) on Day 33, targeting the B cell lineage at multiple stages of
304 development. For CD8⁺ T cell depletion, an anti-CD8 antibody (clone 16-0081-85,
305 150 µg/mouse) was administered similarly. On Day 35, mice were given intratumoral
306 injections of PBAP-gE (150 µg/mouse), and tumor growth was monitored using an *in*
307 *vivo* imaging system (IVIS), allowing for real-time tracking of tumor size and
308 dynamics (Fig. 3A). Results showed that B cell depletion significantly impaired the
309 anti-tumor efficacy of PBAP-gE, whereas CD8⁺ T cell depletion had minimal effect
310 (Fig. 3B). These findings strongly suggest that the primary mechanism by which
311 PBAP-gE mediates tumor suppression is through the action of vaccine-induced
312 antibodies, rather than through the activation of gE-specific CD8⁺ T cells.

313 **2.4 Anti-Tumor Efficacy Strongly Correlates with Levels of Vaccine-Induced**
314 **Endogenous Antibodies**

315 In our previous research, we developed a series of nanoparticle-based vaccines against
316 SARS-CoV-2, which demonstrated significantly enhanced immunogenicity, eliciting
317 potent and durable immune responses.⁵⁰⁻⁵³ To further investigate the relationship

318 between the levels of endogenous antibodies and the therapeutic efficacy of
319 PBAP-based treatments, we assessed the anti-tumor effects of PBAP-gE in
320 conjunction with vaccines of varying immunogenicity. Specifically, we compared
321 gE-specific antibody responses and subsequent anti-tumor outcomes following
322 immunization with three distinct vaccine platforms: (i) a low-immunogenicity gE
323 subunit vaccine, (ii) the LZ901 recombinant zoster vaccine, and (iii) a
324 high-immunogenicity nanoparticle-based GE-I53-50 virus-like particle (VLP) vaccine,
325 which is self-assembled from I53-50B and GE-I53-50A (Fig. 4A, B, Fig. S7A).⁵⁴ This
326 approach allowed us to systematically evaluate how different levels of
327 vaccine-induced immunity influence the efficacy of PBAP-gE in a tumor model,
328 providing valuable insights into the interplay between immunogenicity and
329 therapeutic outcomes.

330 Mice were randomly assigned to six experimental groups (n = 8 per group): saline
331 control, GE subunit vaccine, LZ901 vaccine, GE-I53-50 VLP vaccine, and two
332 GE-I53-50 VLP vaccine with antibody blocking groups (one with B cell depletion and
333 one with CD8⁺ T cell depletion). Vaccinations were administered on Days 0 and 21 (5
334 µg/mouse/dose), and serum were collected on Day 27. On Day 28, tumors were
335 established via subcutaneous injection of B16-Trop2 cells. To assess the contributions
336 of humoral and cellular immunity, B cell and CD8⁺ T cell depletions were performed
337 on Day 33. On Day 35, PBAP-gE was administered intratumorally (150 µg/mouse) as
338 part of the treatment regimen (Fig. 4C).

339 Our results revealed that the GE-I53-50 VLP vaccine elicited the most robust
340 anti-tumor response, exhibiting therapeutic efficacy comparable to that of the LZ901
341 vaccine. Mice vaccinated with the GE-I53-50 VLP vaccine exhibited markedly
342 diminished tumor growth, underscoring the substantial influence of highly

343 immunogenic vaccines on enhancing anti-tumor immunity (Fig. 4D, E). Importantly,
344 B cell depletion markedly diminished the therapeutic efficacy of PBAP-gE, while
345 CD8⁺ T cell depletion did not result in a significant change in tumor control, further
346 emphasizing the crucial role of humoral immunity, particularly vaccine-induced
347 antibodies, in mediating the anti-tumor effects of PBAP-gE.

348 To elucidate the mechanisms underlying the anti-tumor effects observed with the
349 GE-I53-50 VLP vaccine and to compare its efficacy with other vaccines, a
350 comprehensive analysis of immune cell infiltration and antibody responses were
351 detected. Immunophenotyping analysis revealed no significant differences in CD4⁺ or
352 CD8⁺ T cell infiltration among the experimental groups, suggesting that the
353 anti-tumor efficacy was not primarily driven by CAR-T cell-mediated cytotoxicity
354 (Fig. S7B, C). In contrast, NK cell frequencies were notably elevated in both tumor
355 and spleen tissues of mice that were immunized with either the LZ901 or GE-I53-50
356 VLP vaccines (Fig. 4F). These results suggest that NK cells, in conjunction with
357 vaccine-induced antibodies, play a crucial role in enhancing the immune-mediated
358 clearance of tumor cells. Moreover, serum gE-specific IgG levels at the experimental
359 endpoint were inversely correlated with tumor volume, providing compelling
360 evidence that higher titers of vaccine-induced antibodies contribute to enhanced
361 anti-tumor effects. This correlation further underscores the critical role of
362 antibody-dependent mechanisms, such as ADCC, in facilitating tumor eradication in
363 this therapeutic context (Fig. 5A-C, Fig. S7D).

364 Taken together, our findings demonstrate that PBAP-gE, when synergized with
365 vaccine-induced antibodies, significantly enhances anti-tumor immune responses.
366 Humoral immunity, particularly the levels of gE - specific antibodies, plays a central
367 role in the observed therapeutic efficacy. These results highlight the potential of

368 combining PBAP-based therapies with high-immunogenicity vaccines to achieve
369 robust, sustained anti-tumor immunity.

370 **2.5 PBAP Designed with Tumor-Specific Antigens Enable *In Vitro* Anti-Tumor**
371 **Activity in Combination with Commercial Antibodies and ADCs**

372 To further assess the anti-tumor efficacy of the "tagging strategy" with PBAP and its
373 potential for synergistic effects with approved antibody therapies, we engineered a
374 Her2-targeted PBAP (PBAP-Her2) by fusing the extracellular domain of human PD-1
375 (sPD-1) with Domain *IV* of the Her2 protein via a flexible linker, followed by the
376 addition of an Fc region to enhance protein stability and extend its half-life ([Fig. 6A](#),
377 [Fig. S8](#)). Structural modeling of PBAP-Her2 using AlphaFold 3 revealed no
378 significant steric hindrance between the sPD-1 domain and the Domain *IV* of the Her2
379 ([Fig. 6B](#)). PBAP-Her could be stably detected in mice over 120 hours; in contrast, the
380 stable existence time of sPD-1-Her2 in mice is significantly shortened, being only 4
381 hours ([Fig. 6C](#)). *In vitro* experimental verification has demonstrated that PBAP-Her2
382 inhibits the binding of PD-L1 protein to PD-L1 antibodies. Additionally, it blocks the
383 interaction between PD-L1 expressed on MDA-MB-231-PD-L1-OE cells and PD-L1
384 antibodies ([Fig. 6D, E](#)).

385 This dual-functional construct is designed to engage PD-L1 on tumor cells via the
386 sPD-1 domain, while concurrently being recognized by Her2-targeting monoclonal
387 antibody Trastuzumab (Herceptin) and the antibody-drug conjugate Kadcyla (T-DM1),
388 which combines Trastuzumab with a potent cytotoxic agent. The human-derived
389 MDA-MB-231-PD-L1-OE tumor model, a Her2-negative breast cancer cell line
390 engineered to stably overexpress human PD-L1 via lentiviral transduction and
391 subsequent enrichment, were introduced to explore the potential synergistic effects
392 with Trastuzumab and Kadcyla ([Fig. 6F](#)).

393 To assess the potential of PBAP in synergy with Trastuzumab for mediating
394 antibody-dependent cellular cytotoxicity (ADCC) and antibody-dependent cellular
395 phagocytosis (ADCP), we employed two distinct reporter assays using
396 Jurkat-Fc γ RIIIa and Jurkat-Fc γ RIIa cells, each expressing their respective Fc
397 receptors and an NFAT-driven luciferase reporter. In these assays, PBAP-Her2 in
398 combination with Trastuzumab generated robust ADCC signals, alongside moderate
399 ADCP activity, in Her2-negative MDA-MB-231-PD-L1-OE cells (Fig. 6G).
400 Importantly, further LDH release assays demonstrated that NK cells, when combined
401 with PBAP-Her2 and Trastuzumab, effectively mediated ADCC and facilitated killing
402 of MDA-MB-231-PD-L1-OE cells, as evidenced by a significant increase in
403 cytotoxicity compared to control groups (Fig. 6H, left panel). These results highlight
404 the synergistic action of PBAP-Her2 and Trastuzumab in promoting NK
405 cell-mediated tumor cell elimination.

406 To confirm the essential role of PD-L1 in the observed cytotoxic effects, we generated
407 a PD-L1 knockout variant of the MDA-MB-231 cell line using CRISPR (designated
408 MDA-MB-231-PD-L1-KO). In this PD-L1-deficient cells model, the cytotoxicity
409 mediated by PBAP-Her2 and Herceptin was reduced to levels comparable to the
410 control group, further validating the critical involvement of PD-L1 in the immune
411 engagement process (Fig. 6H, right panel). flow cytometer analysis revealed a marked
412 increase in IFN- γ production by NK cells and a reduction in the proportion of
413 NKG2A $^{+}$ NK cells in the experimental group, suggesting enhanced activation and
414 diminished inhibition in response to PBAP-Her2 + Herceptin treatment (Fig. 6I, Fig.
415 S9).

416 Finally, to further investigate the potential synergistic effect of PBAP-Her2 with
417 ADCs, we evaluated the combinatorial cytotoxicity of PBAP-Her2 in combination

418 with Kadcyla, using Adcetris (a CD30-targeting ADC) as a negative control. The
419 inclusion of PBAP-Her2 significantly enhanced the cytotoxic activity of Kadcyla
420 against MDA-MB-231-PD-L1-OE cells were observed by WST-8 viability assay, as
421 evidenced by a marked reduction in cell viability compared to either treatment alone
422 (Fig. 6J). This suggests that PBAP-Her2 enhances the therapeutic efficacy of
423 HER2-targeted ADCs, offering a novel strategy to improve treatment outcomes in
424 HER2-negative tumors.

425 Collectively, these results highlight the potential of the PBAP-Her2 strategy, in
426 combination with Trastuzumab and NK cells or Kadcyla, to effectively target and
427 eliminate HER2-negative tumor cells. By harnessing both immune and
428 antibody-dependent mechanisms, this approach not only boosts immune cell-mediated
429 cytotoxicity but also holds great promise for enhancing the efficacy of ADC-based
430 therapies in solid tumors.

431 **2.6 PBAP-Her2 Combined with ADCs Demonstrates *In Vivo* Efficacy in NSG
432 Tumor-Bearing Mice**

433 To evaluate the *in vivo* therapeutic efficacy, we established a subcutaneous
434 MDA-MB-231 tumor model in NSG mice. Tumors were induced by subcutaneous
435 injection of MDA-MB-231 cells. Once the tumors reached an approximate volume of
436 100 mm³, the mice were randomly assigned to four experimental groups (n = 5 per
437 group): PBAP-Her2 alone (control), Kadcyla alone (control), PBAP-Her2 + Adcetris
438 (a CD30-targeting ADC, control), and PBAP-Her2 + Kadcyla, and treatment
439 regimens were initiated.

440 The therapeutic protocol involved intraperitoneal administration of PBAP-Her2 (150
441 µg/mouse), followed by the administration of Kadcyla (3 mg/kg) or Adcetris (3 mg/kg)

442 via tail vein injection 24 hours later. Both treatments were administered once a week
443 for two consecutive cycles. Mice were euthanized 7 days after the second ADCs
444 treatment for tissue and tumor collection (Fig. 7A). The results demonstrated that only
445 the PBAP-Her2 + Kadcyla group exhibited significant tumor control and regression
446 (Fig. 7B). Immunohistochemistry (IHC) results demonstrated that PBAP-Her2
447 specifically infiltrated tumor tissues. Notably, significant ADC drug infiltration within
448 the tumor tissue was only observed in the PBAP-Her2 + Kadcyla treatment group,
449 indicating a synergy effect between PBAP-Her2 and the ADC treatment in promoting
450 targeted delivery (Fig. 7C). Immunofluorescence analysis further confirmed that only
451 the PBAP-Her2 + Kadcyla group exhibited notable tumor regression or control.
452 Tumor sections revealed clear co-localization of PBAP-Her2 with PD-L1 on tumor
453 cells. Furthermore, Kadcyla was observed to enter tumor cells exclusively in the
454 PBAP-Her2 + Kadcyla group, where it was internalized by the tumor cells, whereas
455 no intracellular ADCs uptake was detected in the control groups, which included
456 Kadcyla monotherapy or the PBAP-Her2 + Adcetris combination therapy group
457 (PBAP-Her2 + Adcetris). This selective intracellular uptake highlights the enhanced
458 targeting and delivery of the ADC, facilitated by PBAP-Her2-mediated tumor cell
459 engagement (Fig. 7D, Fig. S10).

460 Hematoxylin and eosin (H&E), reviewed by two independent pathologists, revealed
461 no significant histopathological damage to major organs, including the heart, liver,
462 spleen, and lungs in the experimental group, indicating a favorable safety profile.
463 However, an increase in multinucleated giant cells was observed in the spleens, with
464 particularly pronounced accumulation in the PBAP-Her2 + Kadcyla group, suggesting
465 a potential immune response or inflammatory process associated with the

466 experimental treatment. This finding warrants further investigation into the renal
467 effects and the role of PD-L1 expression in mediating off-target responses (Fig. 7E).
468 In summary, these findings underscore the potent anti-tumor efficacy of PBAP-Her2
469 in combination with ADCs, showing the capability to effectively eradicate solid
470 tumors.

471

472 **3. Discussion**

473 Overcoming tumor immune evasion remains a critical challenge in cancer
474 immunotherapy. One of the major barriers is the loss or downregulation of
475 tumor-specific antigens, which impairs cytotoxic T lymphocyte (CTL) recognition
476 and limits the effectiveness of targeted therapies. To address this challenge, we
477 developed a modular immune-bridging strategy utilizing PD-L1 binding antigen
478 presenters (PBAP) that capitalize on pre-existing antiviral humoral immunity for
479 tumor eradication. Our approach leverages PBAP that selectively bind PD-L1-positive
480 tumor cells, displaying non-tumor viral antigens recognized by antibodies induced
481 through vaccination or prior viral exposure.

482 This innovative "tumor tagging" mechanism achieves dual functions: it not only
483 blocks PD-1 inhibitory signaling by competitive binding, but also redirects
484 antibody-dependent effector functions, primarily through NK cells, to the TME via
485 ADCC. Unlike traditional antigen-targeting therapies, our system is tumor-agnostic
486 and antigen-independent, allowing it to overcome the limitations posed by tumor
487 heterogeneity and antigen loss, broadening its application across various tumor types.

488 In the context of PBAP-gE, we utilized antibodies elicited by recombinant zoster
489 vaccines, demonstrating potent synergy with CAR-T cell-delivered PBAP in both *in*

490 *vitro* and *in vivo* models. Notably, mechanistic studies revealed that the anti-tumor
491 effect was primarily driven by vaccine-induced antibodies rather than CD8⁺ T cells, as
492 evidenced by B cell and CD8⁺ T cell depletion experiments. Unlike oncolytic viruses
493 or bacterial vectors for antigen delivery, our PBAP system offers a pharmacologically
494 simpler, safer, and more controllable approach, particularly when combined with
495 activation-dependent expression through CAR-T platforms.

496 To accelerate the clinical translation of PBAP, a critical need remains for the
497 development of delivery systems that minimize off-target effects and immunogenicity.
498 Currently, CAR-T cells co-expressing PBAP represent a highly promising
499 fourth-generation CAR-T technology. Compared to protein-based biologics, they
500 encounter fewer regulatory obstacles, thereby facilitating more rapid progression
501 toward clinical application. These CAR-T cells drive the expression of PBAP through
502 the NFAT promoter, thereby directly linking PBAP expression directly to CAR-T cell
503 activation. Moreover, in the future, tumor-specific promoters, such as NR4A2 or
504 RGS16, which are selectively expressed in tumor-infiltrating T cells, could be utilized
505 for the spatially restricted expression of PBAP.⁵⁵ This approach offers targeted,
506 localized tumor engagement, minimizing systemic toxicity and positioning PBAP as a
507 promising partner in viral infection- or vaccine-based therapies. From a translational
508 perspective, the PBAP platform is highly versatile, enabling combination with
509 licensed vaccines and personalized approaches for patients with pre-existing antiviral
510 immunity. Furthermore, the PBAP platform is inherently extensible. Beyond PD-L1,
511 future iterations could target other immune-suppressive ligands (e.g., CD155, B7-H3,
512 SIRP α) or tumor-associated surface glycans, thereby expanding the scope of its
513 applicability across diverse tumor types and resistance mechanisms.

515 **4. Conclusion**

516 PBAP provides a flexible, tumor-agnostic platform that harnesses vaccine-induced
517 immunity to enhance antibody-based therapies. By addressing antigen loss and
518 heterogeneity, PBAP expands the arsenal of immunotherapeutic strategies and paves
519 the way for translational development of humoral redirection platforms.

520

521 **5. Experimental Section**

522 ***Ethics Statements:*** The Ethics Review Board of Shenzhen Hospital of Southern
523 Medical University (SHSMU) and Shenzhen TOP Biotechnology Co., Ltd (TOP)
524 approved this study. Animal experiments were carried out in strict compliance with
525 the guidelines and approved by Ethics Committee of SHSMU and TOP on Laboratory
526 Animal Care (Assurance Number: 20240030, TOP-IACUC-2025-0092).

527 ***Cell Lines and Culture Conditions:*** Human cancer cell lines of MDA-MB-231
528 (RRID: CVCL_0062), HEK 293T (RRID: CVCL_0063) and HEK 293F (RRID:
529 CVCL_6642) were obtained from the American Type Culture Collection (ATCC).
530 Mouse cell lines of 4T1 (RRID: CVCL_0125) and B16-F10 (RRID: CVCL_0159)
531 were obtained from the American Type Culture Collection (ATCC). Immortalized
532 mouse NK cells (KIL C.2, RRID: CVCL_HC59) were obtained from Applied
533 Biological Materials Inc. B16-F10-Trop2⁺ (B16-Trop2) cells were established by
534 infecting B16-F10 with lentivirus carrying Trop2-IRES-GFP, followed by sorting
535 GFP^{high} cells (BD FACS Aria II). B16-F10-fLuc (B16-fLuc) were established by
536 infecting B16-F10 cells with lentiviruses carrying luciferase-IRES-RFP, followed by
537 sorting RFP^{high} cells to enable bioluminescence *in vivo* imaging. MDA-MB-231, 293T,
538 B16-F10, B16-F10-Trop2⁺(B16-Trop2) and B16-F10-fLuc(B16-fLuc) cells were
539 cultured in DMEM medium (Invitrogen) supplemented with 10% FBS, 1%

540 penicillin-streptomycin and 2 mM l-glutamine (Invitrogen). HEK 293F cells were
541 cultured in Union 293 medium (Union Bio) supplemented with 8 mM glutamine
542 (ThermoFisher) and 1% penicillin-streptomycin (ThermoFisher). 4T1 cells were
543 cultured in RPMI-1640 medium with 10% FBS, 2 mM l-glutamine (Invitrogen) and
544 1% penicillin-streptomycin (Invitrogen). KIL C.2 cells were cultured in PriGrow V
545 medium (Applied Biological Materials) supplemented with 30% fetal bovine serum
546 (Sigma Aldrich), 2 mM l-glutamine, 50 ng/ml recombinant mouse stem cell factor
547 (SCF, R&D Systems), 25 ng/ml recombinant mouse IL-7 (R&D Systems) and 1%
548 penicillin-streptomycin (Invitrogen). 1×10^6 cells/mL KIL C.2 cells were incubated
549 with culture medium containing 20 ng/mL recombinant mouse IL-2 (R&D Systems)
550 overnight before use.

551 All cell lines except 293F cells were maintained in a humidified atmosphere
552 containing 37 °C and 5% carbon dioxide and passaged two or three times a week.
553 293F cells were cultured at 37 °C, 8% carbon dioxide and 130 rpm speed in orbital
554 shaker. All cell lines were authenticated by STR profiling and tested regularly for
555 mycoplasma contamination using a MycoAlert Mycoplasma Detection kit (Lonza)
556 and were only used when tested negative for contamination.

557 **Animal Models:** Specific-pathogen-free (SPF) 6- to 8-weeks-old male C57BL/6
558 mice were purchased from Guangdong Medical Laboratory Animal Center
559 (GDMAC). Specific-pathogen-free (SPF) 6- to 8-weeks-old male NSG mice were
560 purchased from Shanghai Model Organisms Center, Inc. Only male mice were used
561 because the experimental design required repeated blood collections, and males
562 generally tolerate serial bleeding better than females, thereby improving survival rates
563 and minimizing animal loss. All mice were housed with ad libitum access to food and
564 water in SPF barrier facilities at the Laboratory Animal Center of SHSMU and TOP.

565 For ethical reasons, mice that exhibited a loss of body weight exceeding 20% and
566 ceased to consume food and water were humanely euthanized, serving as an endpoint
567 to minimize any potential distress.

568 **Plasmid Construction:** 293F cells expressing protein-related plasmid: DNA
569 sequences of sPD-1-gE, GE, GE-53-50A, sPD-1-Her2 with 6 × His-tagged at
570 C-terminal and PBAP-gE, PBAP-Her2 were codon-optimized and synthesized by
571 Sangon Biotech into pcDNA3.1 plasmid. sPD-1-gE and PBAP-gE were designed by
572 fusing the extracellular domain of PD-1 (sPD-1) to viral antigen domain GE with a
573 linker that was predicted and structurally optimized based on AlphaFold 3 modeling.
574 PBAP-gE was further engineered to incorporate an Fc domain (IgG2) and a signal
575 peptide. Similarly, sPD-1-Her2 and PBAP-Her2 were designed by fusing the soluble
576 extracellular domain of PD-1 (sPD-1) to IV domain of Her2 using a optimized linker
577 sequence and appending an Fc domain (IgG1, L234A, L235A) at the C-terminus. In
578 addition, PBAP-Her2 was also engineered to include an Fc domain and a signal
579 peptide. GE-53-50A were designed by fusing the extracellular domain of VZV gE (aa
580 31-544) to the I53-50A component to enable antigen display on the corresponding NP
581 carriers, with a signal peptide and 6 × His-tagged at C-terminal Tag. Competent
582 Escherichia coli BL21(DE3) expressing protein-related plasmid: DNA sequences of
583 I53-50B with 6 × His-tagged at C-terminal were synthesized by Sangon Biotech into
584 pET28a vector.

585 Two anti-Trop2 CAR constructs (Trop2-CAR, Trop2-CAR-PBAP) and one control
586 CAR construct (anti-CD19) were synthesized and cloned into the third-generation
587 retrovirus plasmid backbones under the regulation of LTR promoter. All CAR
588 constructs contained a mouse CD28 transmembrane and intracellular costimulatory
589 domain in tandem with a mouse CD3ζ intracellular signaling domain. To construct a

590 vector encoding PBAP-gE in murine anti-Trop2 CAR (Trop2-CAR-PBAP), the
591 PBAP-gE gene was inserted into the *BamHI* and *Clal* restriction enzyme sites of the
592 MIGR1 retroviral vector, and NFAT promoter was inserted between CAR and
593 PBAP-gE genes. The sequences of CD19 CAR were obtained from publicly available
594 sequences for FMC63.

595 ***Protein Expression and Purification:*** sPD-1-gE, PBAP-gE, GE, GE-53-50A,
596 sPD-1-Her2 and PBAP-Her2 were produced in 293F cells grown in suspension using
597 Union 293 medium (Union Bio) at 37 °C, 8% carbon dioxide and 130 rpm speed in
598 orbital shaker. Cultures were transiently transfected with PEI (Union Bio) at a cell
599 density of $2.0\text{--}3.0 \times 10^6$ cells/ml and incubated for 3-4 days. After centrifugation to
600 remove cellular debris, supernatants containing His-tagged proteins (sPD-1-gE, GE,
601 GE-I53-50A, sPD-1-Her2, PBAP-Her2) were applied to Ni-NTA resin (Vazyme) and
602 eluted with imidazole-containing Tris buffer. PBAP-gE and PBAP-Her2 were further
603 purified on HiTrap Protein A HP columns (Vazyme). Purified proteins were
604 concentrated and buffer-exchanged into Tris buffer; concentrations were determined
605 by BCA assay and protein purity was assessed by Coomassie Blue staining.
606 I53-50B was expressed and purified from BL21 *E.coli* (Biosharp) prokaryotic
607 expression system induced by isopropyl-D-thiogalactopyranoside (IPTG, Biosharp).
608 The bacterial cultures were harvested and lysed in Tris buffer (20 mM Tris, 50 mM
609 NaCl, pH 7.5). After harvested and lysed by sonication, the supernatants were
610 collected and incubated with Ni-NTA agarose (Vazyme) to enrich His-tagged I53-50B,
611 followed by protein elution with Imidazole -containing Tris buffer. The purified
612 I53-50B proteins were concentrated and buffer-replaced with conventional Tris buffer.
613 The concentration of I53-50B was determined by BCA assay and Coomassie Blue
614 staining were executed to confirm the purity.

615 For conjugation, I53-50B and gE-I53-50A were mixed at a 3:1 mass ratio and
616 incubated overnight at 2-8 °C. Uncoupled gE-I53-50A and excessive I50-53B were
617 removed from the conjugated NP by size-exclusion chromatography (SEC) using a
618 Superdex 200 Increase 10/300 GL column (Cytiva) pre-equilibrated with 20 mM
619 Tris-HCl, 25% sucrose w/v, pH 7.4 on the AKTA system (Cytiva). After separation,
620 the conjugated gE-I53-50 nanoparticles were analysed on Coomassie Blue staining,
621 western blotting, size-exclusion chromatography (SEC), and transmission electron
622 microscopy (TEM), to determine the coupling efficiency by densitometry as
623 previously described. Besides, the bacterial endotoxins in nanoparticle were
624 quantified by tachypleus amebocyte lysate test (less than 100 EU/mg).

625 **PBAP Inhibition of PD-L1 Binding to PD-1 in Vitro: ELISA Blocking Activity**
626 Detection of PBAP-Her2: 96-well plates were coated with 2 μ g/ml human PD-L1
627 (ECD, His Tag, SinoBiological, 10084-H08H) protein in carbonate buffer overnight at
628 2-8 °C. The next day, the plates were blocked with 2% BSA for 1 hours at 37 °C and
629 then washed with 0.05% PBST. Subsequently, PBAP-Her2 (10 μ g/well) with a
630 dilution ratio of 1:10, was added to the wells. Four hours later, PD-L1 monoclonal
631 antibody (SinoBiological, 10084-MM33) was added to the coated plates at dilution of
632 1:10000, followed by incubation for 2 hours at 37 °C. After incubation, the plates
633 were washed with 0.05% PBST and incubated with Goat anti-Mouse IgG, HRP
634 secondary antibody (SinoBiological, SSA007) for 1 hour at 37 °C. Finally, TMB
635 substrate (SinoBiological, SEKCR01) was added and incubated for 10-15 minutes,
636 followed by stopping reaction with stop solution (Solarbio) after sufficient
637 development. The absorbance was measured at 450 nm using a microplate reader. The
638 blocking effect of the antibody on PD-1/PD-L1 binding was determined based on the
639 absorbance values.

640 For the ELISA blocking activity detection of PBAP-gE, the same procedure was
641 followed with the following modifications: human PD-L1 (ECD, His Tag,
642 SinoBiological, 10084-H08H) protein was replaced with mouse PD-L1 (ECD, His
643 Tag, SinoBiological, 50010-M08H), PBAP-Her2 (1 μ g/well and 10 μ g/well) was
644 replaced with PBAP-gE (1 μ g/well and 10 μ g/well), PD-L1 monoclonal antibody
645 (SinoBiological, 10084-MM33) was replaced with PD-L1 monoclonal antibody
646 (SinoBiological, B50010-R678), and Goat anti-Mouse IgG, HRP secondary antibody
647 (SinoBiological, SSA007) was replaced with Goat anti-Rabbit IgG, HRP secondary
648 antibody (SinoBiological, SSA004) . All other steps remained unchanged.

649 flow cytometer Detection of PBAP-Her2: MDA-MB-231-PD-L1 cells were plated in
650 a 96-well plate at a density of 1×10^5 cells per well and maintained in a humidified
651 atmosphere containing 37 °C and 5% carbon dioxide overnight. The next day,
652 PBAP-Her2 (10 μ g/well) was added to the wells. Four hours later, PD-L1 monoclonal
653 antibody (SinoBiological, 10084-MM33) was added to the coated plates, with a
654 dilution of 1:5000, followed by incubation for 2 hours, the cells were washed with
655 PBS and incubated with PE-labeled goat anti-mouse IgG (H+L) fluorescent secondary
656 antibody (Invitrogen, P-852) for 30 minutes on ice. Finally, after another wash with
657 PBS, the cells were analyzed using a flow cytometer to assess the blocking activity of
658 the antibody on the PD-1/PD-L1 signaling pathway by measuring the fluorescence
659 intensity of the antibody-cell binding.

660 For the flow cytometer blocking activity detection of PBAP-gE, the same procedure
661 was followed with the following modifications: MDA-MB-231-PD-L1-OE cells were
662 replaced with 4T1-PD-L1-OE cells, PBAP-Her2 (10 μ g/well) was replaced with
663 PBAP-gE (10 μ g/well), PD-L1 monoclonal antibody (SinoBiological, 10084-MM33)
664 was replaced with PD-L1 monoclonal antibody (SinoBiological, B50010-R678),

665 PE-labeled goat anti-mouse IgG (H+L) fluorescent secondary antibody (Invitrogen,
666 P-852) was replaced with goat anti-Rabbit IgG (H+L) fluorescent secondary antibody
667 (Invitrogen, P-2771MP). All other steps remained unchanged.

668 ***In Vitro ADCC Reporter Assay:*** The MDA-MB-231-PD-L1-OE and
669 MDA-MB-231-PD-L1-KO cells were harvested and seeded into a white opaque
670 96-well assay plate with 1.0×10^4 cells in 100 μ l of RPMI-1640 medium with 2%
671 FBS per well separately, followed by incubation at 37 °C, 5% carbon dioxide
672 overnight (16-24h). Subsequently, an overdosage of PBAP (10 μ g/well) was added to
673 the wells. Four hours later, Trastuzumab (MCE, HY-P9907) was serially diluted in the
674 assay medium (RPMI-1640 medium with 2% FBS) at a starting concentration of 4
675 μ g/well, with a dilution ratio of 1:4. Jurkat-Fc γ RIIIa (Vazyme, ADCC) and
676 Jurkat-Fc γ RIIa (Vazyme, ADCP) effector cells were then added to the plate at a
677 density of 1.0×10^5 cells per well. Jurkat-Fc γ RIIIa (Vazyme, ADCC) and
678 Jurkat-Fc γ RIIa (Vazyme, ADCP) effector cells were then added to the plate at a
679 density of 1.0×10^5 cells per well. The plate was incubated at 37 °C, 5% carbon
680 dioxide for 6 h. After incubation, 50 μ L of Bio-Lite reagent (Vazyme) was added to
681 each well and relative luciferase units (RLU) were measured using the GloMax
682 Navigator (Promega).

683 To further elucidate the effects of PBAP and Trastuzumab on ADCC and ADCP
684 activity, three control conditions were established: (1) no addition of PBAP, (2) no
685 addition of Trastuzumab, and (3) no addition of either PBAP or Trastuzumab.

686 ***CRISPR Knockout of PD-L1:*** CRISPR/Cas9 technology was used to knockout
687 PD-L1 in 4T1 cells and MDA-MB-231 cells. The sgRNA sequences targeting mouse
688 (sgRNA: GTATGGCAG-CAACGTCACGA) and human PD-L1 (sgRNA:
689 ACCGTTCAGCAAATGCCAGT) were designed using the online CRISPR design

690 tool (Benchling) and transfected into 4T1 cells and MDA-MB-231 cells using
691 Lipofectamine 3000 (Invitrogen) separately. Knockout cells were selected with
692 puromycin (10 μ g/mL) for 10 days and screened by flow cytometer for PD-L1
693 negative populations.

694 **Cytotoxicity Assays:** The ability of KIL C.2 cells to kill tumor target cells via
695 PBAP-gE and LZ901 vaccinated murine serum was measured by lactate dehydrogenase
696 (LDH) assay. Briefly, The 4T1-PD-L1-OE and 4T1-PD-L1-KO cells were harvested
697 and seeded into a transparent 96-well assay plate (V bottom) with 1.0×10^4 cells in
698 100 μ l of PriGrow V medium with 30% FBS per well separately, followed by
699 incubation at 37 °C, 5% carbon dioxide overnight (16-24 h). Subsequently, an
700 overdosage of PBAP-gE (10 μ g/well) was added to the wells. Four hours later,
701 LZ901-vaccinated murine serum (Endpoint titer = 3.4) was diluted 100-fold and then
702 added to each well at a volume of 100 μ l. KIL C.2 cells containing 20 ng/mL IL-2
703 (R&D Systems) and IL-7 (R&D Systems) were then added to the plate at a start
704 density of 8.0×10^4 cells/well, with a dilution ratio of 1:2. The plate was incubated at
705 37 °C, 5% carbon dioxide for 24 h.

706 LDH release was measured using the CytoTox96 nonradioactive cytotoxicity assay
707 (Promega) according to the manufacturer's instructions. Absorbance values from
708 wells containing effector cells alone and target cells alone were detected and
709 subtracted as background from the co-culture values. Wells containing target cells
710 alone were lysed with a lysis reagent for 30 minutes at 37 °C, and the resulting
711 luminescence was set as 100% lysis. Cytotoxicity was calculated using the following
712 formula:
$$\% \text{Cytotoxicity} = \frac{(\text{Experimental} - \text{Effector spontaneous} - \text{Target spontaneous})}{(\text{Target maximum} - \text{Target spontaneous})} \times 100\%$$

713 To evaluate the *in vitro* cytotoxicity of Trop2-CAR-PBAP cells against target cells,
714 the B16-Trop2 cells were harvested and seeded into a transparent 96-well assay plate

715 (V bottom) with 1.0×10^4 cells in 100 μl of 1640 medium with 10% FBS per well
716 separately, followed by incubation at 37 °C, 5% carbon dioxide overnight (16-24 h).
717 Subsequently, Trop2-CAR cells (negative control) and Trop2-CAR-PBAP cells
718 containing 20 ng/mL IL-2 (R&D Systems) were then added to the plate at a start
719 density of 8.0×10^4 cells/well, with a dilution ratio of 1:2. The plate was incubated at
720 37 °C, 5% carbon dioxide for 24 h. LDH release was measured using the CytoTox96
721 nonradioactive cytotoxicity assay (Promega) according to the manufacturer's
722 instructions and cytotoxicity was calculated using the same formula as described
723 above.

724 Similarly, the cytotoxic activity of NK cells against tumor target cells mediated by
725 PBAP-Her2 and Trastuzumab was evaluated using the LDH assay. Briefly, the
726 MDA-MB-231-PD-L1-OE and MDA-MB-231-PD-L1-KO cells were harvested and
727 seeded into a transparent 96-well assay plate (V bottom) with 1.0×10^4 cells in 100 μl
728 of RPMI-1640 medium with 10% FBS per well separately, followed by incubation at
729 37 °C, 5% carbon dioxide overnight (16-24 h). Subsequently, an overdosage of
730 PBAP-Her2 (10 $\mu\text{g}/\text{well}$) was added to the wells. Four hours later, Trastuzumab (1
731 $\mu\text{g}/\text{well}$) was added. NK cells were then added to the plate at a start density of $8.0 \times$
732 10^4 cells/well, with a dilution ratio of 1:2. The plate was incubated at 37 °C, 5%
733 carbon dioxide for 24 h. LDH release was measured using the CytoTox96
734 nonradioactive cytotoxicity assay (Promega) according to the manufacturer's
735 instructions and cytotoxicity was calculated using the same formula as described
736 above.

737 To evaluate the *in vitro* cytotoxicity of ADC drugs (Kadcyla) in combination with
738 PBAP-Her2 against target cells, a CCK8 assay was performed. Briefly, the
739 MDA-MB-231 cells were harvested and seeded into a transparent 96-well assay plate

740 (V bottom) with 1.0×10^4 cells in 100 μl of RPMI-1640 medium with 10% FBS per
741 well separately, followed by incubation at 37 °C, 5% carbon dioxide overnight (16-24
742 h). Subsequently, an overdosage of PBAP-Her2 (10 $\mu\text{g}/\text{well}$) was added to the wells.
743 Four hours later, ADC drugs (Kadcyla or Adcetris) were added at various
744 concentrations (0.1, 1, 10, 100, and 1000 ng/ml). The plates were incubated at 37 °C
745 with 5% carbon dioxide for 24 h. Cytotoxicity was assessed using the CCK8 assay
746 according to the manufacturer's instructions (Dojindo Molecular Technologies), with
747 absorbance measured at 450 nm using a microplate reader. The percentage of cell
748 viability was calculated relative to untreated control cells.

749 ***Negative Stain Electron Microscopy:*** Transmission electron microscopy (TEM)
750 grids of gE-I53-50 nanoparticles were subjected to negative-stain electron microscopy
751 at Shenzhen Bay Laboratory. Briefly, 3.5 μL of each sample (0.1 mg/mL) was applied
752 to glow-discharged TEM grids coated with a thin continuous carbon film and stained
753 with 2% uranyl acetate. Imaging was performed using a Hitachi HT7800 microscope
754 operating at an acceleration voltage of 120 kV. Images were recorded at a
755 magnification of 80,000 \times and a defocus of 1.5 μm .

756 For sample preparation, gE-I53-50 nanoparticles were first diluted to 0.1 mg/mL in 20
757 mM Tris pH 7.0, 150 mM NaCl. Then, 3.5 μL of the sample was applied to freshly
758 glow-discharged 300-mesh carbon grids. After incubation for 1 min, excess liquid was
759 blotted away with filter paper (Whatman). The grids were then stained by applying 10
760 μL of 2% uranyl acetate, followed by blotting; this staining step was repeated three
761 times, with the third staining incubated for 1 min. Subsequently, the grids were
762 washed three times with 10 μL of ultrapure water, and excess liquid was blotted away.
763 Finally, the grids were air-dried for 1 min before imaging. Prepared grids were
764 examined under a Hitachi HT7800 electron microscope at a magnification of 80,000 \times .

765 ***Dynamic Light Scattering:*** Dynamic Light Scattering (DLS) was used to
766 measure hydrodynamic diameter (Dh) and % Polydispersity (%Pd) of gE-I53-50
767 nanoparticle samples on an UNcle Nano-DSF (UNchained Laboratories). Sample was
768 applied to a 8.8 μ L quartz capillary cassette (UNi, UNchained Laboratories) and
769 measured with 10 acquisitions of 5 s each, using auto-attenuation of the laser.
770 Increased viscosity due to 4.5% v/v glycerol in the gE-I53-50 nanoparticle buffer was
771 accounted for by the UNcle Client software in Dh measurements.

772 ***Transfection and Virus Production:*** Retroviral vectors encoding Trop2-CAR,
773 Trop2-CAR-PBAP and CD19-CAR were produced by co-transfected HEK-293T
774 cells with the packaging plasmids (PCLECO) separately. Transfection was carried out
775 using a standard calcium phosphate precipitation method, following a protocol
776 optimized for efficient virus production. After 48 hours of incubation, viral
777 supernatants were collected and filtered through a 0.45 μ m filter to remove cell debris.
778 To concentrate the lentivirus, the supernatants were subjected to ultracentrifugation at
779 25,000 \times g for 2 hours at 4°C, and the resultant viral pellet was resuspended in a small
780 volume of phosphate-buffered saline (PBS). The concentrated lentivirus was aliquoted
781 and stored at -80°C for future use.

782 ***Mouse CAR-T Cell Generation:*** To generate mouse CAR-T cells, T cells were
783 isolated from the spleen and lymph nodes of C57BL/6 mice using the mouse T cell
784 isolation kit (STEMCELL Biotech). These isolated T cells were activated with
785 immobilized anti-CD3e antibody (5 μ g/mL, eBioscience) and anti-CD28 (2 μ g/mL,
786 eBioscience) antibodies in the presence of murine IL-2 (ProSpec) in RPMI-1640
787 medium containing 10% FBS, 1% penicillin-streptomycin, and 55 nM
788 β -Mercaptoethanol. After 24 h activation, the T cells were transduced with retroviral
789 supernatants at an optimized multiplicity of infection (MOI), and spinoculation was

790 performed at $800 \times g$ for 90 minutes at 32°C to enhance transduction efficiency.
791 Following transduction, the cells were cultured and expanded in RPMI-1640 medium
792 with 10% FBS and murine IL-2 (100 IU/mL) for 3 days. The CAR expression was
793 determined with flow cytometer analysis, and the functionality of the CAR-T cells
794 was evaluated by cytotoxicity assays and cytokine release assays.

795 ***PBAP Secretion Assay of Trop2-CAR-PBAP:*** To evaluate the PBAP secretion
796 of Trop2-CAR-PBAP cells, 1.0×10^6 Trop2-CAR cells (negative control) and
797 Trop2-CAR-PBAP cells were aliquoted and cultured with B16-F10 cells at a ratio of
798 2:1 under 1640 medium with 10% FBS. The supernatants of the culture medium were
799 sampled after 48 h. To assess PBAP-secreting capabilities after consistent antigen
800 stimulation, 1.0×10^6 Trop2-CAR cells (negative control) and Trop2-CAR-PBAP
801 cells were aliquoted and cultured with B16-Trop2 cells at a ratio of 2:1 under 1640
802 medium with 10% FBS. The supernatants of the culture medium were sampled after
803 48 h. Concentrations of PBAP were determined by ELISA (His Tag ELISA Detection
804 Kit, L00435, GenScript), under the instructions of the manufacturer.

805 ***Tumor Infiltrated B cell Separation and Identification:*** To isolate and culture B
806 cells from B16-Trop2 tumor tissue, tumors were collected in PBS and homogenized
807 through 70 mm strainers, and incubated in ACK lysis buffer to remove red blood cells
808 (RBCs), followed by centrifuging and passing through a 40 mm strainer to obtain
809 single cells. To enrich for B cells, CD19-MicroBeads were used (Miltenyi Biotec,
810 130-121-301), followed by magnetic cell sorting (MACS). The positively selected B
811 cells are then cultured in RPMI-1640 medium supplemented with 10% FBS, 1%
812 penicillin-streptomycin, and 50 μ M β -mercaptoethanol. 1.0×10^6 cells are incubated
813 at 37 °C and 5% carbon dioxide. B cells coculture with 5 ng/mL IL-4 (Beyotime,
814 P5916) and 2 μ g/mL CD40L (Biolegend, 797404) for antibody secretion.

815 ***In Vivo Syngeneic Tumor Models:*** For *in vivo* experiments testing PBAP-gE
816 delivered via CAR-T cells or intratumoral injection against B16-Trop2 tumor cells in
817 murine tumor models, 6-8 week-old male C57BL/6 mice were immunized with the
818 recombinant zoster vaccine LZ901 on Days 0 and 21 (5 µg/mouse/dose). On Day 27,
819 sera were collected. On Day 28, mice were subcutaneously inoculated with
820 B16-Trop2 cells. When average tumor volumes reached ~100 mm³, treatments were
821 administered as per the experimental design. Tumor sizes were meticulously
822 monitored throughout the study period, and blood samples and tumor tissues were
823 collected for in-depth analysis when mice were euthanized.

824 To investigate the anti-tumor activity of PBAP-gE mediated primarily by
825 vaccine-induced antibodies or gE-specific CD8⁺ T cells, C57BL/6 mice were
826 immunized with the LZ901 vaccine on Days 0 and 21 (5 µg/mouse/dose). On Day 28,
827 B16-fLuc cells were subcutaneously injected into the mice. B cell depletion was
828 achieved by intraperitoneal injection of anti-mouse CD19 (clone 1D3), CD22 (clone
829 CY34.1), and B220 (clone RA3-6B2) antibodies (150 µg/mouse/antibody) on Day 33.
830 Similarly, for CD8⁺ T cell depletion, anti-mouse CD8 antibody (clone 16-0081-85)
831 was administered intraperitoneally. On Day 35, mice received intratumoral injections
832 of PBAP-gE (150 µg/mouse). Tumor growth was monitored using an *in vivo* imaging
833 system, and the images were analyzed using Live Imaging Software (Perkin Elmer).

834 To further evaluate the relationship between endogenous antibody levels and the
835 therapeutic efficacy of PBAP-based treatments, GE subunit vaccine and GE-I53-50
836 VLP vaccine were introduced. C57BL/6 mice were divided into six groups (n = 8 per
837 group): saline control, GE subunit vaccine, LZ901 vaccine, GE-I53-50 VLP vaccine,
838 and two GE-I53-50 VLP groups with either B cell or CD8⁺ T cell depletion.
839 Vaccinations were administered on Days 0 and 21 (5 µg/mouse/dose), with sera

840 collected on Day 27. Tumors were established by subcutaneous injection of
841 B16-Trop2 cells on Day 28. Depleting antibodies were administered on Day 33, and
842 PBAP-gE was injected intratumorally on Day 35 (150 µg/mouse).

843 ***In Vivo Xenograft Models:*** NSG mice were subcutaneously inoculated with 5 ×
844 10⁶ MDA-MB-231 cells (in 100 µL PBS). Mice were assigned to the following
845 treatment groups: PBAP-Her2 control, Kadcyla control, PBAP-Her2 + Adcetris
846 (CD30-targeting ADC) control, and PBAP-Her2 + Kadcyla. Tumor growth was
847 monitored regularly, and when the average tumor volume reached approximately 100
848 mm³, treatments were initiated according to the experimental design. PBAP-Her2
849 (150 µg/mouse) was administered intraperitoneally, followed 24 hours later by
850 Kadcyla (3 mg/kg) via tail vein injection. For the control groups, Adcetris (3 mg/kg)
851 was administered via the same route and schedule. Both treatments were given once a
852 week for two consecutive cycles. Mice were euthanized 7 days after the second ADC
853 treatment for tissue and tumor collection. Upon euthanasia, tumor weights were
854 measured, and the hearts, livers, spleens, lungs, kidneys, and tumor tissues were
855 collected for subsequent in-depth analysis.

856 ***Enzyme Linked Immunosorbent Assay (ELISA):*** For test the anti-gE IgG in
857 blood samples and B cells of C57BL/6 mice, recombinant gE antigen was coated on
858 high-binding 96-well plates at 2 ug/mL overnight at 2-8 °C. After washing with 0.05%
859 PBST, plates were blocked with 2% BSA in PBST for 1 h. Immunized mice serum
860 were serially diluted and added into each well in duplicate followed by incubating at
861 room temperature for 1 h. After washing with PBST, the detection of gE-specific IgG
862 antibody in serum of BALB/c was conducted through adding HRP-conjugated goat
863 anti-mouse (SinoBiological, SSA007) respectively at dilution of 1:10000 and
864 incubating for another 1 h. After washing with PBST, HRP substrate TMB solution

865 (SinoBiological, SEKCR01) was added, followed by stopping reaction with stop
866 solution (Solarbio) after sufficient development. Plates were immediately read at 450
867 nm and the data was analyzed using GraphPad Prism 8.0 software for non-linear
868 regression to calculate endpoint titers.

869 ***Flow Cytometer:*** The spleens and tumors were collected in PBS and
870 homogenized through 70 mm strainers, and incubated in ACK lysis buffer to remove
871 red blood cells (RBCs), followed by centrifuging and passing through a 40 mm
872 strainer to obtain single cells.

873 For the staining of lymphocyte surface markers, cells were stained with indicated
874 fluorochrome-conjugated monoclonal antibodies for 30 min within PBS containing
875 0.5% BSA on ice. The following indicated antibodies were used: FITC anti-GGGGS
876 (Hycells, GS-ARFT), FITC anti-mouse CD90.2 (Biolegend, 105306), PE anti-mouse
877 CD4 (Biolegend, 100408), APC anti-mouse CD8a (Biolegend, 100712), Pacific Blue
878 anti-mouse CD19 (Biolegend, 152416), PE-Cyanine7 anti-mouse CD11b (Biolegend,
879 101215), PE-Dazzle 594 anti-mouse NK1.1 (Biolegend, 108747).

880 For the staining of lymphocyte intracellular cytokines, cells were performed with the
881 1 mL Permeabilization buffer (Invitrogen, 00-8333-56). Then Brilliant Violet 421
882 anti-mouse IFN- γ (Biolegend, 505829) was used for the intracellular staining and the
883 flow cytometer analysis.

884 ***Histopathology and Immunohistochemistry:*** MDA-MB-231 cells xenograft
885 NSG mice were euthanized and major tissues, included heart, liver, spleen, lung,
886 kidney, were collected and fixed in 4% paraformaldehyde buffer for 48 h, followed by
887 embedding with paraffin. Longitudinal sections were performed and the sections (3-4
888 μ m) were stained with hematoxylin and eosin (H&E). Images were captured with
889 Digital Slide Scanner (3DHISTECH, Pannoramic MIDI).

890 Tumor sections (3 μ m thick) were stained with Her2 specific antibody (Sinobiological,
891 310184-T08, Rabbit PAb) to assess PBAP-gE infiltration and anti-human Fab (Abcam,
892 ab771, Mouse Mab) to evaluate the penetration and localization of ADCs within the
893 tumor tissue. IHC was performed with HRP-conjugated secondary antibodies and
894 visualized with DAB substrate (Vector Laboratories). Stained slides were quantified
895 using ImageJ software.

896 ***Immunofluorescence Staining and Imaging:*** Briefly, the tumors were excised
897 and prepared using the Swiss roll technique, fixed with BD Cytoperm/Cytofix (BD
898 Bioscience, 554722) solution (diluted with PBS at 1:2) overnight at 2-8 °C, followed
899 by dehydrated in 30% sucrose for 12-16 h before embedding in OCT compound
900 (Sakura Finetek, 4583). 8-10 μ m sections were prepared by CRYOSTAR NX5
901 (Thermo). The experiment assessed PBAP-gE infiltration and ADC localization
902 within tumor tissue using three-color fluorescence staining. Paraffin-embedded tissue
903 sections were deparaffinized, followed by antigen retrieval and endogenous
904 peroxidase blocking. The sections were incubated with anti-human PD-L1 (Abcam,
905 ab279293, Mouse Mab) to label PD-L1 expression on tumor cells, Her2-specific
906 antibody (Sinobiological, 310184-T08, Rabbit PAb) to detect PBAP-gE infiltration,
907 and anti-human Fab (Abcam, ab771, Mouse Mab) to evaluate the penetration and
908 localization of ADCs within the tumor tissue. Signal amplification was achieved using
909 HRP-conjugated secondary antibodies and iF488/555-TSA working solution. DAPI
910 was used for nuclear counterstaining, and autofluorescence was quenched. The
911 sections were then mounted with anti-fluorescence quenching mounting medium, and
912 fluorescence microscopy was performed to observe and capture images. The
913 experiment also included an antibody elution step to ensure signal specificity.
914 Fluorescence three-color staining was conducted using the Servicebio® TSAPLus

915 Fluorescent Triple-Color Staining Kit (G1236).

916 **Statistical Analysis:** All experiments were performed in triplicates or more, and
917 data are presented as the mean \pm SD. Statistical significance was determined using
918 one-way ANOVA with Tukey's post-test or unpaired t-test or Kruskal-Wallis test
919 where appropriate. A p-value of less than 0.05 was considered statistically significant.

920

921 **Supporting Information**

922 **Figs. S1 to S10**

923 **Acknowledgements**

924 The authors thank Zhaofeng Huang (Sun Yat-sen University, Guangzhou, China) for
925 B16-F10-Trop2⁺ (B16-Trop2) and B16-F10-fLuc (B16-fLuc) cells. The authors thank
926 Xin Wang (Southern University of Science and Technology, Shenzhen, China) for
927 Jurkat-Fc γ RIIIa (ADCC) and Jurkat-Fc γ RIIa (ADCP) effector cells. The authors
928 thank Dr. Gang Fu and Dr. Huifang Yan at the Structural Biology Core Facility of
929 Shenzhen Medical Academy of Research and Translation (SMART) for negative-stain
930 electron microscopy.

931

932 **Funding**

933 This work was supported by Shenzhen Science and Technology Program
934 (JCYJ20250604190324033) and Natural Science Foundation of China (82003252) to
935 F.Z; Guangdong Basic and Applied Basic Research Foundation of China
936 (2023A1515220144) to W.W; Natural Science Foundation of China (82202986) and
937 Natural Science Foundation of Guangdong Province (2023A1515220017,
938 2025A1515010135) to J.T; Natural Science Foundation of Guangdong Province

939 (2024A1515012867) and Doctor “Sailing” project of Science and Technology
940 Department of Guangzhou (2024A04J3291) to T.L; Sanming Project of Medicine in
941 Shenzhen (No. SZSM202311032) to L.H.

942

943 **Conflict of Interest**

944 F.Z., N.N.L., and X.L.L. are inventors on patents related to the use of PBAP. The
945 remaining authors declare no competing financial interests.

946

947 **Author contributions**

948 H.X.G., Lijuan Lu, X.X., Y.L., and D.H. contributed equally to this work; F.Z.
949 supervised the project; F.Z., W.W., S.S., and Y.X. designed the study; H.G., Lijuan Lu,
950 X.X., Y.L., D.H., H.F., G.T., C.S., Z.Z, N.L., X.L., J.T., L.H., and T.L. conducted the
951 experiments; H.G., Lijuan Lu, X.X., Y.L., D.H., W.F., C.L., H.F., G.T., C.S., Z.Z, N.L.,
952 X.L., J.T., L.H., and S.S. acquired data; F.Z., H.G., Lijuan Lu, W.F., X.X., Y.L., L.P.,
953 Lu Lu, and Y.Z. analyzed data; F.Z., H.G., L.L., W.F., X.X., Y.L., D.Z., Z.F., and Y.X.
954 wrote the manuscript.

955

956 **Data Availability Statement**

957 The data that support the findings of this study are available from the corresponding
958 author upon reasonable request.

959

960

961

962 References

963 1 Elhanani, O., Ben-Uri, R. & Keren, L. Spatial profiling technologies illuminate the tumor
964 microenvironment. *Cancer Cell* **41**, 404-420, doi:10.1016/j.ccr.2023.01.010 (2023).

965 2 Steele, N. G. *et al.* Multimodal Mapping of the Tumor and Peripheral Blood Immune
966 Landscape in Human Pancreatic Cancer. *Nat Cancer* **1**, 1097-1112,
967 doi:10.1038/s43018-020-00121-4 (2020).

968 3 Zhang, Y. & Zhang, Z. The history and advances in cancer immunotherapy: understanding the
969 characteristics of tumor-infiltrating immune cells and their therapeutic implications. *Cell Mol*
970 *Immunol* **17**, 807-821, doi:10.1038/s41423-020-0488-6 (2020).

971 4 Jhunjhunwala, S., Hammer, C. & Delamarre, L. Antigen presentation in cancer: insights into
972 tumour immunogenicity and immune evasion. *Nat Rev Cancer* **21**, 298-312,
973 doi:10.1038/s41568-021-00339-z (2021).

974 5 Chiou, S. H. *et al.* Global analysis of shared T cell specificities in human non-small cell lung
975 cancer enables HLA inference and antigen discovery. *Immunity* **54**, 586-602.e588,
976 doi:10.1016/j.jimmuni.2021.02.014 (2021).

977 6 Lowery, F. J. *et al.* Molecular signatures of antitumor neoantigen-reactive T cells from
978 metastatic human cancers. *Science* **375**, 877-884, doi:10.1126/science.abl5447 (2022).

979 7 Meier, S. L., Satpathy, A. T. & Wells, D. K. Bystander T cells in cancer immunology and
980 therapy. *Nat Cancer* **3**, 143-155, doi:10.1038/s43018-022-00335-8 (2022).

981 8 Oliveira, G. *et al.* Phenotype, specificity and avidity of antitumour CD8(+) T cells in
982 melanoma. *Nature* **596**, 119-125, doi:10.1038/s41586-021-03704-y (2021).

983 9 Rosato, P. C. *et al.* Virus-specific memory T cells populate tumors and can be repurposed for
984 tumor immunotherapy. *Nat Commun* **10**, 567, doi:10.1038/s41467-019-08534-1 (2019).

985 10 Schepers, W. *et al.* Low and variable tumor reactivity of the intratumoral TCR repertoire in
986 human cancers. *Nat Med* **25**, 89-94, doi:10.1038/s41591-018-0266-5 (2019).

987 11 Simoni, Y. *et al.* Bystander CD8(+) T cells are abundant and phenotypically distinct in human
988 tumour infiltrates. *Nature* **557**, 575-579, doi:10.1038/s41586-018-0130-2 (2018).

989 12 Li, S. *et al.* Bystander CD4(+) T cells infiltrate human tumors and are phenotypically distinct.
990 *Oncoimmunology* **11**, 2012961, doi:10.1080/2162402x.2021.2012961 (2022).

991 13 Caushi, J. X. *et al.* Transcriptional programs of neoantigen-specific TIL in anti-PD-1-treated
992 lung cancers. *Nature* **596**, 126-132, doi:10.1038/s41586-021-03752-4 (2021).

993 14 Duhen, T. *et al.* Co-expression of CD39 and CD103 identifies tumor-reactive CD8 T cells in
994 human solid tumors. *Nat Commun* **9**, 2724, doi:10.1038/s41467-018-05072-0 (2018).

995 15 Roy, D. G. *et al.* Adjuvant oncolytic virotherapy for personalized anti-cancer vaccination. *Nat*
996 *Commun* **12**, 2626, doi:10.1038/s41467-021-22929-z (2021).

997 16 Zhong, L. *et al.* Hyperacute rejection-engineered oncolytic virus for interventional clinical
998 trial in refractory cancer patients. *Cell* **188**, 1119-1136.e1123, doi:10.1016/j.cell.2024.12.010
999 (2025).

1000 17 Taha, Z. *et al.* Complementary dual-virus strategy drives synthetic target and cognate T-cell
1001 engager expression for endogenous-antigen agnostic immunotherapy. *Nat Commun* **15**, 7267,
1002 doi:10.1038/s41467-024-51498-0 (2024).

1003 18 Redenti, A. *et al.* Probiotic neoantigen delivery vectors for precision cancer immunotherapy.
1004 *Nature* **635**, 453-461, doi:10.1038/s41586-024-08033-4 (2024).

1005 19 Chen, X. *et al.* An oncolytic virus delivering tumor-irrelevant bystander T cell epitopes
1006 induces anti-tumor immunity and potentiates cancer immunotherapy. *Nat Cancer* **5**,
1007 1063-1081, doi:10.1038/s43018-024-00760-x (2024).

1008 20 Dong, H. *et al.* Tumor-associated B7-H1 promotes T-cell apoptosis: a potential mechanism of
1009 immune evasion. *Nat Med* **8**, 793-800, doi:10.1038/nm730 (2002).

1010 21 Chen, D. S. & Mellman, I. Elements of cancer immunity and the cancer-immune set point.
1011 *Nature* **541**, 321-330, doi:10.1038/nature21349 (2017).

1012 22 Li, C. W. *et al.* Eradication of Triple-Negative Breast Cancer Cells by Targeting Glycosylated
1013 PD-L1. *Cancer Cell* **33**, 187-201.e110, doi:10.1016/j.ccr.2018.01.009 (2018).

1014 23 Park, J. E. *et al.* Anti-tumor effects of NK cells and anti-PD-L1 antibody with
1015 antibody-dependent cellular cytotoxicity in PD-L1-positive cancer cell lines. *J Immunother
1016 Cancer* **8**, doi:10.1136/jitc-2020-000873 (2020).

1017 24 Tan, J. *et al.* Anti-PD-L1 antibody enhances curative effect of cryoablation via
1018 antibody-dependent cell-mediated cytotoxicity mediating PD-L1(high)CD11b(+) cells
1019 elimination in hepatocellular carcinoma. *Acta Pharm Sin B* **13**, 632-647,
1020 doi:10.1016/j.apsb.2022.08.006 (2023).

1021 25 Boyerinas, B. *et al.* Antibody-Dependent Cellular Cytotoxicity Activity of a Novel
1022 Anti-PD-L1 Antibody Avelumab (MSB0010718C) on Human Tumor Cells. *Cancer Immunol
1023 Res* **3**, 1148-1157, doi:10.1158/2326-6066.Cir-15-0059 (2015).

1024 26 Powles, T. *et al.* Avelumab Maintenance Therapy for Advanced or Metastatic Urothelial
1025 Carcinoma. *N Engl J Med* **383**, 1218-1230, doi:10.1056/NEJMoa2002788 (2020).

1026 27 Winer, E. P. *et al.* Pembrolizumab versus investigator-choice chemotherapy for metastatic
1027 triple-negative breast cancer (KEYNOTE-119): a randomised, open-label, phase 3 trial.
1028 *Lancet Oncol* **22**, 499-511, doi:10.1016/s1470-2045(20)30754-3 (2021).

1029 28 Adams, S. *et al.* Pembrolizumab monotherapy for previously treated metastatic triple-negative
1030 breast cancer: cohort A of the phase II KEYNOTE-086 study. *Ann Oncol* **30**, 397-404,
1031 doi:10.1093/annonc/mdy517 (2019).

1032 29 Dong, Y. *et al.* Novel bispecific antibody-drug conjugate targeting PD-L1 and B7-H3
1033 enhances antitumor efficacy and promotes immune-mediated antitumor responses. *J
1034 Immunother Cancer* **12**, doi:10.1136/jitc-2024-009710 (2024).

1035 30 Xiao, D. *et al.* Development of bifunctional anti-PD-L1 antibody MMAE conjugate with
1036 cytotoxicity and immunostimulation. *Bioorg Chem* **116**, 105366,
1037 doi:10.1016/j.bioorg.2021.105366 (2021).

1038 31 Patnaik, A. *et al.* Phase 1 study of SGN-PDL1V, a novel, investigational vedotin
1039 antibody-drug conjugate directed to PD-L1, in patients with advanced solid tumors
1040 (SGNPDL1V-001, trial in progress). *Journal of Clinical Oncology* **40**, TPS3154-TPS3154,
1041 doi:10.1200/JCO.2022.40.16_suppl.TPS3154 (2022).

1042 32 Shan, Y. *et al.* Preclinical activity of HLX43, a PD-L1-targeting ADC in multiple PD-1/PD-L1
1043 refractory/resistant models. *Annals of Oncology* (2023).

1044 33 Li, H. Y. *et al.* Bispecific antibody targeting both B7-H3 and PD-L1 exhibits superior
1045 antitumor activities. *Acta Pharmacol Sin* **44**, 2322-2330, doi:10.1038/s41401-023-01118-2
1046 (2023).

1047 34 Hu, C. *et al.* 1201-B Characterization of a novel bifunctional anti-PD-L1 antibody-drug
1048 conjugate for the treatment of solid tumors. *Journal for ImmunoTherapy of Cancer* **11**,
1049 A1847-A1847, doi:10.1136/jitc-2023-SITC2023.1201-B (2023).

1050 35 Amanna, I. J., Carlson, N. E. & Slifka, M. K. Duration of humoral immunity to common viral
1051 and vaccine antigens. *N Engl J Med* **357**, 1903-1915, doi:10.1056/NEJMoa066092 (2007).

1052 36 Vink, P. *et al.* Immunogenicity and safety of the adjuvanted recombinant zoster vaccine in
1053 patients with solid tumors, vaccinated before or during chemotherapy: A randomized trial.
1054 *Cancer* **125**, 1301-1312, doi:10.1002/cncr.31909 (2019).

1055 37 Lasagna, A. *et al.* The immunogenicity and the safety of the adjuvanted glycoprotein E
1056 (gE)-based recombinant vaccine against herpes zoster (RZV) in cancer patients during
1057 immunotherapy. *Hum Vaccin Immunother* **19**, 2288282, doi:10.1080/21645515.2023.2288282
1058 (2023).

1059 38 Junak, S. *et al.* Phase II Study of Responses to Vaccination in Pediatric Cancer Survivors
1060 Following Standard-of-Care Non-HSCT Chemotherapy. *Pediatr Blood Cancer* **72**, e31611,
1061 doi:10.1002/pbc.31611 (2025).

1062 39 Zengin, E. & Sarper, N. Humoral immunity to diphtheria, tetanus, measles, and hemophilus
1063 influenzae type b in children with acute lymphoblastic leukemia and response to
1064 re-vaccination. *Pediatr Blood Cancer* **53**, 967-972, doi:10.1002/pbc.22135 (2009).

1065 40 Patel, S. R. *et al.* Revaccination of children after completion of standard chemotherapy for
1066 acute leukemia. *Clin Infect Dis* **44**, 635-642, doi:10.1086/511636 (2007).

1067 41 Ercan, T. E. *et al.* Antibody titers and immune response to diphtheria-tetanus-pertussis and
1068 measles-mumps-rubella vaccination in children treated for acute lymphoblastic leukemia. *J
1069 Pediatr Hematol Oncol* **27**, 273-277, doi:10.1097/01.mph.0000163214.37147.5a (2005).

1070 42 Quan, Y. *et al.* Comparison of the Immunogenicity of the LZ901 Vaccine and HZ/su Vaccine
1071 in a Mouse Model. *Vaccines (Basel)* **12**, doi:10.3390/vaccines12070775 (2024).

1072 43 Jin, P. F. *et al.* Immunogenicity and safety of a recombinant gE-Fc fusion protein subunit
1073 vaccine for herpes zoster in adults ≥ 50 years of age: a randomised, active-controlled,
1074 non-inferiority trial. *Nat Commun* **16**, 7590, doi:10.1038/s41467-025-62800-z (2025).

1075 44 Zou, F. *et al.* Engineered triple inhibitory receptor resistance improves anti-tumor CAR-T cell
1076 performance via CD56. *Nature Communications* **10**, doi:10.1038/s41467-019-11893-4 (2019).

1077 45 Liu, B. F. *et al.* Chimeric Antigen Receptor T Cells Guided by the Single-Chain Fv of a
1078 Broadly Neutralizing Antibody Specifically and Effectively Eradicate Virus Reactivated from
1079 Latency in CD4+ T Lymphocytes Isolated from HIV-1-Infected Individuals Receiving
1080 Suppressive Combined Antiretroviral Therapy. *Journal of Virology* **90**, 9712-9724,
1081 doi:10.1128/jvi.00852-16 (2016).

1082 46 Zou, F. *et al.* The CD39+ HBV surface protein-targeted CAR-T and personalized
1083 tumor-reactive CD8+ T cells exhibit potent anti-HCC activity. *Molecular Therapy* **29**,
1084 1794-1807, doi:10.1016/j.ymthe.2021.01.021 (2021).

1085 47 Zou, F. *et al.* Moderate expression of CD39 in GPC3-CAR-T cells shows high efficacy against
1086 hepatocellular carcinoma. *Frontiers of Medicine* **18**, 708-720, doi:10.1007/s11684-024-1071-9
1087 (2024).

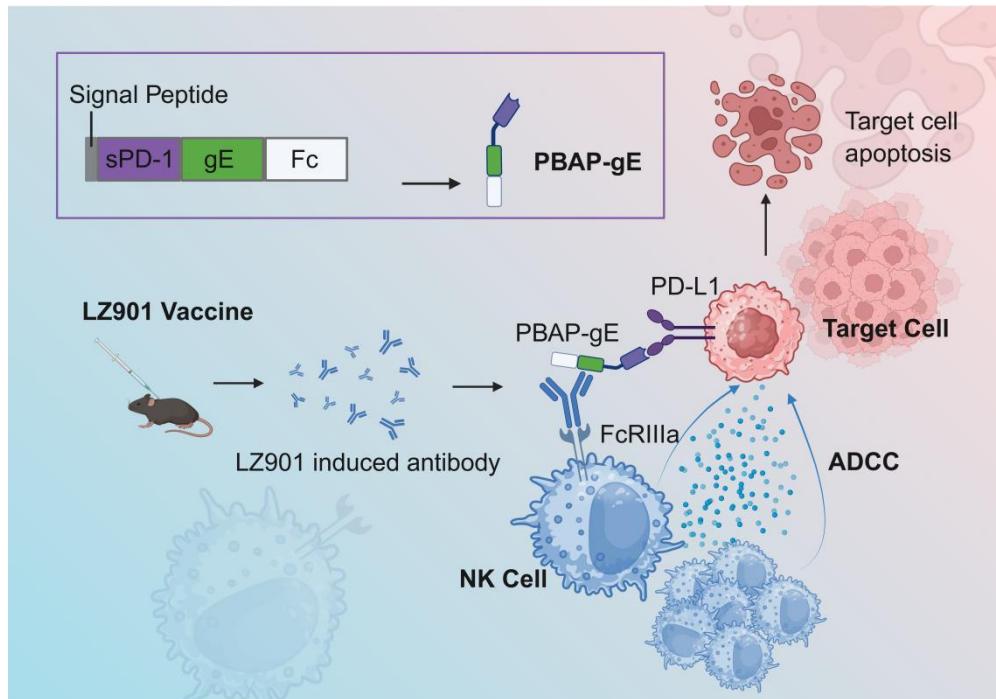
1088 48 Qiao, Y. D. *et al.* Enhancement of CAR-T cell activity against cholangiocarcinoma by
1089 simultaneous knockdown of six inhibitory membrane proteins. *Cancer Communications* **43**,
1090 788-807, doi:10.1002/cac2.12452 (2023).

1091 49 Liu, B. F. *et al.* Broadly neutralizing antibody derived CAR T cells reduce viral reservoir in
1092 individuals infected with HIV-1. *Journal of Clinical Investigation* **131**, doi:10.1172/jci150211
1093 (2021).

1094 50 Ma, X. *et al.* Nanoparticle Vaccines Based on the Receptor Binding Domain (RBD) and
1095 Heptad Repeat (HR) of SARS-CoV-2 Elicit Robust Protective Immune Responses. *Immunity*
1096 **53**, 1315-1330.e1319, doi:10.1016/j.jimmuni.2020.11.015 (2020).

1097 51 Yuan, Y. *et al.* A bivalent nanoparticle vaccine exhibits potent cross-protection against the
1098 variants of SARS-CoV-2. *Cell Rep* **38**, 110256, doi:10.1016/j.celrep.2021.110256 (2022).

1099 52 Chen, R. *et al.* Development of Receptor Binding Domain (RBD)-Conjugated Nanoparticle
1100 Vaccines with Broad Neutralization against SARS-CoV-2 Delta and Other Variants. *Adv Sci
(Weinh)* **9**, e2105378, doi:10.1002/advs.202105378 (2022).

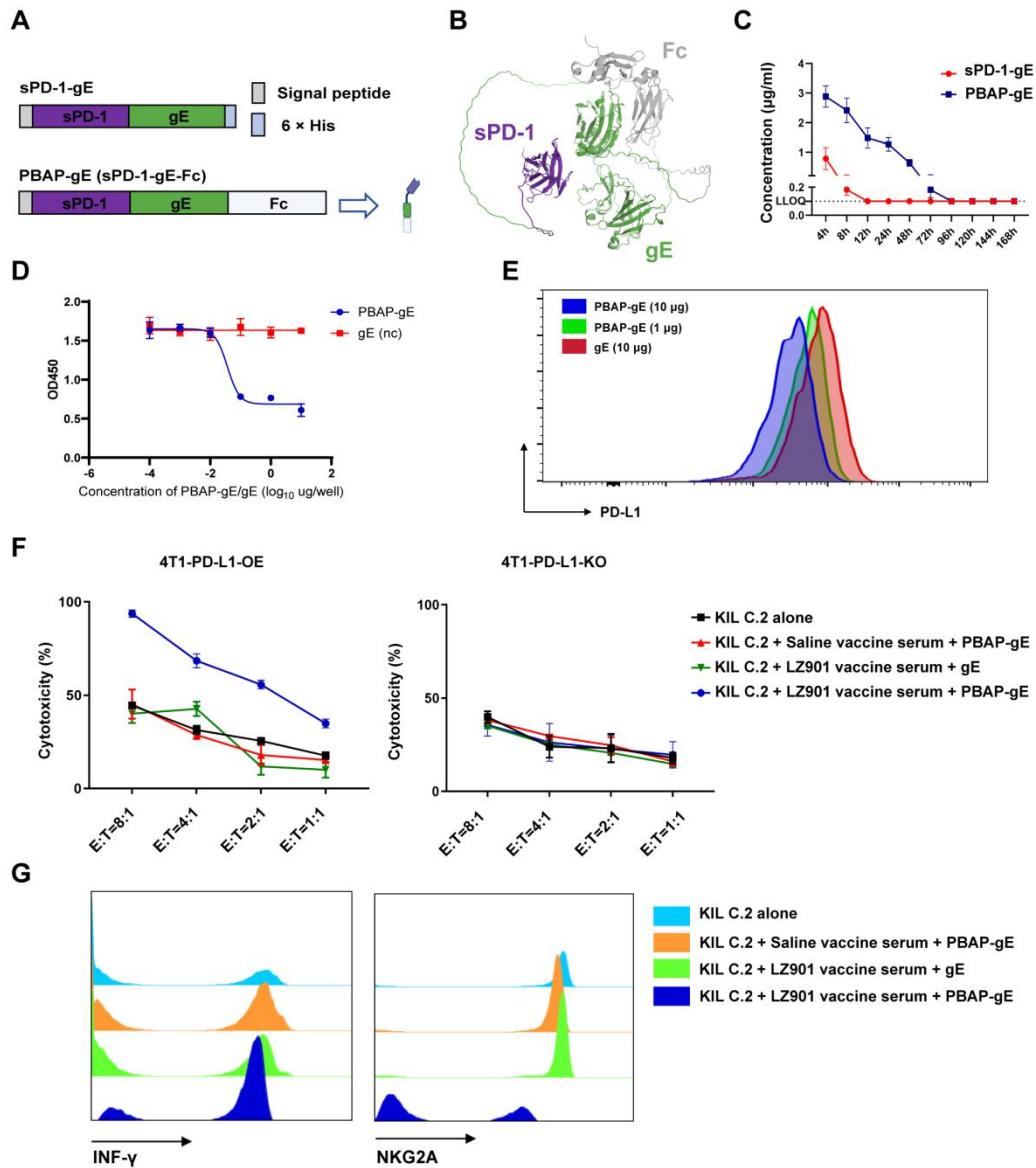

1102 53 Zhang, X. *et al.* Improvement of a SARS-CoV-2 vaccine by enhancing the conjugation
1103 efficiency of the immunogen to self-assembled nanoparticles. *Cell Mol Immunol* **18**,
1104 2042-2044, doi:10.1038/s41423-021-00736-2 (2021).

1105 54 Li, Y. *et al.* A nanoparticle vaccine displaying varicella-zoster virus gE antigen induces a
1106 superior cellular immune response than a licensed vaccine in mice and non-human primates.
1107 *Front Immunol* **15**, 1419634, doi:10.3389/fimmu.2024.1419634 (2024).

1108 55 Chen, A. X. Y. *et al.* Rewiring endogenous genes in CAR T cells for tumour-restricted payload
1109 delivery. *Nature* **644**, 241-251, doi:10.1038/s41586-025-09212-7 (2025).

1110

1111



1112

1113 **Scheme 1. Mechanism of PBAP-gE Complex Combined with LZ901 Vaccine in**
1114 **Enhancing NK Cell-Mediated Anti-Tumor Efficacy.**

1115 The PBAP-gE complex specifically binds to PD-L1 on PD-L1-positive tumor cells
1116 via its sPD-L1 domain, thereby labeling these cells with the gE antigen. Subsequently,
1117 the LZ901 vaccine activates the immune system to produce gE - specific antibodies
1118 (anti-gE antibodies), which exert their effects through two distinct pathways. Firstly,
1119 these antibodies directly bind to the Fc_γRIIIa receptors on NK cells, providing
1120 activation signals. Secondly, they specifically bind to the PBAP-gE complex already
1121 present on tumor cells. Together, these dual actions trigger NK cell-mediated ADCC,
1122 significantly augmenting NK cells' ability to target and destroy PD-L1-positive tumor
1123 cells. Created with [BioRender.com](https://biorender.com).

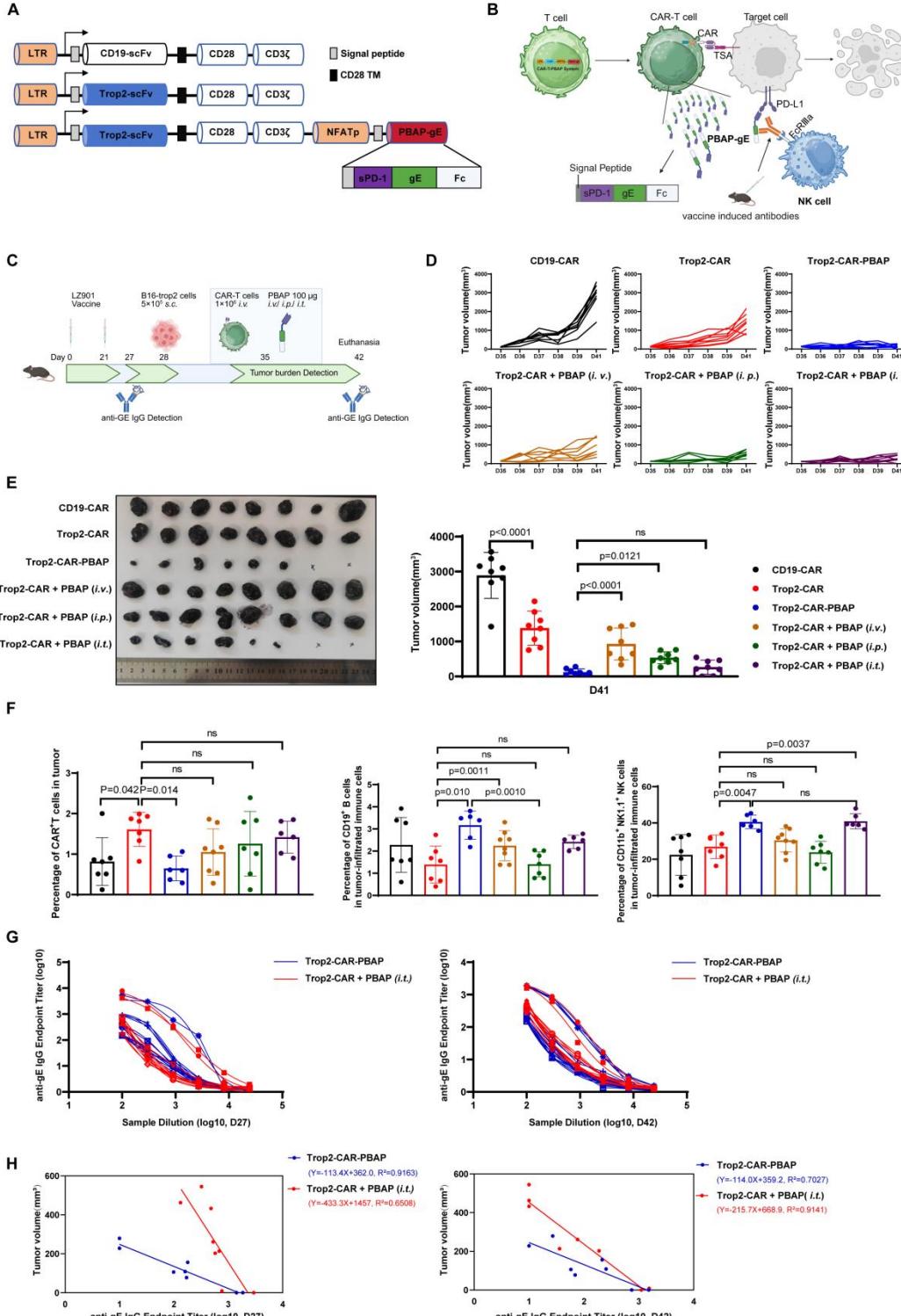
1124

1125

1126 **Fig. 1. Serum from Herpes Zoster Vaccine (LZ901)-immunized Mice Enhances**
 1127 **PBAP-Mediated ADCC Against PD-L1⁺ Tumor Cells *In Vitro*.**

1128 A) Schematic diagram of the sPD-1-gE and PBAP-gE fusion protein. The sPD-1-gE
 1129 construct consists of sPD-1 fused to gE. The PBAP-gE construct comprises sPD-1-gE
 1130 fused with an Fc domain (sPD-1-gE-Fc).

1131 B) Structural modeling of PBAP-gE with AlphaFold 3.


1132 C) Pharmacokinetic profiles of sPD-1-gE and PBAP-gE following intravenous
 1133 injection into C57BL/6J mice (n=3 mice/group, 100 μg/mice).

1134 D) The binding inhibition of PBAP-gE on PD-L1/PD-1 interaction was assessed by
 1135 ELISA. The absorbance was measured at 450 nm to determine the blocking effect.

1136 E) The fluorescence intensity of the antibody-cell binding was analyzed using a flow
 1137 cytometer to assess the blocking effect on the PD-1/PD-L1 pathway.

1138 F) *In vitro* cytotoxicity assay. KIL C.2 cells were co-incubated with PBAP-gE and
1139 serum from LZ901-immunized mice, against 4T1-PD-L1-OE tumor cells and
1140 4T1-PD-L1-KO cells. KIL C.2 cells, KIL C.2 cells co-incubated with gE and serum
1141 from LZ901-immunized mice, and KIL C.2 cells co-incubated with PBAP-gE and
1142 serum from saline vaccine-immunized mice were used as controls. Representative of
1143 2 independent experiments.

1144 G) Flow cytometer analysis of IFN- γ expression and inhibitory receptor (NKG2A)
1145 levels in KIL C.2 cells. Representative of 3 independent experiments.

1146

1147 **Fig. 2. Trop2-CAR-T Cells Coexpressing PBAP-gE or Combined with PBAP-gE**
1148 **Intratumoral Injection Induces Tumor Regression in LZ901-Vaccinated Mice.**

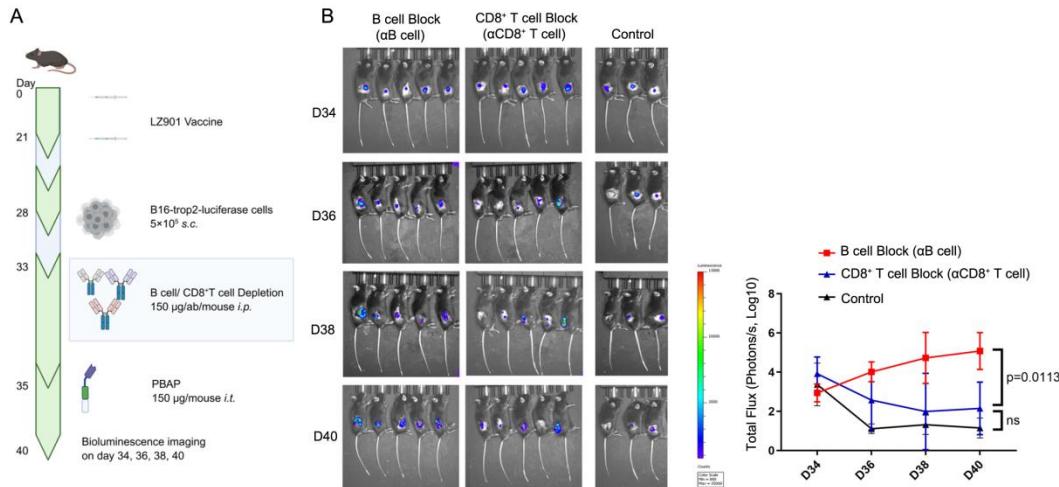
1149 A) Schematic representation of the CAR construct. The VH and VL domains are
1150 ligated with the CD28 transmembrane (TM) domain, followed by the CD3ζ
1151 intracellular domain (control group). The experimental group incorporates an

1152 additional PBAP-gE module, driven by the NFAT promoter at the C-terminus to
1153 enable tumor-specific expression.

1154 B) Diagram of the CAR-T-PBAP system, which integrates a CAR module with a
1155 PBAP-gE expression cassette driven by the NFAT promoter. Upon recognition of
1156 tumor antigens by the CAR ectodomain on T cells, PBAP-gE is expressed and
1157 secreted. PBAP-gE bridges vaccine- or natural viral infection-induced antibodies
1158 bound to Fc γ RIIIa $^+$ NK cells with PD-L1 $^+$ tumor cells, triggering antibody-dependent
1159 cellular cytotoxicity (ADCC) and subsequent tumor cell lysis. Created with
1160 [BioRender.com](https://biorender.com).

1161 C) Overview of Experimental Design. C57BL/6J mice (n=8 mice/group) received
1162 LZ901 vaccine (5 μ g/dose) on Days 0 and 21, with serum collected for anti-gE IgG
1163 detection on Day 27. On Day 28, 5×10^5 B16-F10/Trop2 cells were subcutaneously
1164 implanted. When tumors reached 100 mm 3 (Day 35), mice were infused with a single
1165 dose of CAR-T cells, with or without PBAP-gE, via intravenous (*i.v.*), intraperitoneal
1166 (*i.p.*), or intratumoral (*i.t.*) injection. Terminal serum was collected on Day 42 for
1167 anti-gE IgG analysis. Created with [BioRender.com](https://biorender.com).

1168 D) Tumor volumes were measured every 1-2 days across all groups, and all mice were
1169 euthanized on Day 42.

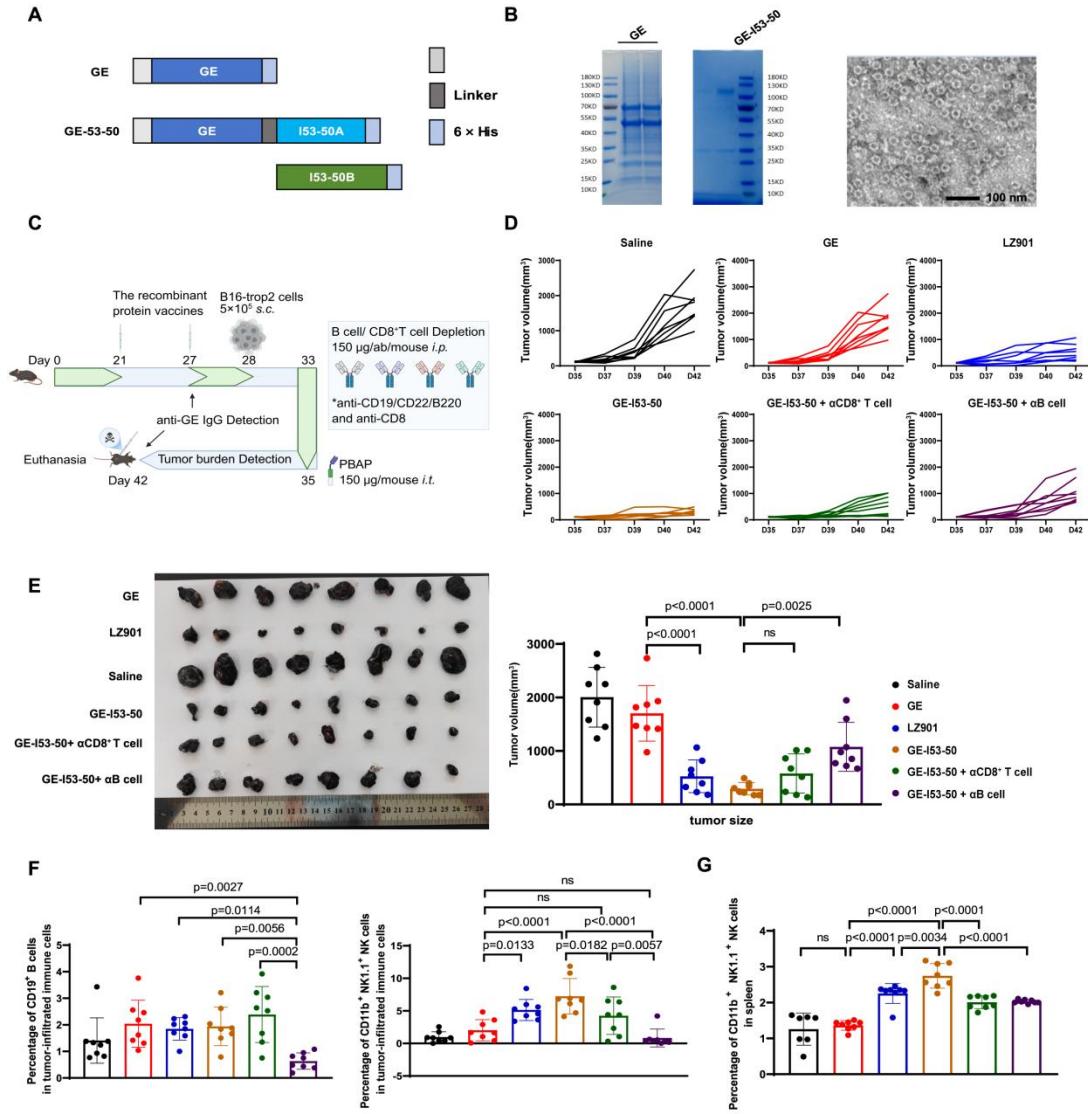

1170 E) Representative images of tumors are shown on the left, with tumor volumes at the
1171 experimental endpoint shown in the right panel. The PBAP-coexpressing CAR-T cell
1172 group demonstrated tumor regression comparable to the intratumoral injection group.

1173 F) Analysis of tumor-infiltrating immune cells by flow cytometer, revealed that both
1174 the Trop2-CAR-PBAP and Trop2-CAR + PBAP (*i.t.*) groups had significantly
1175 elevated frequencies of B cells and NK cells.

1176 For panels E and F, data are presented as the mean \pm s.d, n=8. Statistical significance
1177 was determined using one-way ANOVA. ns indicates not significant ($P > 0.05$).

1178 G) The binding affinity of serum from LZ901-vaccinated mice with gE at Days 27
1179 and 42 was analyzed by ELISA in the Trop2-CAR-PBAP treatment group and
1180 Trop2-CAR + PBAP treatment group.

1181 H) Correlation analysis of tumor volume with gE-specific IgG antibody levels
1182 (Endpoint titer) at Days 27 and 42 between Trop2-CAR-PBAP treatment group and
1183 Trop2-CAR + PBAP-gE (*i.t.*) treatment group.


1184

1185 **Fig. 3. PBAP-gE Elicits a Robust Anti-Tumor Immune Response, Predominantly
1186 Mediated by NK Cells through gE-Specific Antibody Production by B Cells.**

1187 A) Experimental design to assess the contributions of antibody versus CD8⁺ T cells in
1188 PBAP-gE-mediated tumor suppression. C57BL/6J mice (n=5 mice/group) were
1189 immunized with the LZ901 vaccine (5 µg/dose) on Days 0 and 21. On Day 28, $5 \times$
1190 10^5 B16-Trop2-luciferase cells (luciferase-IRES-RFP⁺) were subcutaneously
1191 engrafted. B cell depletion was achieved on Day 33 via anti-CD19, anti-CD22, and
1192 anti-B220 antibodies, while CD8⁺ T cell depletion was induced by anti-CD8
1193 antibodies. On Day 35, mice received intratumoral injections of PBAP-gE (150
1194 µg/mouse), and tumor growth was monitored using an *in vivo* imaging system (IVIS),
1195 allowing for real-time tracking of tumor dynamics. Created with [BioRender.com](https://biorender.com).

1196 B) In tumor-bearing mice, *in vivo* imaging results before and after depletion of B
1197 cells or CD8⁺ T cells were obtained. The group with depletion of B cells and the
1198 group with depletion of CD8⁺ T cells each included 5 mice, while the control group
1199 contained 3 mice.

1200 For panel B, data are presented as the mean \pm s.d. Statistical significance was
1201 determined using Kruskal-Wallis test. ns indicates not significant ($P > 0.05$).

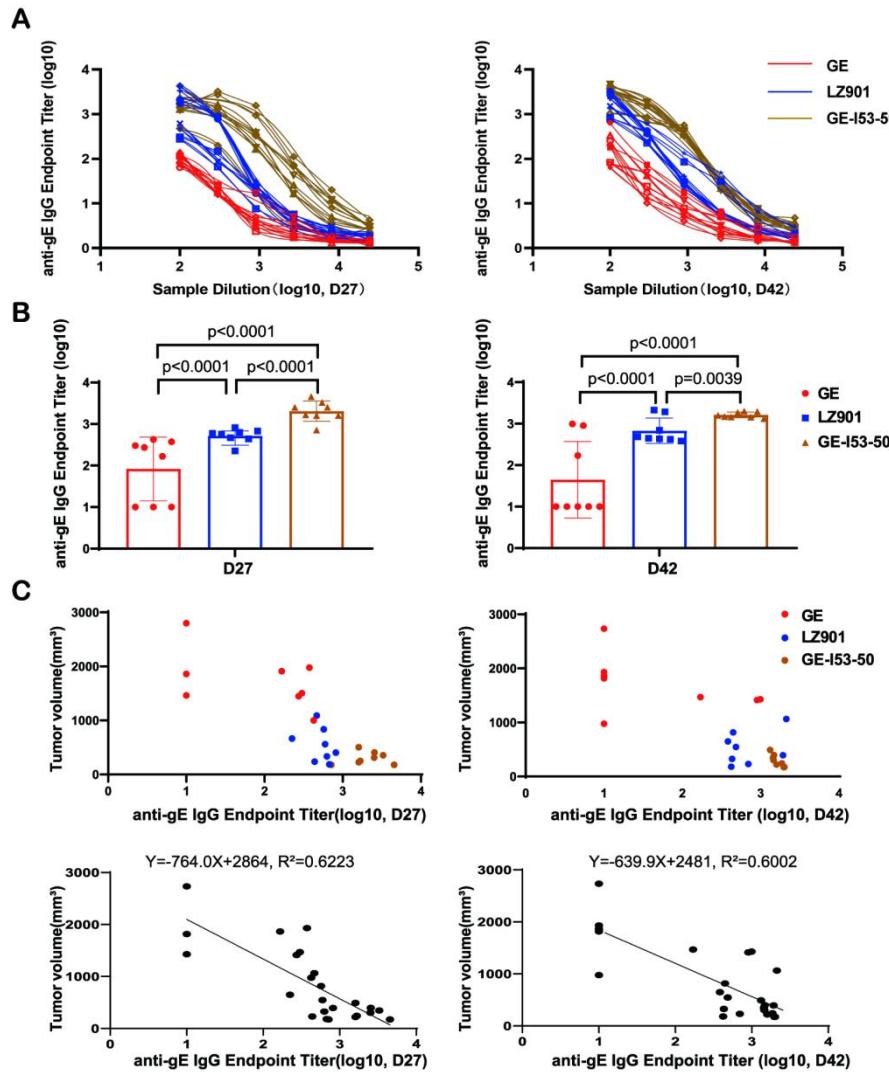
Fig. 4. The Titers of Antibody Dominate PBAP Anti-Tumor Activity.

A) Schematic representation of the other two recombinant protein vaccines used in the study: the low-immunogenicity gE subunit vaccine and the high-immunogenicity GE-I53-50 virus-like particle (VLP) vaccine formulated by I53-50B and GE-I53-50A. Scale bars, 100 nm.

B) Coomassie Blue staining of gE and GE-I53-50 nanoparticles confirming the expression and purity of the recombinant proteins (left panel). Transmission electron microscopy (TEM) image showing the morphology of GE-I53-50 nanoparticles (right panel).

C) Overview of Experimental Design. C57BL/6J mice (n=8 mice/group) were immunized with the vaccines (5 µg/dose) on Days 0 and 21. Serum collected on Day 27 was analyzed for anti-gE IgG levels. On Day 28, 5×10^5 B16-F10/Trop2 cells were subcutaneously engrafted. On Day 33, B cell and CD8⁺ T cell depletion was

1216 performed on Day 33 using intraperitoneal injections of anti-CD19/CD22/B220 (α B
1217 cell depletion, 150 μ g/mouse each) and anti-CD8 antibodies (α CD8 $^+$ T cell depletion,
1218 150 μ g/mouse each). On Day 35, PBAP-gE (150 μ g/mouse) was administered
1219 intratumorally, and tumor progression was monitored. Tumor volumes were measured
1220 every 1-2 days until Day 42, when mice were euthanized for analysis of tumor burden
1221 and serum anti-gE IgG levels. Created with [BioRender.com](#).


1222 D) Tumor growth curves were plotted for the six experimental groups: saline control,
1223 gE subunit vaccine, LZ901 vaccine, GE-I53-50 VLP vaccine, GE-I53-50 VLP +
1224 α CD8 $^+$ T cell depletion, and GE-I53-50 VLP + α B cell depletion. Corresponding
1225 anti-gE-specific IgG antibody levels are shown on the right, illustrating the correlation
1226 between vaccine-induced antibody responses and tumor growth suppression.

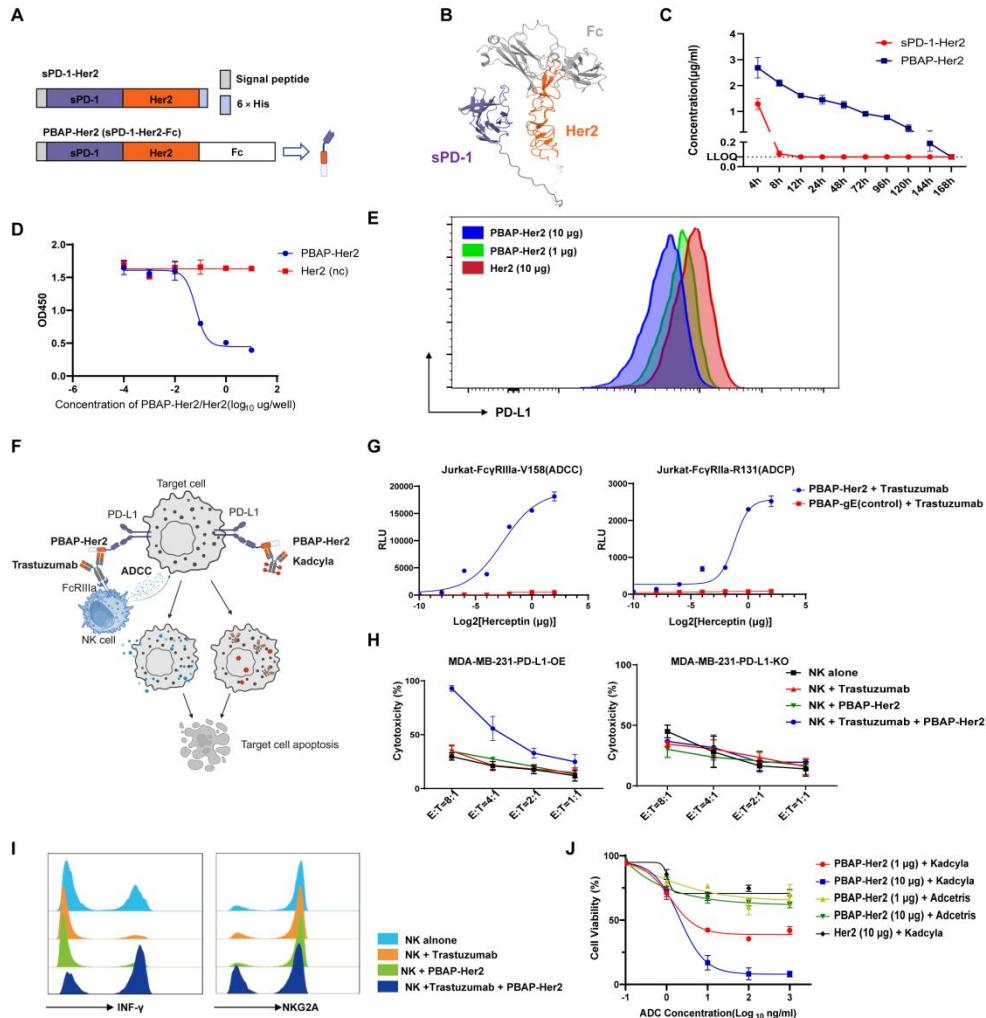
1227 E) Representative tumor images are shown on the left, with tumor volumes at the
1228 experimental endpoint shown in the right panel. The GE-I53-50 VLP vaccine groups
1229 showed significant tumor regression.

1230 F) Analysis of tumor-infiltrating immune cells by flow cytometer, revealed that NK
1231 cells frequencies were significantly elevated in the tumor tissue of mice vaccinated
1232 with LZ901 or GE-I53-50 VLP, treated with PBAP-gE.

1233 G) Analysis of NK cells in the spleen by flow cytometer revealed that NK cells
1234 frequencies were significantly elevated in the spleen of mice vaccinated with LZ901
1235 or GE-I53-50 VLP, treated with PBAP-gE.

1236 For panels E, F and G, data are presented as the mean \pm s.d, n=8. Statistical
1237 significance was determined using one-way ANOVA. ns indicates not significant (P >
1238 0.05).

1239


1240 **Fig. 5. Tumor Burden Inversely Correlated with gE-specific IgG Antibody Levels**
1241 **(Endpoint titer) among gE Subunit Vaccine, LZ901 Vaccine, and GE-I53-50 VLP**
1242 **Vaccine Treatment Groups.**

1243 A) The binding affinity of serum from LZ901-vaccinated mice with gE was analyzed
1244 by ELISA among gE subunit vaccine, LZ901 vaccine, and GE-I53-50 VLP vaccine
1245 treatment groups.

1246 B) The serum gE-specific IgG antibody levels (Endpoint titer) at Days 27 and 42 in
1247 mice immunized with the gE subunit vaccine, LZ901 vaccine, and GE-I53-50 VLP
1248 vaccine.

1249 C) Correlation analysis of tumor burden with serum gE-specific IgG antibody levels
1250 (Endpoint titer) at Days 27 and 42 in mice immunized with the gE subunit vaccine,
1251 LZ901 vaccine, and GE-I53-50 VLP vaccine.

1252 For panel B, data are presented as the mean \pm s.d. Statistical significance was
1253 determined using one-way ANOVA.

1254

1255 **Fig. 6. PBAP Incorporating Tumor-specific Antigens Enhance Synergistic**
 1256 **Anti-tumor Activity with Commercial Antibodies and ADCs *In Vitro*.**

1257

1258 A) Schematic representation of the design of sPD-1-Her2 and PBAP-Her2
 1259 (sPD-1-Her2-Fc). PBAP-Her2 is engineered by fusing the extracellular domain of
 1260 human PD-1 (sPD-1) with Domain IV of the Her2 protein, followed by the addition of
 1261 an Fc region to enhance stability and extend half-life.

1262

B) Structural modeling of PBAP-Her2 with AlphaFold 3.

1263

C) Pharmacokinetic profiles of sPD-1-Her2 and PBAP-Her2 following intravenous
 1264 injection into C57BL/6J mice (n=3 mice/group, 100 $\mu\text{g}/\text{mice}$).

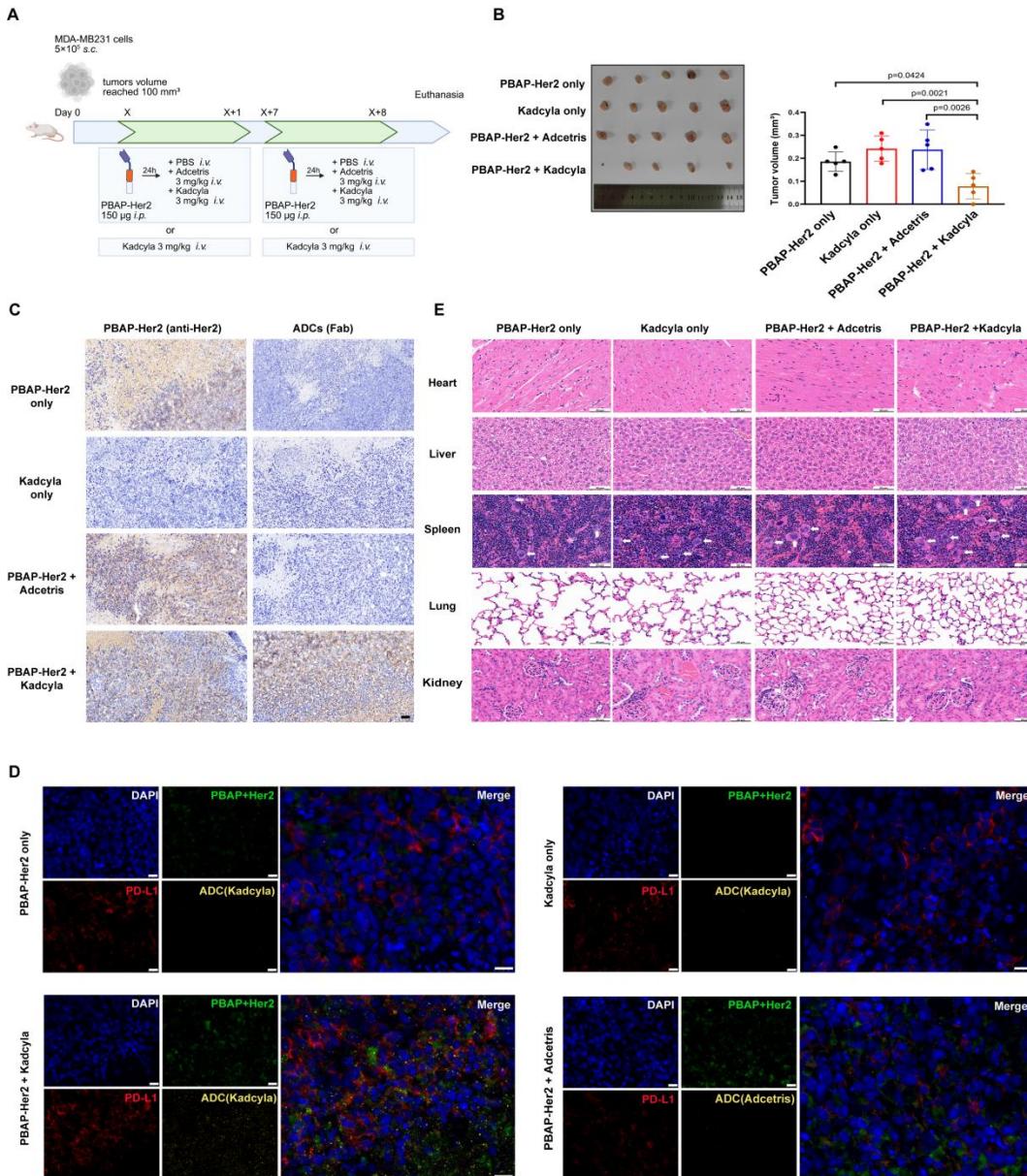
1265

D) The binding inhibition of PBAP-Her2 on PD-L1/PD-1 interaction was assessed by
 1266 ELISA. The absorbance was measured at 450 nm to determine the blocking effect.

1267

E) The fluorescence intensity of the antibody-cell binding was analyzed using a flow
 1268 cytometer to assess the blocking effect on the PD-1/PD-L1 pathway.

1269


1269 F) Diagram illustrating the mechanism by which PBAP-Her2 synergizes with
1270 Trastuzumab and Kadcyla to kill PD-L1-positive target cells. Created with
1271 [BioRender.com](https://biorender.com).

1272 G) ADCC and ADCP activities were assessed using Jurkat-Fc γ R reporter systems:
1273 ADCC (Fc γ RIIIa-V158 variant) and ADCP (Fc γ RIIa-R131 variant) in response to
1274 PBAP-Her2/PBAP-gE combined with Trastuzumab. PBAP-Her2 in combination with
1275 Trastuzumab significantly enhanced ADCC and ADCP activities against
1276 Her2-negative MDA-MB-231 cells. Representative of 3 independent experiments.

1277 H) NK cell-mediated cytotoxicity was quantified using an LDH release assay. The
1278 combination of PBAP-Her2 with Trastuzumab induced potent cytotoxicity against
1279 MDA-MB-231-PD-L1-OE cells, which was reduced following PD-L1 knockout in
1280 target cells (MDA-MB-231-PD-L1-KO). Representative of 3 independent
1281 experiments.

1282 I) Flow cytometer analysis of IFN- γ expression and inhibitory receptor (NKG2A)
1283 levels in NK cells. Representative of 3 independent experiments.

1284 J) The CCK8 assay was used to evaluate the cytotoxicity of commercial ADCs
1285 (Kadcyla and Adcetris) combined with PBAP-Her2. MDA-MB-231-PD-L1-OE cells
1286 were treated with PBAP-Her2 (10 μ g/well) for 4 hours, followed by ADC drugs
1287 (Kadcyla or Adcetris) at various concentrations (0.1, 1, 10, 100, 1000 ng/ml). After 24
1288 hours of incubation, cell viability was measured using the CCK8 assay. PBAP-Her2
1289 with Adcetris and Her2 protein with Kadcyla were used as controls. Representative of
1290 3 independent experiments.

Fig. 7. PBAP-Her2 Synergizes with Antibody-Drug Conjugates to Enhance Antitumor Efficacy in NSG Mice Bearing Subcutaneous Tumors

A) Overview of Experimental Design. NSG mice were subcutaneously inoculated with MDA-MB-231 cells. Once the tumors reached approximately 100 mm³, mice were assigned to one of four treatment groups (n=5 mice/group): PBAP-Her2 alone, Kadcyla alone, PBAP-Her2 + Adcetris, and PBAP-Her2 + Kadcyla. PBAP-Her2 (150 µg/mouse) was administered intraperitoneally, followed by tail vein injections of Kadcyla (3 mg/kg) or Adcetris (3 mg/kg) 24 hours later. Treatments were administered once a week for two consecutive cycles, with tumor growth monitored throughout the study. At the experimental endpoint, mice were euthanized, and tumor and tissue samples were collected for further analysis. Created with [BioRender.com](https://biorender.com).

1303 B) Representative tumor images for each experimental group are displayed on the left,
1304 with tumor volumes at the experimental endpoint shown in the right panel. Notably,
1305 the PBAP-Her2 + Kadcyla combination group demonstrated the most significant
1306 tumor regression, with clear tumor control, compared to other groups.

1307 C) Immunohistochemistry (IHC) analysis was performed to assess the infiltration of
1308 PBAP-Her2 and ADC drugs into the tumors. The results showed that PBAP-Her2
1309 effectively infiltrated the tumor tissue. Moreover, Kadcyla was found to infiltrate the
1310 tumor only when administered in combination with PBAP-Her2. In contrast, Adcetris
1311 failed to infiltrate the tumor in the PBAP-Her2 + Adcetris treatment group. Scale bars,
1312 50 μ m.

1313 D) Immunofluorescence analysis further confirmed the specific efficacy of the
1314 PBAP-Her2 + Kadcyla combination. Tumor sections revealed clear co-localization of
1315 PBAP-Her2 with PD-L1 on tumor cells. Kadcyla was observed to enter tumor cells
1316 exclusively in the PBAP-Her2 + Kadcyla group. In contrast, no intracellular ADC
1317 uptake was detected in the control groups (PBAP-Her2 + Adcetris or Kadcyla only).
1318 Scale bars, 20 μ m.

1319 E) H&E staining showed no significant histopathological damage to major organs
1320 (heart, liver, spleen, lungs) in the experimental group, indicating a favorable safety
1321 profile. An increased presence of multinucleated giant cells was observed in the
1322 spleens, particularly in the PBAP-Her2 + Kadcyla group, as indicated by white arrows.
1323 Scale bars, 60 μ m.

1324 For panel B, data are presented as the mean \pm s.d. Statistical significance was
1325 determined using one-way ANOVA.

1326