

PNPT1-mtRNA axis mediates chemotherapy-induced immune signaling and can be targeted to overcome therapeutic resistance

3 Mingfu Tian^{1#}, Siyu Liu^{1#}, Xu Li^{1#}, Zelin Chai¹, Zhiqiang Li¹, Hong Fan², Chengliang
4 Zhu^{**2}, Kailang Wu^{1**}, Ke Lan^{1,3,4,5*}

5 ¹State Key Laboratory of Virology and Biosafety, College of Life Sciences, Wuhan
6 University, Wuhan 430072, China.

7 ²Department of Clinical Laboratory, Renmin Hospital, Wuhan University, Wuhan 430060,
8 China.

9 ³Department of Infectious Diseases, Frontier Science Center for Immunology and
10 Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan
11 University, Wuhan 430071, China.

12 ⁴Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan 430071, China.

13

14 #These authors contributed equally to this work.

15 ⁵Lead contact: Ke Lan, E-mail: klan@whu.edu.cn

16 ****Co-corresponding authors.** Kailang Wu, Chengliang Zhu

17 **Abstract**

18 Immunity against malignant cells and the ability of cancer cells to escape anticancer
19 immunity constitute the core process of tumor development, but the underlying mechanism is
20 still largely unknown. Through integrated analyses of clinical samples, cellular assays, and
21 multiple murine tumor models, our study provides compelling evidence that mitochondrial
22 RNA (mtRNA)-derived danger signals potently activate antitumor immunity and uncovers a
23 tumor-specific mechanism for dampening mtRNA-mediated immune responses.
24 Mechanistically, antitumor therapies facilitate the release of immunogenic mitochondrial
25 double-stranded RNA, which potently activates the MAVS signaling cascade and elicits robust
26 antitumor immune responses. Notably, the pan-tumoral expression of MAVS and its upstream
27 receptors enables broad-spectrum mtRNA-driven immune activation across diverse cancer
28 types. In contrast, malignant cells and tumor microenvironments upregulate PNPT1 to degrade
29 immunogenic mitochondrial RNA structures, forming a negative feedback loop that subverts
30 immune surveillance. Importantly, pharmacological inhibition of PNPT1 synergizes with BH3-
31 mimetic drugs to potently amplify mtRNA-mediated antitumor immunity, overcoming
32 therapeutic resistance without apparent systemic toxicity. Our findings suggest that inducing
33 mtRNA-related danger signals in combination with PNPT1 inhibition holds promise as an
34 innovative strategy for anticancer therapy.

35

36 **Keywords:**

37 chemotherapy; antitumor immunity; mt dsRNA; MAVS; PNPT1; cancer immunotherapy

38

39

40

41

42 Introduction

43 Our bodies are perpetually challenged by external menaces like viral/bacterial infections,
44 as well as internal threats such as malignant cell transformation and oncogenesis. A prompt
45 defense against these insults is vital for maintaining homeostasis¹⁻³. Host cells deploy an
46 arsenal of innate immune signaling cascades to detect both exogenous and endogenous danger
47 cues, triggering immune effectors for pathogen/tumor clearance⁴. Pathogen-associated
48 molecular patterns (PAMPs) released by microbes efficiently engage pattern recognition
49 receptors on host cells, igniting innate immunity^{1,5}. Intriguingly, antitumor modalities like
50 chemotherapy and radiotherapy also harness innate immune mechanisms to bolster
51 immunosurveillance^{6,7}, but the underlying activation mechanisms remain incompletely
52 understood.

53 Chemotherapy plays a pivotal role in the clinical management of malignant tumors.
54 Accumulating evidence from previous studies has demonstrated that beyond its direct cytotoxic
55 effect of eliminating tumor cells, chemotherapy can also elicit robust immunogenic responses
56 that contribute to tumor regression^{6,8,9}. Specifically, the immunogenic responses induced by
57 chemotherapy are multifaceted, encompassing two distinct yet interconnected mechanisms. On
58 one hand, it directly potentiates the activity of the innate immune system by upregulating the
59 expression of pattern recognition receptors, pro-inflammatory cytokines, and other immune-
60 modulatory molecules in immune cells. On the other hand, it exerts a secondary effect triggered
61 by the release of damage-associated molecular patterns (DAMPs) and tumor-associated
62 antigens (TAAs) from dying tumor cells. These danger signals alert the host immune system to
63 the presence of neoplastic cells, thereby initiating a cascade of adaptive immune responses
64 characterized by the activation and proliferation of tumor-reactive T lymphocytes, which
65 further reinforce the anti-tumor efficacy of chemotherapy^{7,9,10}. Type I IFNs are primarily
66 produced by cells that activate innate immune responses⁶. Previously, anti-tumor innate

67 immunotherapies mainly targeted the cGAS-STING pathway^{11,12}. However, decreased STING
68 levels in cancer tissue consistently led to poor treatment outcomes when targeting STING.
69 Nonetheless, chemotherapies that activate innate immunity can still yield positive results in
70 tumors with low STING levels, indicating the existence of broader innate immunity activation
71 pathways that do not rely on STING¹³⁻¹⁹.

72 Our study uncovers a pivotal role for mitochondrial RNA (mtRNA)-derived danger
73 signals in activating innate immunity during antitumor therapy. Chemotherapy elicits a robust
74 immunostimulatory response by inducing the release of immunogenic mitochondrial double-
75 stranded RNA (mt-dsRNA), a process that potently activates immune surveillance mechanisms.
76 Mechanistically, this therapeutic modality promotes the translocation of mt-dsRNA into the
77 cytoplasm through BAK/BAX-dependent pore formation, thereby amplifying antitumor
78 immunity. Notably, the danger signals emanating from mtRNA engage the RIG-I/MDA5-
79 MAVS signaling axis—a pathway ubiquitously expressed in tumor tissues. This ensures broad-
80 spectrum activation of antitumor immune responses, effectively circumventing tumor-
81 mediated immune evasion strategies.

82 Malignant cells employ sophisticated strategies to evade immune detection²⁰⁻²². Our data
83 reveal that malignant cells upregulate PNPT1, an enzyme that degrades immunogenic
84 mitochondrial nucleic acids, thereby dampening immune activation and evading
85 immunosurveillance. Clinical analyses confirm that PNPT1 overexpression in tumor tissues
86 correlates with immune escape and disease progression. Critically, PNPT1 knockdown
87 potentiates anticancer immunity, synergizing with chemotherapy and PD-1 immunotherapy.
88 Targeting the mtRNA-MAVS axis represents an unexploited therapeutic frontier. Addressing
89 this unmet need, we have developed therapeutic strategy targeting the PNPT1-mtRNA axis.
90 Combinatorial therapy using an FDA-approved PNPT1 inhibitor and BH3-mimetic agents
91 reactivates antitumor immunity, overcomes solid tumor resistance, and demonstrates favorable

92 safety profiles in preclinical models. These findings highlight its translational potential as a
93 safe and efficacious strategy to enhance cancer immunotherapy.

94

95

96 **Results**

97 **The Mavs pathway efficiently and broadly mediates chemotherapy-dependent immune
98 responses.**

99 Chemotherapy is the primary method for cancer treatment to kill malignant cells directly²³.
100 Previous studies have shown that chemotherapies activate the innate immune pathway to
101 enhance the anti-tumor immune response, with STING serving as the key regulator of this
102 process by binding to DNA released from the nucleus or mitochondria. However, emerging
103 evidence indicates that STING levels are decreased in various cancer types compared to normal
104 tissues, and the targets of STING have failed to activate innate immunity in cancer cells^{13,14,19}.

105 The enrichment analysis shows that chemotherapy still induce innate immune responses
106 in patient samples with lower STING expression in TCGA LIHC and LUAD datasets ([Fig. 1a-b](#)), while the GEO datasets demonstrated that cisplatin (CIPT) treatment elicits type I interferon
107 and inflammatory responses in low-STING cell lines ([Fig. 1c and S1b](#)). Using the genotoxic
108 agent doxorubicin (DOX) and CIPT (both are commonly used chemotherapy drugs), we found
109 that both drugs induced IFN- β mRNA expression in medium-STING-expressing human
110 cervical cancer (HeLa) cells ([Fig. S1c](#)), low-STING-expressing lung (A549) and liver (HepG2)
111 cancer cells ([Fig. S1d](#)), and murine melanoma (B16) cells ([Fig. S1e](#)). DOX-mediated immune
112 responses were only partially reduced in STING-knockout human keratinocytes (HaCaT),
113 whereas the STING agonist cGAMP failed to induce responses ([Fig. S1f](#)), confirming that
114 chemotherapy triggers innate immunity independent of STING expression. These findings
115 suggest that DNA-mediated cGAS-STING activation is not the universal pathway for

117 chemotherapy-induced antitumor immunity, implying broader intracellular pathways exist.

118 Given the critical role of endogenous nucleic acids in activating immune responses², we
119 analyzed all reported nucleic acid receptors and interferon-inducing pathways. Strikingly, the
120 MAVS signaling axis and its upstream receptors RIG-I/MDA5 showed broader and higher
121 expression in cancer cells compared to other receptors (Fig. S1g-h). Unlike STING, which is
122 significantly reduced in multiple types of cancer validated by HPA-based IHC of lung cancer
123 samples (Fig. 1e-f, S1a)²⁴, the RNA-responsive core protein MAVS (also known as VISA)^{25,26}
124 is either normally expressed or upregulated in tumors (Fig. 1d, S1i), which is validated by
125 strong MAVS expression in lung cancer via HPA IHC slides (Fig. 1i). HPA data further show
126 MAVS expression exceeds that of STING in multiple cancer types (Fig. 1h), suggesting a
127 broader role for MAVS in mediating antitumor immunity.

128 Functional studies in HeLa cells transfected with siRNA targeting MAVS or STING (Fig.
129 S1j-k) revealed that interfering with either partially inhibited chemotherapy-induced immune
130 responses (Fig. 1i). In STING-knockout cells, chemotherapy still induced immune responses,
131 which were abrogated by MAVS interference (Fig. 1j). In low-STING cancer cells, MAVS
132 depletion alone suppressed chemotherapy-mediated immunity (Fig. 1k-l, S1k). The above
133 results suggest that MAVS can efficiently mediate chemotherapy-induced immune responses
134 regardless of STING expression. Specifically, in cancers with concurrent STING and MAVS
135 expression, both molecules contribute to the immune response, whereas in STING-negative
136 cancers, MAVS serves as the primary mediator. Additionally, DOX was found to enhance IFN-
137 β mRNA expression in the mouse tumor cell line B16, which was abrogated following MAVS
138 interference (Fig. 1m and S1k). Collectively, our findings demonstrate that the MAVS signaling
139 pathway promotes immune responses during chemotherapy. Notably, the widespread
140 expression of MAVS and its upstream RNA receptors in most cancer cells and tumor tissues
141 allows these signals to initiate broad-spectrum antitumor immunity, thereby countering tumor

142 immune evasion mechanisms

143

144 **Mitochondrial double-stranded RNA release triggers MAVS-dependent immune**
145 **response.**

146 Our findings demonstrate that MAVS can initiate an immune response. Previous studies
147 have shown that MAVS and its upstream receptors primarily mediate RNA-dependent immune
148 responses, encompassing both exogenous pathogenic microorganism infections and the host's
149 own RNA ²⁷. As our system lacks exogenous infections, we focused on identifying which
150 endogenous signals trigger the MAVS pathway. Host-derived RNA primarily originates from
151 mitochondria and the nucleus. We first isolated mitochondrial and non-mitochondrial
152 components from cells, purified their respective RNA, and transfected them into naïve cells to
153 assess the immune-inducing capacity of RNA from different sources. The result shows that
154 transfection of a low dose of mtRNA into recipient cells was sufficient to elicit robust immune
155 responses. In striking contrast, even a tenfold higher dose of non-mitochondrial RNA failed to
156 induce detectable immune activation. By integrating this observation into the context of our
157 study, we further emphasized the critical role of mtRNA in mediating anti-tumor immunity,
158 highlighting its potential as a key regulator in triggering tumor-reactive immune responses (Fig.
159 [2a](#)). Additionally, mtRNA from human tumor cells and primary mouse cells potently activated
160 immune responses, indicating that the immunogenicity of mtRNA is an inherent property,
161 unaffected by species or cellular background (Fig. [S2a](#)).

162 Given that RNA receptors reside in the cytoplasm, we next evaluated whether antitumor
163 therapy induces mtRNA release into the cytoplasm. We separated cytoplasmic components and
164 other cellular precipitates (mitochondria and other insoluble materials) (Fig. [S2b](#)), extracted
165 cytoplasmic RNA, and quantified mtRNA content. Notably, mtRNAs such as cytochrome
166 oxidase subunit 1 (Cox1) and cytochrome B (CytB) were significantly elevated in cytoplasmic

167 extracts from chemotherapeutic drug-treated HeLa cells (Fig. 2b). Similar results were
168 observed in HepG2 and B16 cells, where chemotherapy promoted Cox1 mtRNA release into
169 the cytoplasm (Fig. S2c, d). Collectively, these findings indicate that chemotherapy facilitates
170 mtRNA release into the cytoplasm.

171 To investigate the role of cytoplasmic mtRNA in regulating immune responses, we
172 isolated cytoplasmic RNAs (cRNAs) from CIPT-treated (cRNA-CIPT) or untreated (cRNA-
173 Ctrl) donor HeLa and transfected them into recipient HeLa. IFN- β levels remained unchanged
174 in recipient cells transfected with cRNA-Ctrl but were significantly enhanced by cRNA-CIPT
175 (Fig. 2c), suggesting that cytoplasmic mtRNA release contributes to immune response
176 induction. Subsequently, since mtRNA transcription is mediated by mitochondrial RNA
177 polymerase (POLRMT)²⁸, we treated cells with the POLRMT inhibitor IMT1²⁹.
178 Chemotherapy-induced Cox1 mtRNA release into the cytoplasm was significantly inhibited in
179 IMT1-treated cells (Fig. 2d), paralleled by a reduction in chemotherapy-induced immune
180 responses (Fig. 2e). Transfecting recipient HeLa with cRNAs from CIPT-treated cells (cRNA)
181 or CIPT plus IMT1-treated cells (cRNA-IMT1) further showed that IFN- β induction by cRNA
182 was abrogated by IMT1 (Fig. 2f). The above results demonstrate that chemotherapeutic agents
183 efficiently induce the release of mitochondrial RNA (mtRNA) into the cytoplasm, thereby
184 activating immune responses.

185 To confirm MAVS dependency, we transfected mtRNA from B16 cells into wild-type (WT)
186 and MAVS-knockout (MAVS-/-) MEFs. mtRNA induced IFN- β in WT MEFs but not in
187 MAVS-/- MEFs (Fig. S2e), establishing MAVS as crucial for mtRNA-triggered immune
188 responses during antitumor therapy. These results collectively demonstrate that chemotherapy
189 promotes mtRNA release into the cytoplasm, driving MAVS-dependent immune activation.
190 Previous studies indicate that intracellular RNA receptors like TLR3, MDA5, and RIG-I
191 recognize specific RNA structures typically generated during viral infections^{27,30}. We

192 hypothesized that mtRNA forms similar immunostimulatory structures. Using a monoclonal
193 antibody (J2) to detect double-stranded RNA (dsRNA)³¹, we observed dsRNA in normal
194 uninfected cells, though less abundant than in vesicular stomatitis virus (VSV)-infected
195 positive controls (Fig. 2g). Subcellular fractionation and J2 immunoprecipitation confirmed
196 that mt-dsRNA localizes to mitochondria in untreated HeLa cells, not the cytoplasm (Fig. 2h),
197 indicating basal mt-dsRNA presence in mitochondria. To test whether mtRNA immunogenicity
198 relies on its double-stranded structure, we transfected mtRNA with or without dsRNA-specific
199 RNase III treatment. Untreated mtRNA induced IFN- β mRNA in HeLa and MEF cells, while
200 RNase III-treated mtRNA did not (Fig. 2i), confirming that dsRNA is essential for IFN- β
201 induction. Under normal conditions, immunogenic nucleic acids are sequestered in
202 mitochondria, separated from cytoplasmic receptors. Confocal microscopy showed that mt-
203 dsRNAs localize to mitochondria under basal conditions but are released into the cytoplasm
204 following CIPT or H₂O₂ treatment (Fig. 2j, k). RNA immunoprecipitation (RIP) validated that
205 CIPT induces release of Cox1 and CytB mt-dsRNA into the cytoplasm of HeLa cells (Fig. 2l).
206 Transfected recipient cells with J2-purified dsRNA from chemotherapy-treated HeLa
207 cytoplasm, but not J2-depleted RNA, significantly induced interferon, confirming that
208 chemotherapy releases mitochondrial dsRNA into the cytoplasm to trigger immune responses.

209 Finally, we explored the mechanism of chemotherapy-induced mt-dsRNA release.
210 Damaged cells often activate BAK/BAX pores, which facilitate mtDNA release, while
211 mitochondrial permeability transition pores (mPTPs) and ANT2 pores may also play roles^{32,33}.
212 However, mPTP inhibition by Cyclosporin A (CSA) did not block Nd1/CytB mtRNA release
213 in DOX-treated HeLa cells or Cox1/CytB/Nd5 release in CIPT-treated cells, nor did it affect
214 post-chemotherapy immune responses (Fig. S3a-c). ANT2 interference similarly did not impact
215 chemotherapy-induced mtRNA release (Fig. 2n, S3d), ruling out mPTPs and ANT2 in mt-
216 dsRNA release. Conversely, the BAX inhibitor peptide V5 (BIP-V5) blocked CIPT-induced

217 Cox1/CytB mtRNA release (Fig. S3e) and IFN- β induction (Fig. S3f), while BAX knockdown
218 inhibited mtRNA release and subsequent immune responses (Fig. 2o, p, S3g). These data
219 establish that BAK/BAX pores are essential for mtRNA release and immune activation during
220 chemotherapy. In conclusion, our study reveals that chemotherapy stimulates mitochondrial
221 dsRNA release through BAK/BAX pores, triggering a MAVS-dependent immune response that
222 combats tumor cells.

223

224 **Tumor-induced PNPT1 suppresses the mtRNA-dependent immune response**

225 We previously reported the critical role of mitochondrial RNA (mtRNA) release in
226 antitumor immunity, and that chemotherapy activates the MAVS pathway via mtRNA release
227 to enhance antitumor immunity. However, many patients show poor chemotherapy response
228 and develop chemoresistance clinically. This suggests that tumors may evade the mtRNA-
229 MAVS pathway through specific mechanisms to gain chemoresistance, despite its role in
230 chemotherapy-induced antitumor immunity. Accordingly, this study aims to identify and
231 elucidate the mechanisms underlying tumor escape from the mtRNA-MAVS pathway during
232 chemoresistance development.

233 Due to intrinsic chemosensitivity differences across tumor cell lines, direct comparisons
234 are confounded by genetic background and inherent biological variations. To eliminate such
235 confounders and ensure reliable screening, we used chemosensitive and chemoresistant
236 sublines derived from the same parental cell line. This design enables focused analysis of
237 chemoresistance- and immune escape-related differences, minimizing inter-cell line
238 background interference.

239 To identify factors contributing to resistance to antitumor therapy, we analyzed GEO
240 datasets including multiple chemotherapy-resistant cancer cell lines. GSEA revealed that
241 pathways related to mitochondrial gene expression were significantly enriched in

242 chemotherapy-resistant ovarian cancer cells (Fig. 3a). Further coupling analysis revealed that
243 the mitochondrial gene polyribonucleotide nucleotidyltransferase 1 (PNPT1), which is
244 involved in the mitochondrial gene expression pathway, was the only significantly upregulated
245 gene across 3 chemotherapeutic-resistant cell lines (Fig. 3b, c). Meanwhile, the analysis
246 indicated that in the three resistant cell lines, there was no significant change in MAVS, and
247 the expression trend of BAX was not uniform, only PNPT1 was significantly upregulated in
248 all resistant cells, suggesting that PNPT1 is a common gene for tumor chemotherapy resistance
249 (Fig. S4a). While previous research highlighted PNPT1's role in mitochondrial nucleic acid
250 metabolism^{34,35}, its specific influence on tumor development and therapy resistance remains
251 unclear. Analysis of online data revealed significantly higher levels of PNPT1 mRNA in liver
252 cancer tissue compared to nontumor tissues. Both unpaired and paired analyses revealed that
253 PNPT1 expression was markedly elevated in liver tumor tissues compared with adjacent
254 normal tissues in the GEO dataset (Fig. 3d). Furthermore, IHC of matched patient samples
255 from the HPA-LIHC datasets validated the higher expression of Pnpt1 in tumor tissue (Fig. 3e).
256 Additionally, upregulated PNPT1 expression was observed in an N-RAS/Akt-induced mouse
257 model of primary liver cancer (Fig. 3f). These findings suggest that PNPT1 is significantly
258 upregulated in tumor tissues, indicating its role in tumor progression. Our findings indicate that
259 mitochondrial RNA plays a crucial role in antitumor immunity (Fig. 2), while tumors
260 upregulate PNPT1, implies that PNPT1, as a mitochondrial RNA nuclease, may regulate the
261 anti-tumor immune response. An analysis of IHC scores for PNPT1 and IFNA1 from HCC
262 patients in the HPA database revealed a negative correlation between PNPT1 and IFNA1 (Fig.
263 3g), suggesting that PNPT1 negatively regulates interferon expression. To investigate the role
264 of PNPT1 in regulating anticancer immunity, we generated stable cell lines expressing shRNAs
265 targeting PNPT1 (shPNPT1-1 and shPNPT1-2). Both cell lines presented reduced PNPT1
266 protein levels, which remained consistently low over several generations (Fig. S4b). In B16

267 cells with stable shPNPT1 expression, we observed downregulation of PNPT1 mRNA and
268 upregulation of CXCL10, IFN- β , and IL-6 mRNAs (Fig. 3h). Given that PNPT1 knockdown
269 promotes immune responses, we hypothesized that reducing PNPT1 levels in tumors could
270 enhance chemotherapy effectiveness. Notably, in shPNPT1 B16 cells, DOX significantly
271 increased the mRNA expression of Cxcl10, IFN- β , IL-1 β , IL-6, IL-8, and TNF- α , whereas
272 control cells presented only slight responses (Fig. 3i). Additionally, CIPT treatment induced
273 significantly higher levels of IFN- β , IL-1 β , and IL-6 mRNA in shPNPT1 B16 cells than in
274 control cells (Fig. 3j). In human HepG2 cells stably expressing shPNPT1, DOX significantly
275 induced IFN- β expression, whereas control cells did not (Fig. 3k, l). These results collectively
276 indicate that PNPT1 knockdown promotes immune responses in both mouse tumor cells and
277 human cancer cells following chemotherapy. Our previous findings demonstrated that PNPT1
278 suppresses immune responses and promotes therapy resistance. We next evaluated the role of
279 PNPT1 in regulating mitochondrial nucleic acid release and immune responses. Notably,
280 PNPT1 knockdown led to cytoplasmic dsRNA accumulation in B16 cells (Fig. S4c).
281 Additionally, PNPT1 knockdown increased mtRNA release into the cytoplasm of B16 cells
282 (Fig. S4d), and this release was further amplified by DOX treatment (Fig. S4e). The same
283 experiment also yielded the same results in HeLa cells (Fig. S4f). Lastly, PNPT1 knockdown
284 promoted immune responses in B16 were abrogated by IMT1 treatment (Fig. S4g), indicates
285 that the regulation of immune responses by PNPT1 depends on mtRNA. Overall, these findings
286 suggest that tumors upregulate PNPT1 to suppress mitochondrial double-stranded RNA release,
287 thereby attenuating immune surveillance and inhibiting chemotherapy-mediated immune
288 responses.

289

290 **PNPT1 suppresses antitumor immunity in solid tumors**

291 The solid tumor microenvironment drives immune escape and treatment resistance,

underscoring the critical heterogeneity between tumor and normal cells²². Building on our discovery that tumor-induced PNPT1 suppresses mtRNA-dependent immune responses in human and murine cancer cells (Fig. 3 and S4), we have explored its role in antitumor immunity within solid tumors. Using a B16 subcutaneous tumor model—characterized as an immunologically "cold" tumor with limited immune infiltration—we implanted stable shPNPT1-expressing B16 cells into immunodeficient NSG mice and immunocompetent C57BL/6 mice (Fig. 4a). In NSG mice (severely immunodeficient mice), shPNPT1 and shNC tumors showed comparable volumes, weights, and sizes (Fig. 4b). By contrast, C57BL/6 mice bearing shPNPT1 tumors exhibited significantly reduced tumor volumes and weights relative to controls (Fig. 4c), indicating heightened sensitivity to host anticancer immunity. Notably, shPNPT1-treated tumors displayed fewer viable tumor cells and enhanced cytotoxicity (Fig. 4d), were accompanied by increased infiltration of CD4⁺ and CD8⁺ T cells (Fig. 4e), suggesting that PNPT1 restricts immune invasion and tumor cell killing. Analysis via the UALCAN portal revealed elevated PNPT1 expression in metastatic skin cutaneous melanoma (SKCM) and liver hepatocellular carcinoma (LIHC) tissues, with intermediate levels in primary tumors and low expression in normal tissues (Fig. 4f-g) ³⁶. C57BL/6 mice injected with shPNPT1-B16 cells showed markedly reduced lung metastasis, fewer metastatic clones, lower lung weights, and decreased tumor nodules (Fig. 4h-l), demonstrating that PNPT1 knockdown suppresses tumor metastasis in vivo.

To assess the role of MAVS in this antitumor response, we used shRNA targeting MAVS (shMAVS) in B16 cells, which achieved near-complete depletion of MAVS mRNA (Fig. 4m). In stable shPNPT1-expressing cells, IFN- β and IL-6 mRNA levels were significantly upregulated, an effect abrogated by shMAVS co-expression. In mice, shPNPT1-B16 tumors showed reduced growth, but this inhibition was reversed when shMAVS was co-introduced (Fig. 4n-o), indicating that MAVS knockdown counteracts the antitumor effects of PNPT1

317 depletion.

318 Building on our prior findings that mtRNA triggers antitumor immune responses and
319 PNPT1 negatively regulates this pathway in cell and subcutaneous tumor models, we
320 investigated in vivo immune surveillance in primary liver cancer. Using a hydrodynamic
321 injection model of NRasV12/AKT-driven hepatocellular carcinoma (Fig. S5a), we delivered
322 adeno-associated viruses carrying shRNA against murine PNPT1 (shmPNPT1) or control
323 shRNA (shNC). shPNPT1 treatment significantly reduced PNPT1 mRNA and protein levels in
324 the livers (Fig. S5b-c). Six weeks post-injection, wild-type mice developed liver tumors,
325 whereas shPNPT1 mice showed reduced tumor burden, lower liver weights, and decreased
326 hepatic damage (Fig. S5d-f), confirming that PNPT1 inhibition suppresses primary liver cancer
327 development. Collectively, these data demonstrate that PNPT1 knockdown enhances
328 anticancer immunity, restricts tumor metastasis, and suppresses tumor growth, highlighting
329 PNPT1 as a key mediator of immune evasion and resistance to antitumor immunity.

330

331 **Loss of PNPT1 overcomes therapeutic resistance**

332 Despite significant advancements in cancer therapeutics, many malignancies develop
333 drug resistance and evade immune surveillance, presenting substantial challenges to treatment
334 efficacy. Previous studies have shown that tumor-induced PNPT1 expression suppresses the
335 immune response, prompting us to further evaluate its role in therapeutic resistance.

336 GSEA analysis has revealed a negative correlation between PNPT1 expression and IFN-
337 γ response pathways, which are pivotal for antitumor immune responses (Fig. 5a). Additionally,
338 PNPT1 levels were negatively associated with CD8+ T-cell scores in patients with skin
339 cutaneous melanoma (SKCM) (Fig. 5b). Furthermore, in SKCM, prostate adenocarcinoma
340 (PRAD), and liver hepatocellular carcinoma (LIHC), PNPT1 expression inversely correlated
341 with the expression of granzyme B (GZMB)³⁷, a key lymphocyte effector protein (Fig. 5c-e).

342 These findings suggest that PNPT1 suppresses lymphocyte infiltration and antitumor function
343 within tumors.

344 Analysis of TCGA data has demonstrated significantly elevated PNPT1 mRNA levels in
345 various common tumors compared to non-tumor tissues. Both unpaired and paired analyses
346 confirmed markedly higher PNPT1 expression in tumor tissues versus adjacent normal tissues
347 (Fig. S6a). Consistently, CPTAC data showed elevated PNPT1 protein levels in tumors relative
348 to non-tumor tissues (Fig. S6b). Lower PNPT1 expression was associated with favorable
349 prognoses in LIHC patients (Fig. S6c) and in adrenal cortex carcinoma (ACC), esophageal
350 carcinoma (ESCA), chromophobe renal cell carcinoma (KICH), and low-grade glioma (LGG)
351 (Fig. S6d). Collectively, these results indicate that PNPT1 expression correlates positively with
352 cancer incidence and progression.

353 Given the close relationship between tumor immune infiltration and antitumor therapy
354 efficacy, we investigated how PNPT1 modulation affects cancer treatment. Following DOX
355 administration, tumor volume remained stable in shNC-treated groups, whereas shPNPT1-
356 treated tumors showed significant regression (Fig. 5f). In C57BL/6 mice, shPNPT1 combined
357 with DOX for 14 days led to marked reductions in tumor weight and volume (Fig. 5g). Flow
358 cytometry revealed increased tumor-infiltrating lymphocytes (TILs), including CD4+ and
359 CD8+ T cells, in PNPT1-knockdown tumors after DOX treatment (Fig. 5h). These findings
360 indicate that PNPT1 knockdown enhances DOX-mediated tumor growth inhibition,
361 highlighting its role as a chemotherapeutic resistance factor and its negative correlation with
362 immune cell infiltration.

363 Finally, we evaluated the impact of PNPT1 on PD-1 checkpoint blockade therapy. While
364 PD-1 blockade has shown limited efficacy in solid tumors^{38,39}, shPNPT1-treated tumors
365 exhibited reduced volume compared to shNC controls. Notably, the combination of shPNPT1
366 and PD-1 antibody treatment synergistically inhibited tumor growth, whereas single-agent

367 treatments showed modest effects (Fig. 5i-k). Tumor weights in the combined treatment group
368 were significantly lower than in all other groups, demonstrating that PNPT1 knockdown
369 enhances the efficacy of PD-1 antibody therapy.

370 Collectively, these results establish that PNPT1 suppresses antitumor immune responses
371 and promotes tumor progression. Moreover, PNPT1 knockdown overcomes resistance to both
372 chemotherapy and immune checkpoint blockade, positioning PNPT1 as a potential therapeutic
373 target to enhance cancer treatment efficacy.

374

375

376 **Pharmacological inhibition of PNPT1 synergizes with the BH3 mimetic drugs results in
377 robust antitumor immunity and overcomes therapeutic resistance**

378 Our previous findings suggest that mtRNA efficiently activates antitumor immunity,
379 whereas the tumor microenvironment upregulates PNPT1 to inhibit this response. As noted
380 previously, the clinical translation of STING agonists has been substantially hindered. To date,
381 no therapeutics targeting the mRNA-MAVS signaling axis have been reported. In response to
382 this unmet need, we have pioneered a novel therapeutic strategy targeting the PNPT1-mtRNA
383 axis. We first investigated lanatoside C (Lanc), an FDA-approved drug clinically used for
384 treating chronic heart failure that was recently reported to inhibit PNPT1⁴⁰, however, its role
385 in antitumor therapy has not been proven. While Lanc induced a weak immune response in
386 macrophages, it had little effect on tumor cells, indicating that simply inhibiting PNPT1 may
387 not be sufficient (Fig. S7a-c). One possible reason for the ineffectiveness of PNPT1 inhibitors
388 alone is the overexpression of antiapoptotic BCL-2 family members (such as BCL-2, BCL-XL,
389 and MCL-1) in tumor cells and tissues^{41,42}, which prevent the formation of BAK/BAX pores
390 necessary for mtRNA release (Fig. 2). Therefore, we designed a combination therapy using
391 BH3-mimetic drugs⁴³⁻⁴⁵, which inhibit the survival of BCL-2 family members and promote

392 apoptosis by opening BAK/BAX pores (Fig. 6a). This class of drugs has been clinically used
393 to treat blood cancers, but it is less effective against solid tumors. We selected Navitoclax
394 (ABT-263) and Venetoclax (ABT-199) for our study. The former targets several antiapoptotic
395 proteins, such as BCL-2, BCL-XL, and BCL-W, while the latter, already approved by the FDA,
396 is used to treat chronic lymphocytic leukemia (CLL) and acute myelocytic leukemia
397 (AML)^{43,46}. While neither Lanc nor BH3-mimetic drugs alone activated an immune response,
398 their combination significantly induced one (Fig. 6b). Notably, ABT-263 demonstrated
399 enhanced efficacy, potentially due to its broader targeting spectrum. The combined treatment
400 further amplified the immune response triggered by DOX (Fig. 6c, d) and facilitated mtRNA
401 release into the cytoplasm (Fig. 6e), with similar results observed in macrophages (Fig. 6f-h).
402 This combination also effectively induced immune responses in various human cancer cells
403 (Fig. 6i, j). Crucially, the combination did not compromise the apoptosis-inducing ability of
404 BH3-mimetic drugs (Fig. S7d) and maintained their tumor-killing efficacy (Fig. S7e, f). These
405 results indicate that combining BH3-mimetic drugs with the Lanc significantly activates the
406 antitumor immune response while preserving the tumoricidal effects of BH3 mimetics.

407 We further tested the efficacy of the drug combination (ABT-263 + Lanc) *in vivo* using
408 immunocompetent C57BL/6 mice implanted with B16 cells (Fig. 6k). The results indicated
409 that while single drug treatments had limited effects, the combination significantly inhibited
410 tumor growth (Fig. 6l-o). Remarkably, even at reduced dosage, substantial antitumor effects
411 were still produced (Fig. 6l). Furthermore, the combined treatment inhibited tumor growth,
412 reduced tumor size, and significantly prolonged survival (Fig. 6m-o). Additionally, this
413 combination enhanced immune responses within the tumor tissue (Fig. 6p), and tumors
414 presented fewer tumor cells, greater cytotoxicity and greater CD8+ T-cell infiltration in drug-
415 treated tumors than in control tumors (Fig. 6q). Throughout the treatment course, the
416 combination only slightly affected the body weight of the mice initially; however, the body

417 weight returned to control levels thereafter (Fig. S7g). Pathological assessments revealed no
418 significant organ damage from the treatments (Fig. S7h), confirming the safety of the drug
419 combination in mice model. The alternative combination of ABT-199 and Lanc also resulted
420 in tumor growth inhibition and significantly prolonged survival (Fig. 6r-t). In a clinical context
421 where multimodal therapies are common, we observed that tumor volume remained largely
422 unchanged with DOX or anti-PD-1 monotherapy. However, combining ABT-263 + Lanc
423 significantly reduced tumor volume when combined with these treatments and significantly
424 prolonged survival (Fig. 6u-w). These results suggest that the ABT-263 + Lanc combination
425 can effectively overcome cancer resistance to anti-cancer therapy. Finally, we evaluated the
426 potential of the combination drugs in treating primary liver cancer (Fig. 6x). The control mice
427 developed liver tumors, whereas those treated with the combination presented a reduced tumor
428 presence, significantly lower liver weights and significantly prolonged survival (Fig. 6y), and
429 a reduced liver damage area (Fig. 6z), indicating that the combination effectively suppressed
430 primary liver cancer development.

431 Our results highlight several advantages of the combination drug approach. First, Lanc
432 inhibits PNPT1 and promotes the production of immunogenic mtRNA, whereas BH3-mimetic
433 drugs effectively open BAK/BAX pores, facilitating mtRNA release into the cytoplasm to
434 activate immune responses. Second, Lanc alone has poor antitumor effects, and while BH3-
435 mimetic drugs are effective in hematologic tumors, they are less effective in solid tumors
436 because of their immunosuppressive apoptotic effects, which can induce tumor antigen
437 tolerance⁴⁷⁻⁴⁹. By combining these drugs, we not only preserve the tumor-killing ability of BH3
438 mimetics but also effectively enhance the immune response, transforming "cold" tumors into
439 "hot" tumors. This strategy overcomes the limitations of individual therapies, significantly
440 improving overall antitumor efficacy, and both drugs have previously been approved for
441 clinical use with good safety profiles. In summary, our data confirm that pharmacological

442 inhibition of PNPT1 synergizes with BH3-mimetic drugs to induce robust antitumor immunity
443 and overcome therapeutic resistance in solid tumors, highlighting that this combinatorial
444 approach holds considerable promise for clinical translation.

445

446 **Discussion**

447 The innate immune system serves as the body's indispensable first line of defense
448 against microbial pathogens, while also maintaining tissue homeostasis. It rapidly activates in
449 response to pathogen-associated molecular patterns (PAMPs) and damage-associated
450 molecular patterns (DAMPs), orchestrating immune clearance mechanisms. Beyond
451 infections, the body confronts diverse stressors—including DNA damage, oxidative stress,
452 and oncogene activation⁵⁰—that can lead to the accumulation of damaged cells, elevating
453 cancer risk. Thus, effective immune activation under such stressful conditions is critical for
454 eliminating aberrant cells and preventing malignant transformation. Innate immunity also
455 plays a pivotal role in tumor therapy: radiotherapy and chemotherapy enhance cancer patient
456 survival not only by directly eradicating tumor cells but also by potentiating immune
457 responses and sensitizing tumors to immunotherapies¹². However, the mechanisms
458 underlying immune activation during antitumor therapies require deeper exploration to
459 unlock their full therapeutic potential.

460 Our research illuminates the central role of mitochondria-derived nucleic acids in
461 triggering immune responses during antitumor interventions. Chemotherapy induces the
462 release of mitochondrial RNA (mtRNA) into the cytoplasm, a process that activates innate
463 immunity through the formation of double-stranded RNA (dsRNA) structures. In normal
464 cells, dsRNA is compartmentalized within mitochondria, preventing autoimmunity while
465 priming the cell for rapid immune responses to future stimuli. During chemotherapy,
466 mitochondrial dsRNA is released via BAX/BAK channels, activating the MAVS signaling

467 pathway and inducing the expression of interferons and inflammatory factors. This immune
468 cascade is essential for recruiting immune cells and facilitating tumor clearance.

469 Notably, the cGAS-STING signaling pathway—traditionally targeted for its role in
470 detecting tumor DNA⁵¹⁻⁵³—has faced therapeutic challenges. Evidence shows STING
471 expression is downregulated in numerous tumor types, and certain chemotherapies fail to
472 activate this pathway, highlighting the limitations of targeting cGAS-STING alone^{13-15,19}. In
473 contrast, the widespread expression of MAVS-related components across tumor tissues
474 suggests that mitochondrial RNA-derived danger signals can effectively trigger antitumor
475 immunity in a broad range of cancers.

476 Tumor microenvironments exist in a state of heightened stress due to intrinsic metabolic
477 dysregulation and environmental pressures, enabling tumors to suppress immune responses
478 and evade surveillance²⁰⁻²². While chemotherapeutic agents induce cellular stress to exert
479 antitumor effects, solid tumors often exhibit profound drug resistance, reflecting their
480 functional heterogeneity compared to normal cells. Our findings reveal that the mitochondrial
481 RNA metabolic enzyme PNPT1 is upregulated in tumor tissues, where it specifically inhibits
482 the formation and release of immunogenic mitochondrial dsRNA, thereby suppressing innate
483 immunity and immune-mediated clearance. Knocking down PNPT1 in both normal and
484 tumor cells enhances dsRNA release, accelerating immune elimination of damaged cells.
485 Clinical data confirm elevated PNPT1 RNA and protein levels in various malignancies,
486 implicating PNPT1 in dampening antitumor immune responses. In vivo studies further
487 demonstrate that reducing PNPT1 inhibits tumor growth and synergizes with chemotherapy
488 and immune checkpoint therapies, underscoring its role in promoting tumor progression and
489 therapeutic resistance.

490 In summary, our research uncovers a novel mechanism whereby mitochondrial nucleic
491 acids act as stress-associated molecular patterns during tumorigenesis and antitumor therapy,

492 triggering immune surveillance and clearance. The formation and release of mitochondrial
493 dsRNA emerge as key drivers of innate immune activation in response to stress and infection.
494 Malignant cells counteract this by upregulating PNPT1, which suppresses dsRNA-mediated
495 signaling to facilitate immune evasion and treatment resistance. Critically, pharmacological
496 inhibition of PNPT1 in combination with BH3-mimetic drugs potently activates mtRNA-
497 mediated antitumor immunity, overcoming resistance in solid tumors without systemic
498 toxicity. These findings establish a promising combinatorial strategy to enhance cancer
499 immunotherapy with potential for safe and effective clinical translation.

500

501

502

503

504

505

506

507

508

509

510

511

512

513 **Materials and Methods**

514 **Key resources table**

515

Antibodies	Source	Cat NO.
Anti-p-TBK1	Abcam	ab109272
Anti-TBK1	Abcam	ab40676
Anti-PNPT1	proteintech	14487-1-AP
Anti- dsRNA J2	Scicons	10010200
Anti-GAPDH	Sigma-Aldrich	G9295
Anti-Flag	Sigma-Aldrich	F3165
Anti-Mouse IgG Dylight649	Abbkine	A23610
Anti-Rabbit IgG Dylight649	Abbkine	A23620
Anti-Rabbit IgG FITC	Abbkine	A22120
Anti-Mouse IgG FITC	proteintech	20000029
Anti- S9.6	Antibody System	RGK60001
Anti-Rabbit IgG CY3	Abbkine	A22220
Anti- Mouse IgG CY3	Abbkine	A22210
Anti-TOM20	Abclone	A6744
Anti-TOM20	Abclone	A19403
Anti-CD4	Abcam	ab183685
Anti-CD8	Abcam	ab217344
Anti-F4/80	Abcam	ab300421
PD-1 antibody	Bio x cell	BE0273

516

517

Experimental Models: Cell Lines	Source	Cat NO.
HEK293T	ATCC	Cat#: CRL-3216
HeLa	ATCC	Cat#: CCL-2
WT MEF	This paper	N/A
MAVS-/- MEF	This paper	N/A
WI-38	ATCC	CRL - 7728
B16	CTCC	GDC038
Vero	CTCC	GDC029

518

Virus and bacterial strain	Source	Cat NO.
E. coli DH5 α	TRANSGEN	Cat#: CD201
	From Dr. Bo	
VSV	Zhong, Wuhan University	N/A

Plko.1-shCrtl, Plko.1-shpnpt1

Plko.1-shMAVS lentivirus This paper N/A

519

Chemicals and reagent	Source	Cat NO.
IMT1	Targetmol	2304621-31-4
N-acetylcysteine	Targetmol	16-91-1

Experimental Models:	Source	Cat NO.
BAY 11-7082	Targetmol	19542-67-7
lipofectamine 2000	Invitrogen	11668500
Poly(I:C)	invivogen	tlrl-pic
Etoposide	Targetmol	33419-42-0
Si-RNA(si-control/ si-PNPT1)	Ribobio	N/A
Doxorubicin	Targetmol	23214-92-8
MitoTracker Red	Thermo Fisher	M22426
	Scientific	
Digitonin	Sigma	11024-24-1
Cyclosporin A	MCE	59865-13-3
Bax inhibitor peptide V5	MCE	579492-81-2
Cisplatin	Targetmol	15663-27-1
Mouse IFN- β ELISA kit	Biolegend	43940b

Organisms/Strains

From Dr.

Mouse: C56BL/6 Mavs^{-/-} Hongbin Shu, N/A
Wuhan University

521

Software

DNAMAN	Lynnon	https://www.lynnon.com
GraphPad Prism 9	Biosoft	https://www.graphpad.com
Primer Premier 5	GraphPad	http://www.premierbiosoft.com/primerdesign/
Las x	Leica	https://www.leica-microsystems.com.cn/

522

523 **Animal study**

524 C57BL/6 WT mice were obtained from the Hubei Research Center of Laboratory
525 Animals (Wuhan, China). MAVS^{-/-} mice on a C57BL/6 background were generously
526 provided by Dr. Hongbin Shu from Wuhan University (Wuhan, China). NSG mice were
527 sourced from Gempharmattech Co., Ltd (Nanjing, China). All animal experiments were
528 approved by the IACUC of the College of Life Sciences, Wuhan University. The studies
529 adhered to the Animal Welfare Act and the National Institutes of Health guidelines for the
530 care and use of experimental animals in biomedical research.

531 For the CIPT experiment, six- to eight-weeks-old mice were intraperitoneally injected
532 with 15-25 mg/kg of Cisplatin and monitored daily for durability. After 48–72 hours, serum
533 samples were collected from the mice to assess indicators of inflammatory response and
534 organ damage. Additionally, mouse tissues were harvested for immunohistochemistry and
535 quantitative real-time PCR (qRT-PCR) analyses.

536 For tumor challenge, 5×10^5 - 2×10^6 B16 cells were suspended in Hanks balanced salt
537 solution and subcutaneously injected into the C57 mice right underarm on day 0. For NSG
538 mice, 2×10^5 B16 cells were suspended in Hanks balanced salt solution and subcutaneously
539 injected to the right underarm on day 0. After the initial formation of the tumor, the length
540 and width of the tumor were tested every two days until the end of the experiment. For the
541 tumor chemotherapy experiment, the mice were injected with 4 mg/kg DOX intraperitoneally
542 on the 6th and 9th day, respectively. For the immune checkpoint blocking experiment, the mice
543 were intraperitoneally injected with 100 μ g PD-1 antibody on days 6, 9 and 12. The tumor
544 volume was estimated using the formula (length \times width \times width)/2. After euthanasia, tumor
545 tissues were harvested for immunohistochemistry and flow cytometry analyses.

546 Mouse liver cancer was induced by hydrodynamic injection of Sleep Beauty
547 transposon-overexpressing myr-AKT/NRASV12, each mice were injected with plasmid
548 contain pT3-myr-AKT-HA (10 μ g), pT/Caggs-NRASV12 (10 μ g), and pCMV (CAT)T7-
549 SB100 (2 μ g), after 6-12 days, mice liver were harvested for immunohistochemistry and
550 quantitative immune cell infiltration and N-Ras clearance. After 5-8 weeks, the livers were
551 harvested for immunohistochemistry and quantitative assessment of cancer progression.

552 For immunohistochemical experiments, the different organs of mice were fixed in 4%
553 paraformaldehyde, embedded in paraffin, sectioned and stained with stain or antibody, then
554 observed under a microscope.

555 For the flow cytometry experiment, the mice's tumor tissues were cut, digested with
556 collagenase at 37°C for 30 minutes, and the cell suspension was separated. The number of
557 cells was counted, stained with antibodies, then analyzed on a flow cytometer (Beckman).

558

559 **Cell and cultures and treatment**

560 HeLa cells, MEFs, Vero cells and HEK293 cells were cultured in Dulbecco's modified

561 Eagle's medium (DMEM) (Gibco, Grand Island, NY, USA) supplemented with 10% Fetal
562 Bovine Serum (FBS), 100 U/ml penicillin, and 100 µg/ml streptomycin sulfate. All cells were
563 cultured in an incubator at 37°C in 5% CO₂.

564 For drug treatment, cells at approximately 60–70% confluency were treated with 0–5
565 µM Dox, 0–20 µM cisplatin and 0–100 µM H₂O₂ for 6–24 h, which were then collected for
566 subsequent analysis.

567

568 **Lentivirus**

569 Plko.1-shCrtl, Plko.1-shPNPT1 and Plko.1-shMAVS were constructed, and the stably
570 expressed viral products were generated. In short, the constructed plasmid and packaging
571 plasmid were transfected into HEK293T cells. After 48 h, the cell supernatant was collected,
572 and then filtered with a 0.45 um filter to obtain lentivirus, which was used to infect the target
573 cells for 48 h. Puromycin was used to screen positive cells. The sequence of shRNA was
574 obtained from Sigma.

575

576 **Immunoblotting**

577 Cells were lysed in a buffer containing 50 mm Tris-HCl (pH7.5), 0.5 mm EDTA, 150
578 mM NaCl, 1% NP40 and 1% SDS, then protease inhibitor and a phosphatase inhibitor
579 (Roche) were added to the lysate, which was briefly ultrasonicated or overturned at 4°C for 1
580 h and centrifuged to collect the supernatant. Then, protein buffer was added to the
581 supernatant for electrophoresis, denatured at 100°C for 5 min, and SDS-PAGE was used for
582 electrophoresis. Following this, the membrane was transferred, and indicated antibodies were
583 used to detect the target protein.

584 Monoclonal mouse anti-GAPDH (G9295, Sigma), anti-PNPT1 (14487-1-AP,
585 Proteintech) and dsRNA J2 antibody (10010200, Scicons) were purchased from indicated

586 manufacturers. Anti-Rabbit IgG FITC, Anti-Mouse IgG FITC, Anti-Mouse IgG CY3 and
587 Anti-Rabbit IgG CY3 were purchased from Abbkine. MitoTracker Red (M22426, Thermo
588 Fisher Scientific) and Digitonin (D141, Sigma) were purchased from indicated
589 manufacturers. Lipofectamine 2000, normal rabbit immunoglobulin G (IgG). Etoposide,
590 Doxorubicin, and Cisplatin were purchased from Targemol (USA). Poly(I:C) was purchased
591 from Invivogen (USA).

592

593 **qRT-PCR and ELISA**

594 Total RNAs were isolated from the tissues or cells using Trizol reagent (Invitrogen).
595 Then, cDNA was generated from 1 μ g of isolated RNA by reverse transcription with a
596 reverse transcription mix (Vazyme Biotech Co., Ltd, China). Specific primers and ChamQ
597 SYBR qPCR Master Mix (Vazyme Biotech Co., Ltd, China) were used for the RT-PCR
598 reactions. For ELISA experiments, an ELISA kit was used to determine the levels of
599 cytokines in cell supernatant or mouse serum. All subsequent experimental steps were
600 performed according to the manufacturer's instructions.

601

602 **Immunofluorescence and confocal microscopy analysis**

603 Cells were cultured in confocal dishes for 24 – 48 h, after which the supernatant was
604 removed and the cells were fixed with 4% paraformaldehyde for 15 minutes. Following three
605 washes with PBS, 0.1% Triton X-100 was added to permeabilize the cell membrane for 5
606 minutes, then the cells were blocked with 5% BSA for 45 minutes. A specific primary
607 antibody was added and the cells were kept at 4° C overnight. After washing, the cells were
608 incubated with a secondary antibody for 1 hour and then washed three times. The nuclei were
609 labeled with DAPI (1 μ g/ml), after which the cells were observed under a confocal
610 microscope.

611

612 **Mitochondrial extraction and mtRNA treatment**

613 Mitochondria were isolated from cultured cells using a Mitochondrial Isolation Kit
614 (Thermo Scientific, 89874). Trizol reagent was added to the purified mitochondria to extract
615 RNA from the mitochondria. After obtaining mitochondrial RNA, a total amount of 2–5 µg
616 mtRNA was transfected into new untreated cells. After 12 h, the treated cells' RNAs were
617 extracted for subsequent analysis. RNase III (M0245S, NEB) was used for the RNase
618 treatment experiment to treat mtRNA according to the reagent instructions, followed by
619 RNase treatment mtRNA transfection and analysis based on the above steps.

620

621 **Detection of mtRNA in cytosolic extracts and cytosolic RNA treatment**

622 The digitonin extraction method was used to extract cytosolic RNA. Briefly, the cells
623 were treated with digitonin (20 µg/ml). The purity of the cytosolic components was detected
624 by Western blot. Then, the cytosolic RNA was extracted, and mtRNA-specific primers were
625 used for qPCR. For the cytosolic RNA treatment experiment, a total amount of 2–5 µg
626 cytosolic RNA was transfected into new untreated cells. After 12 h, RNAs were extracted
627 from the treated cells for subsequent analysis.

628 For the RNase treatment experiment, RNase III (M0245S, NEB) and RNase H (D7089,
629 Beyotime) was used to treat cytosolic RNA and R-loop according to the Manufacturers'
630 instructions, and then RNase treated cytosolic RNA and R-loop were transfected and
631 analyzed according to the above steps.

632

633 **Immunoprecipitation of cytoplasm mtdsRNA and mt R-loop**

634 Cells were treated with digitonin (20 µg/ml). Cell lysate was prepared and transferred to
635 1.5 ml of a fresh RNA-free enzyme tube and centrifuged at 4°C at 12000 rpm for 10 min. The

636 supernatant was transferred to a fresh tube, dsRNA J2 and R-loop S9.6 antibody was added
637 and kept on a rotor at 4°C for 1–2 h. The sample tubes were added with Protein G and then
638 kept on the rotor at 4°C for 2 h, centrifuged. The supernatant was removed, washed twice,
639 and a J2 antibody bound dsRNA was extracted with Trizol reagent, 9.6 antibody bound R-
640 loop were isolation by phenol chloroform extraction, then mt dsRNA and mt R-loop was
641 detected by qPCR using the mtRNA specific primers.

642

643 **ROS detection**

644 A ROS Kit (Beyotime, s0033s) was used to detect ROS in the cultured cells (>10,000
645 cells) using flow cytometry (FCM) following the manufacturer's instructions.

646

647 **TCGA data and online data analysis**

648 Gene expression profiles of patient samples were downloaded from the TCGA dataset
649 (<https://portal.gdc.cancer.gov/>). Clinical data were downloaded from the University of
650 California Santa Cruz Xena dataset (<http://xena.ucsc.edu/>). Patient proteome data were
651 obtained from the CPTAC dataset (<https://proteomic.datacommons.cancer.gov/pdc/>). RNA-
652 Seq data of drug-resistant cell lines (GSE270030, GSE140077, GSE222187) and drug-treated
653 cell lines (GSE223698, GSE81878, GSE235908, GSE108214) were available on the GEO
654 database (<http://www.ncbi.nlm.nih.gov/geo>). We analyzed the expression of multiple nucleic
655 acid sensors in different tissues or cell types using public databases such as The Human
656 Protein Atlas (HPA). Gene expression levels in different tissue cells were obtained from the
657 Human Protein Atlas. We used the RNA dataset from the Human Protein Atlas, including
658 RNA single-cell type data and RNA HPA tissue gene data. IHC data from HPA were available
659 on the website (<http://www.proteinatlas.org/>). The RNA-Seq data were normalized using the
660 DESeq2 package or converted to TPM values. The immune cell infiltration levels of each

661 SKCM sample were evaluated using Cibersortx (<https://cibersortx.stanford.edu/>). For gene-
662 set enrichment analysis, the gene expression matrix of SKCM was divided into two parts
663 based on the PNPT1 expression level. The pre-ranked data were uploaded to GSEA 4.1.0, and
664 the enrichment of MSigDB C2 gene sets was analyzed with 1,000 random permutations to
665 obtain P values, q values, and NES. For analyzing the association of PNPT1 expression with
666 survival and tumor metastasis, the online UALCAN portal (<http://ualcan.path.uab.edu/>) and
667 GEPIA (<http://gepia.cancer-pku.cn/about.html>) were used to assess the impact of PNPT1
668 expression on patient survival rates and metastasis.

669

670 **Statistical analysis**

671 The related results were expressed as the mean \pm standard error of the mean (SEM) or
672 standard deviation (SD). Statistical methods are described in detail in the figure legend. The
673 Prism v9 software was used for statistical analysis. P value <0.05 was statistically significant.

674

675 **Acknowledgements**

676 We thank Professor Hongbing Shu of Wuhan University, China, for kindly providing
677 C57BL/6 MAVS^{-/-} mice. We appreciate Associate Professor Kaisa Cui of Jiangnan University,
678 China, for generously sharing their experience and suggestion. We thank Qian Liu from the
679 animal Experimental center for technical support. This work was supported by National
680 Natural Science Foundation of China (32188101, 32400131), National Key Research and
681 Development Program of China (2023YFC2306600), and China Postdoctoral Science
682 Foundation (2024T170687, 2024M752482, GZB20230541).

683

684 **Author Contributions**

685 Ke Lan, Kailang Wu, and Mingfu Tian conceived the study. Mingfu Tian, Siyu Liu, Zelin
686 Chai, Zhiqiang Li, and Hong Fan designed, performed, and analyzed experiments and
687 interpreted data. Mingfu Tian, Siyu Liu, and Xu Li performed and analyzed experiments. Xu
688 Li performed bioinformatic analyses. Chengliang Zhu contributed to the reagents. Kailang
689 Wu and Ke Lan supervised the experiments. Mingfu Tian, Kailang Wu, and Ke Lan
690 contributed to the writing the paper. Mingfu Tian, Kailang Wu, and Ke Lan contributed to the
691 editing the paper.

692

693 **Competing interests**

694 Authors declare that they have no competing interests.

695

696 **Data and materials availability**

697 All data are available in the main text or the supplementary materials.

698

699 **References**

700

- 701 1 Akira, S., Uematsu, S. & Takeuchi, O. Pathogen recognition and innate immunity. *Cell* **124**, 783-801, doi:10.1016/j.cell.2006.02.015 (2006).
- 702 2 Gong, T., Liu, L., Jiang, W. & Zhou, R. DAMP-sensing receptors in sterile inflammation and inflammatory diseases. *Nature reviews. Immunology* **20**, 95-112, doi:10.1038/s41577-019-0215-7 (2020).
- 703 3 Man, S. M. & Kanneganti, T. D. Innate immune sensing of cell death in disease and therapeutics. *Nat Cell Biol* **26**, 1420-1433, doi:10.1038/s41556-024-01491-y (2024).
- 704 4 Pradeu, T., Thomma, B., Girardin, S. E. & Lemaitre, B. The conceptual foundations of innate immunity: Taking stock 30 years later. *Immunity* **57**, 613-631, doi:10.1016/j.immuni.2024.03.007 (2024).
- 705 5 Bowie, A. G. & Unterholzner, L. Viral evasion and subversion of pattern-recognition receptor signalling. *Nature reviews. Immunology* **8**, 911-922, doi:10.1038/nri2436 (2008).
- 706 6 Demaria, O. *et al.* Harnessing innate immunity in cancer therapy. *Nature* **574**, 45-56, doi:10.1038/s41586-019-1593-5 (2019).
- 707 7 Cao, L. L. & Kagan, J. C. Targeting innate immune pathways for cancer immunotherapy. *Immunity* **56**, 2206-2217, doi:10.1016/j.immuni.2023.07.018 (2023).

718 8 Huang, Y. *et al.* Myeloid PTEN promotes chemotherapy-induced NLRP3-
719 inflammasome activation and antitumour immunity. *Nat Cell Biol* **22**, 716-727,
720 doi:10.1038/s41556-020-0510-3 (2020).

721 9 Hu, A. *et al.* Harnessing innate immune pathways for therapeutic advancement in
722 cancer. *Signal transduction and targeted therapy* **9**, 68, doi:10.1038/s41392-024-
723 01765-9 (2024).

724 10 Vaccchelli, E. *et al.* Chemotherapy-induced antitumor immunity requires formyl
725 peptide receptor 1. *Science* **350**, 972-978, doi:10.1126/science.aad0779 (2015).

726 11 Lanng, K. R. B., Lauridsen, E. L. & Jakobsen, M. R. The balance of STING signaling
727 orchestrates immunity in cancer. *Nat Immunol* **25**, 1144-1157, doi:10.1038/s41590-
728 024-01872-3 (2024).

729 12 Woo, S. R. *et al.* STING-dependent cytosolic DNA sensing mediates innate immune
730 recognition of immunogenic tumors. *Immunity* **41**, 830-842,
731 doi:10.1016/j.immuni.2014.10.017 (2014).

732 13 de Queiroz, N., Xia, T., Konno, H. & Barber, G. N. Ovarian Cancer Cells Commonly
733 Exhibit Defective STING Signaling Which Affects Sensitivity to Viral Oncolysis.
734 *Molecular cancer research : MCR* **17**, 974-986, doi:10.1158/1541-7786.mcr-18-0504
735 (2019).

736 14 Wu, M. J. *et al.* Mutant IDH1 inhibition induces dsDNA sensing to activate tumor
737 immunity. *Science* **385**, eadl6173, doi:10.1126/science.adl6173 (2024).

738 15 Wu, L. *et al.* KDM5 histone demethylases repress immune response via suppression
739 of STING. *PLoS biology* **16**, e2006134, doi:10.1371/journal.pbio.2006134 (2018).

740 16 Kottakis, F. *et al.* LKB1 loss links serine metabolism to DNA methylation and
741 tumorigenesis. *Nature* **539**, 390-395, doi:10.1038/nature20132 (2016).

742 17 Konno, H. *et al.* Suppression of STING signaling through epigenetic silencing and
743 missense mutation impedes DNA damage mediated cytokine production. *Oncogene*
744 **37**, 2037-2051, doi:10.1038/s41388-017-0120-0 (2018).

745 18 Lee, K. M. *et al.* Epigenetic Repression of STING by MYC Promotes Immune
746 Evasion and Resistance to Immune Checkpoint Inhibitors in Triple-Negative Breast
747 Cancer. *Cancer immunology research* **10**, 829-843, doi:10.1158/2326-6066.cir-21-
748 0826 (2022).

749 19 Takaki, T., Millar, R., Hiley, C. T. & Boulton, S. J. Micronuclei induced by radiation,
750 replication stress, or chromosome segregation errors do not activate cGAS-STING.
751 *Mol Cell* **84**, 2203-2213.e2205, doi:10.1016/j.molcel.2024.04.017 (2024).

752 20 Binnewies, M. *et al.* Understanding the tumor immune microenvironment (TIME) for
753 effective therapy. *Nature medicine* **24**, 541-550, doi:10.1038/s41591-018-0014-x
754 (2018).

755 21 Jiang, X. *et al.* Role of the tumor microenvironment in PD-L1/PD-1-mediated tumor
756 immune escape. *Mol Cancer* **18**, 10, doi:10.1186/s12943-018-0928-4 (2019).

757 22 Cervantes-Villagrana, R. D., Albores-García, D., Cervantes-Villagrana, A. R. &
758 García-Acevez, S. J. Tumor-induced neurogenesis and immune evasion as targets of
759 innovative anti-cancer therapies. *Signal transduction and targeted therapy* **5**, 99,
760 doi:10.1038/s41392-020-0205-z (2020).

761 23 Jackson, S. P. & Bartek, J. The DNA-damage response in human biology and disease.
762 *Nature* **461**, 1071-1078, doi:10.1038/nature08467 (2009).

763 24 Uhlén, M. *et al.* Proteomics. Tissue-based map of the human proteome. *Science* **347**,
764 1260419, doi:10.1126/science.1260419 (2015).

765 25 Vazquez, C. & Horner, S. M. MAVS Coordination of Antiviral Innate Immunity. *J
766 Virol* **89**, 6974-6977, doi:10.1128/jvi.01918-14 (2015).

767 26 Xu, L. G. *et al.* VISA is an adapter protein required for virus-triggered IFN-beta
768 signaling. *Mol Cell* **19**, 727-740, doi:10.1016/j.molcel.2005.08.014 (2005).

769 27 Kolakofsky, D., Kowalinski, E. & Cusack, S. A structure-based model of RIG-I
770 activation. *RNA (New York, N.Y.)* **18**, 2118-2127, doi:10.1261/rna.035949.112 (2012).

771 28 Tan, B. G., Gustafsson, C. M. & Falkenberg, M. Mechanisms and regulation of
772 human mitochondrial transcription. *Nature reviews. Molecular cell biology* **25**, 119-
773 132, doi:10.1038/s41580-023-00661-4 (2024).

774 29 Bonekamp, N. A. *et al.* Small-molecule inhibitors of human mitochondrial DNA
775 transcription. *Nature* **588**, 712-716, doi:10.1038/s41586-020-03048-z (2020).

776 30 Fisch, D. *et al.* Molecular definition of the endogenous Toll-like receptor signalling
777 pathways. *Nature* **631**, 635-644, doi:10.1038/s41586-024-07614-7 (2024).

778 31 Schönborn, J. *et al.* Monoclonal antibodies to double-stranded RNA as probes of RNA
779 structure in crude nucleic acid extracts. *Nucleic acids research* **19**, 2993-3000,
780 doi:10.1093/nar/19.11.2993 (1991).

781 32 McArthur, K. *et al.* BAK/BAX macropores facilitate mitochondrial herniation and
782 mtDNA efflux during apoptosis. *Science* **359**, doi:10.1126/science.aa06047 (2018).

783 33 Wang, P. *et al.* ANT2 functions as a translocon for mitochondrial cross-membrane
784 translocation of RNAs. *Cell research* **34**, 504-521, doi:10.1038/s41422-024-00978-5
785 (2024).

786 34 Wang, G. *et al.* PNPASE regulates RNA import into mitochondria. *Cell* **142**, 456-467,
787 doi:10.1016/j.cell.2010.06.035 (2010).

788 35 Silva, S., Camino, L. P. & Aguilera, A. Human mitochondrial degradosome prevents
789 harmful mitochondrial R loops and mitochondrial genome instability. *Proceedings of
790 the National Academy of Sciences of the United States of America* **115**, 11024-11029,
791 doi:10.1073/pnas.1807258115 (2018).

792 36 Chandrashekhar, D. S. *et al.* UALCAN: An update to the integrated cancer data
793 analysis platform. *Neoplasia (New York, N.Y.)* **25**, 18-27,
794 doi:10.1016/j.neo.2022.01.001 (2022).

795 37 Cullen, S. P., Adrain, C., Lüthi, A. U., Duriez, P. J. & Martin, S. J. Human and murine
796 granzyme B exhibit divergent substrate preferences. *The Journal of cell biology* **176**,
797 435-444, doi:10.1083/jcb.200612025 (2007).

798 38 Dermani, F. K., Samadi, P., Rahmani, G., Kohlan, A. K. & Najafi, R. PD-1/PD-L1
799 immune checkpoint: Potential target for cancer therapy. *Journal of cellular physiology*
800 **234**, 1313-1325, doi:10.1002/jcp.27172 (2019).

801 39 Andrews, L. P., Yano, H. & Vignali, D. A. A. Inhibitory receptors and ligands beyond
802 PD-1, PD-L1 and CTLA-4: breakthroughs or backups. *Nat Immunol* **20**, 1425-1434,
803 doi:10.1038/s41590-019-0512-0 (2019).

804 40 Qu, S. *et al.* Blockade of pan-viral propagation by inhibition of host cell PNPT1. *Int.
805 J. Antimicrob. Agents* **63**, doi:10.1016/j.ijantimicag.2024.107124 (2024).

806 41 Czabotar, P. E. & Garcia-Saez, A. J. Mechanisms of BCL-2 family proteins in
807 mitochondrial apoptosis. *Nat. Rev. Mol. Cell Biol.* **24**, 732-748, doi:10.1038/s41580-
808 023-00629-4 (2023).

809 42 Delbridge, A. R. D., Grabow, S., Strasser, A. & Vaux, D. L. Thirty years of BCL-2:
810 translating cell death discoveries into novel cancer therapies. *Nat. Rev. Cancer* **16**, 99-
811 109, doi:10.1038/nrc.2015.17 (2016).

812 43 Diepstraten, S. T. *et al.* The manipulation of apoptosis for cancer therapy using BH3-
813 mimetic drugs. *Nat. Rev. Cancer* **22**, 45-64, doi:10.1038/s41568-021-00407-4 (2021).

814 44 Walensky, L. D. Targeting BAX to drug death directly. *Nat. Chem. Biol.* **15**, 657-665,
815 doi:10.1038/s41589-019-0306-6 (2019).

816 45 Czabotar, P. E., Lessene, G., Strasser, A. & Adams, J. M. Control of apoptosis by the
817 BCL-2 protein family: implications for physiology and therapy. *Nat. Rev. Mol. Cell
818 Biol.* **15**, 49-63, doi:10.1038/nrm3722 (2013).

819 46 Merino, D. *et al.* BH3-Mimetic Drugs: Blazing the Trail for New Cancer Medicines.
820 *Cancer Cell* **34**, 879-891, doi:10.1016/j.ccr.2018.11.004 (2018).

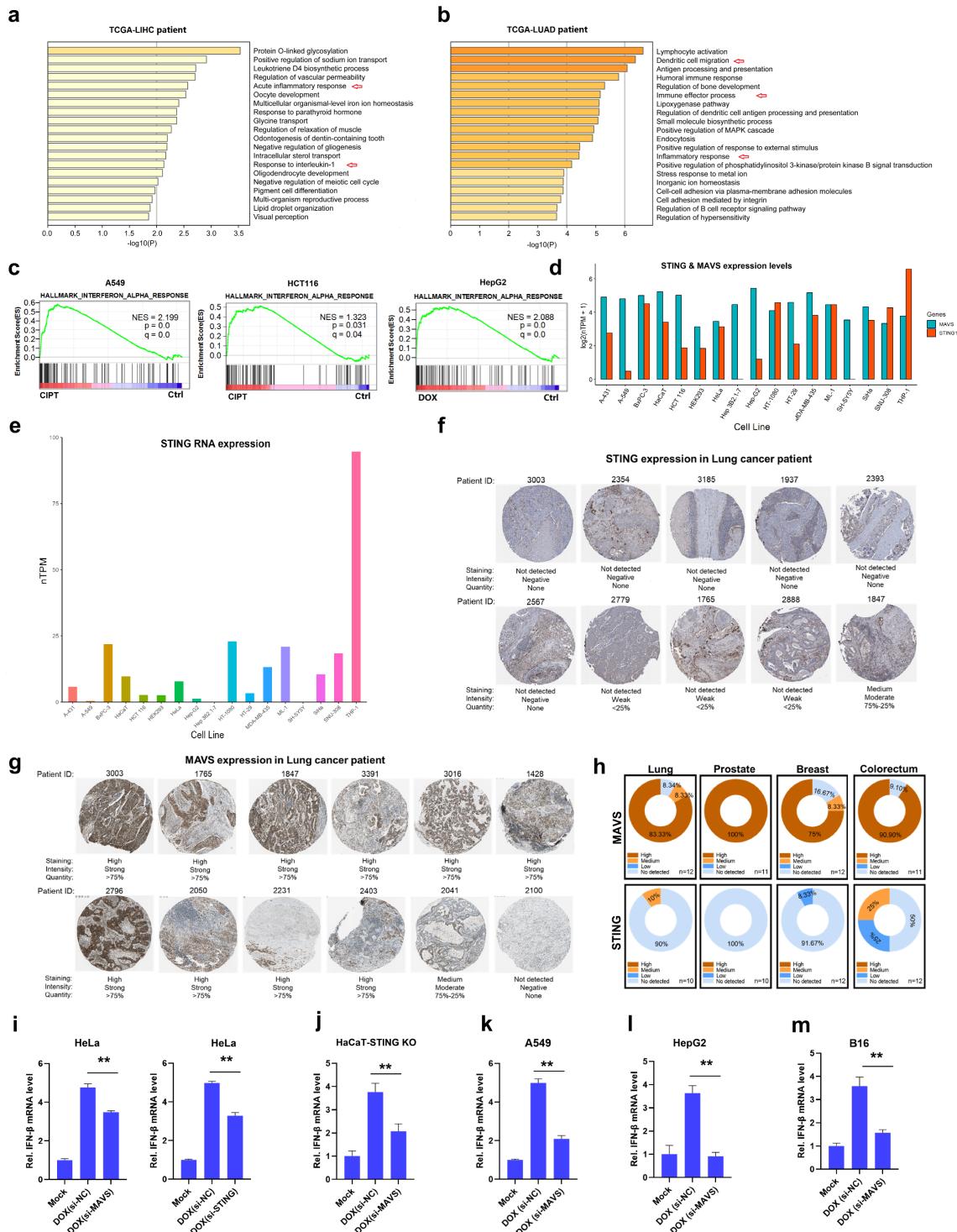
821 47 Galluzzi, L., Buqué, A., Kepp, O., Zitvogel, L. & Kroemer, G. Immunogenic cell
822 death in cancer and infectious disease. *Nat. Rev. Immunol.* **17**, 97-111,
823 doi:10.1038/nri.2016.107 (2016).

824 48 Kazama, H. *et al.* Induction of Immunological Tolerance by Apoptotic Cells Requires
825 Caspase-Dependent Oxidation of High-Mobility Group Box-1 Protein. *Immunity* **29**,
826 21-32, doi:10.1016/j.jimmuni.2008.05.013 (2008).

827 49 Waldman, A. D., Fritz, J. M. & Lenardo, M. J. A guide to cancer immunotherapy:
828 from T cell basic science to clinical practice. *Nat. Rev. Immunol.* **20**, 651-668,
829 doi:10.1038/s41577-020-0306-5 (2020).

830 50 Lei, Y. *et al.* Cooperative sensing of mitochondrial DNA by ZBP1 and cGAS
831 promotes cardiotoxicity. *Cell* **186**, 3013-3032.e3022, doi:10.1016/j.cell.2023.05.039
832 (2023).

833 51 Deng, L. *et al.* STING-Dependent Cytosolic DNA Sensing Promotes Radiation-
834 Induced Type I Interferon-Dependent Antitumor Immunity in Immunogenic Tumors.
835 *Immunity* **41**, 843-852, doi:10.1016/j.jimmuni.2014.10.019 (2014).


836 52 Lanng, K. R. B., Lauridsen, E. L. & Jakobsen, M. R. The balance of STING signaling
837 orchestrates immunity in cancer. *Nat. Immunol.* **25**, 1144-1157, doi:10.1038/s41590-
838 024-01872-3 (2024).

839 53 Woo, S.-R. *et al.* STING-Dependent Cytosolic DNA Sensing Mediates Innate
840 Immune Recognition of Immunogenic Tumors. *Immunity* **41**, 830-842,
841 doi:10.1016/j.jimmuni.2014.10.017 (2014).

842

843

844 **Figures and Figure Legends**

845

846 **Fig. 1. The Mavs pathway efficiently and broadly mediates chemotherapy-dependent**
847 **immune responses.**

848 (a, b) GO enrichment analysis of up-regulated gene expression in cancer patients after
849 chemotherapy was conducted based on the TCGA dataset.

850 (c) Positive correlation between drug treatment and interferon alpha response pathway in the
851 expression profiles from GSE222187, GSE108214, and GSE81878, Nominal P values and
852 FDR q values are shown.

853 (d) The bar chart shows the expression levels of MAVS and STING across different cell
854 lines, with data sourced from the HPA database.

855 (e) The bar chart shows the expression levels of STING across different cell lines, with data
856 sourced from the HPA database.

857 (f) Images showing IHC of STING from the Lung cancer patients in the HPA database.

858 (g) Images showing IHC of MAVS from the Lung cancer patients in the HPA database.

859 (h) Pie chart showing the IHC score of STING and MAVS in different patients from the HPA
860 database, where “Not detected” or “Low” indicates low expression, and “High” or
861 “Medium” indicates high expression level of STING and MAVS.

862 (i) HeLa were transfected with small interfering RNA target STING, MAVS or negative control
863 (NC) for 24 hours and then treated with DOX, IFN- β mRNA levels were measured by RT-PCR.

864 (j) STING ko HaCaT cell were transfected with siMAVS or siNC for 24 hours and then treated
865 with DOX, IFN- β mRNA levels were measured by RT-PCR.

866 (k-m) A549, HepG2 and B16 cell were transfected with siMAVS or siNC for 24 hours and
867 then treated with DOX, IFN- β mRNA levels were measured by RT-PCR.

868 Error bars are mean \pm s.e.m. and are representative of 3 independent experiments. Statistical
869 analyses were performed using a one-way ANOVA test with multiple comparisons; * $P <$
870 0.05.

871

872
873 **Fig. 2. Mitochondrial double-stranded RNA release triggers MAVS-dependent immune**
874 **response.**
875 **(a)** Top: A schematic diagram illustrating mtRNA and non-mtRNA purification and
876 transfection; Bottom: mtRNA and non-mtRNA isolated from donor cells were transfected
877 into recipient cells, and IFN- β mRNA levels were measured by RT-PCR.
878 **(b)** Top: A schematic diagram for cytosolic mtRNA (cRNA) purification and analysis;
879 Bottom: cRNAs were extracted from CIPT-treated HeLa, and mtRNA levels were measured
880 by RT-PCR.
881 **(c)** Top: A schematic of cRNA purification and transfection; Bottom: cRNAs prepared from

882 CIPT-treated HeLa were transfected into recipient HeLa, and IFN- β mRNA levels were
883 measured by RT-PCR.

884 (d) Cell treated with DOX plus IMT1, cytosolic mtRNA level were measured by RT-PCR.

885 (e) Cell treated with DOX plus IMT1, and IFN- β mRNA levels were measured by RT-PCR.

886 (f) cRNAs were extracted from CIPT-treated HeLa(C-RNA) or CIPT plus IMT1(C-RNA
887 IMT1), then transfected into recipient cells, and IFN- β mRNA levels in recipient cell were
888 measured by RT-PCR.

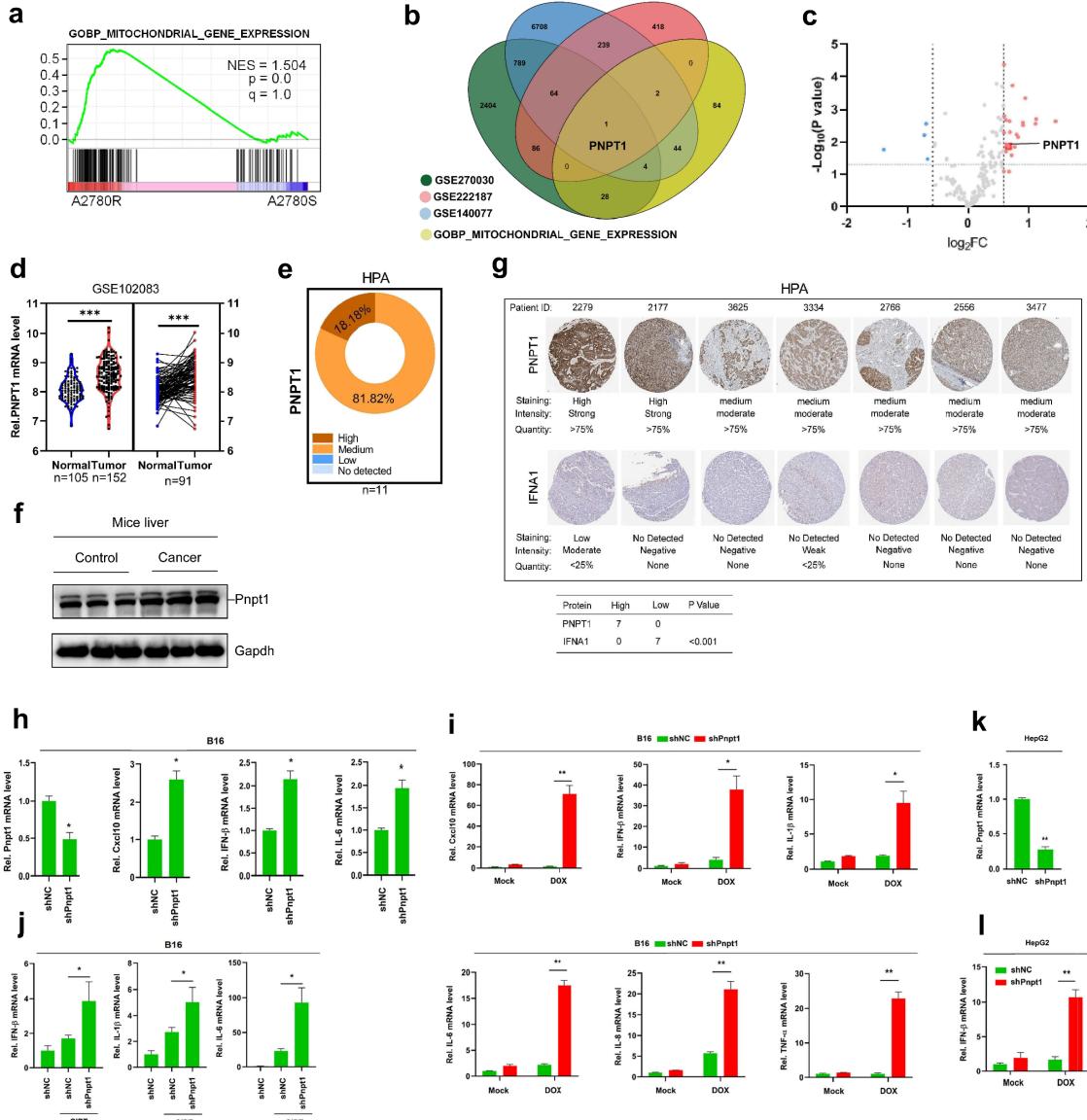
889 (g) Cellular dsRNAs in normal HeLa cells and cell infected with VSV-GFP were detected
890 under immunofluorescence microscope. Scale bar = 20 μ m.

891 (h) dsRNAs in mitochondrial and cytosolic fractions were immunoprecipitated by dsRNA
892 antibody J2, and detection by RT-PCR.

893 (i) mtRNAs prepared from donor cells treated with RNase III were transfected into recipient
894 cells, and IFN- β levels were measured by RT-PCR.

895 (j, k) Intracellular localizations of dsRNAs in HeLa cells treated with CIPT or H_2O_2 were
896 examined under an immunofluorescence microscope(j), Statistical analysis was
897 performed(k). Scale bar = 20 μ m.

898 (l) HeLa cells were treated with CIPT. Cytosolic mt- dsRNAs were immunoprecipitated with
899 dsRNA antibody J2 and detection by RT-PCR.


900 (m) HeLa cells were treated with CIPT. Cytosolic mt- dsRNAs were immunoprecipitated
901 with dsRNA antibody J2, then J2-IP dsRNA and J2 depleted RNA purification and
902 transfection into recipient cells, IFN- β mRNA levels in recipient cell were measured by RT-
903 PCR.

904 (n)HeLa cells were transfected with siANT2 or siNC for 24 hours and then treated with
905 DOX, cytosolic mtRNA level were measured by RT-PCR.

906 (o, p) HeLa cells were transfected with siBAX or siNC for 24 hours and then treated with
907 DOX, cytosolic mtRNA level were measured by RT-PCR(o). and IFN- β mRNA levels were
908 measured by RT-PCR(p).

909 Error bars are mean \pm s.e.m. and are representative of 3 independent experiments. Statistical
910 analyses were performed using Student's t-test or one-way ANOVA test with multiple
911 comparisons; * $P < 0.05$.

912

913

914 **Fig. 3. PNPT1 suppresses mitochondrial dsRNA formation, release, and immune
915 surveillance**

916 **(a)** GSEA plot of mitochondrial gene expression in the cisplatin resistance group of
917 GSE270030, with NES, nominal p-value, and FDR q-value displayed.

918 **(b)** Venn diagram showing that PNPT1 exists in both upregulated genes in GEO datasets
919 (GSE270030, GSE222187, GSE140077) and the mitochondrial gene expression pathway.

920 **(c)** Volcano plot illustrating the expression of differentially expressed genes (DEGs) between
921 cisplatin-resistant and sensitive groups (GSE270030).

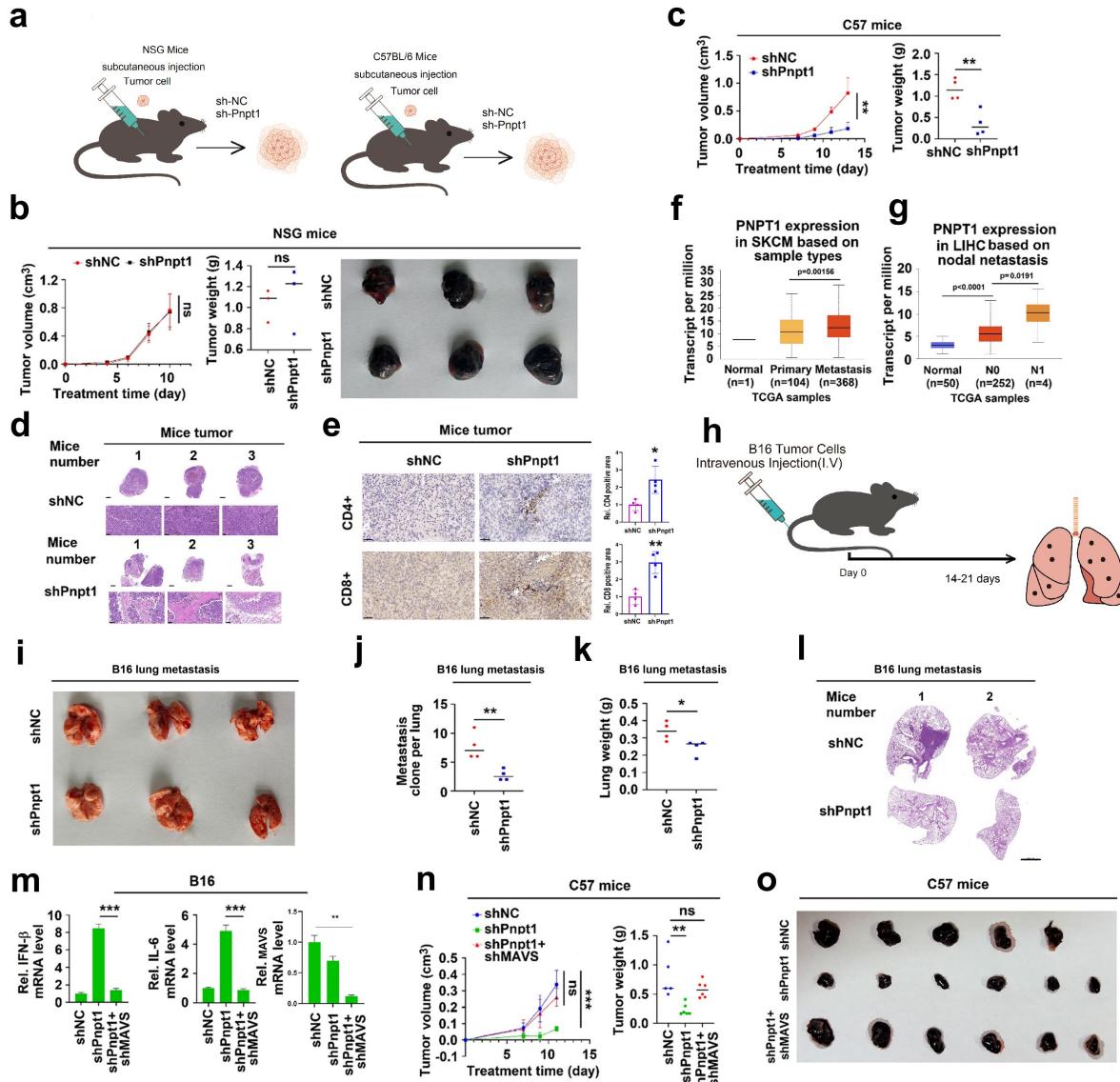
922 **(d)** Unpaired and paired analysis of PNPT1 expression in adjacent normal tissues versus tumor

923 tissues from GSE10283.

924 **(e)** Pie chart showing the IHC score of PNPT1 in hepatocellular carcinoma (HCC) from the
925 HPA database, where “Not detected” or “Low” indicates low expression, and “High”
926 or “Medium” indicates high expression level of PNPT1; antibody HPA034603 was used for
927 PNPT1 detection.

928 **(f)** C57BL/6 mice underwent hydrodynamic injection of transposon-based vectors expressing
929 myr-AKT and NRASV12. When liver cancer formed (after 6 weeks), PNPT1 protein levels in
930 tumor tissue and normal liver were assessed by Western blotting.

931 **(g)** Images showing IHC of PNPT1 and IFNA1 from the same patients in the HPA database,
932 indicating a negative correlation between PNPT1 and IFNA1; correlation analysis was
933 performed using the chi-squared test, where “Not detected” or “Low” signifies low
934 expression and “High” or “Medium” signifies high expression level of PNPT1.


935 **(h)** B16 cells were treated with LV-shNC (shNC) or LV-shPnpt1 (shPnpt1), and mRNA levels
936 of Pnpt1, CXCL10, IFN- β , and IL-6 in B16 cells were measured by RT-PCR.

937 **(i, j)** mRNAs in B16 shNC or shPnpt1 cells were measured by RT-PCR after treatment with
938 DOX and CIPT.

939 **(k, l)** HepG2 cells harboring LV-shNC or LV-shPnpt1 were treated with DOX, and IFN- β
940 mRNA in the treated cells was determined by RT-PCR.

941 Error bars are mean \pm s.e.m. and are representative of 3 independent experiments. Statistical
942 analyses were performed using the Mann-Whitney U test, Wilcoxon matched-pairs signed
943 rank test, Student’s t-test, or one-way ANOVA test with multiple comparisons; * $P < 0.05$.

944

945

946 **Fig. 4. PNPT1 suppresses antitumor immunity in solid tumors**

947 **(a)** Experimental scheme for the subcutaneous tumor model in mice.

948 **(b)** Immunodeficient (NSG) mice were inoculated with shNC-infected B16 cells and

949 shPnpt1-infected B16 cells (n = 3), with tumor growth curves, weights, and sizes determined.

950 **(c–e)** Immunocompetent (C57BL/6) mice were inoculated with shNC-infected B16 cells and

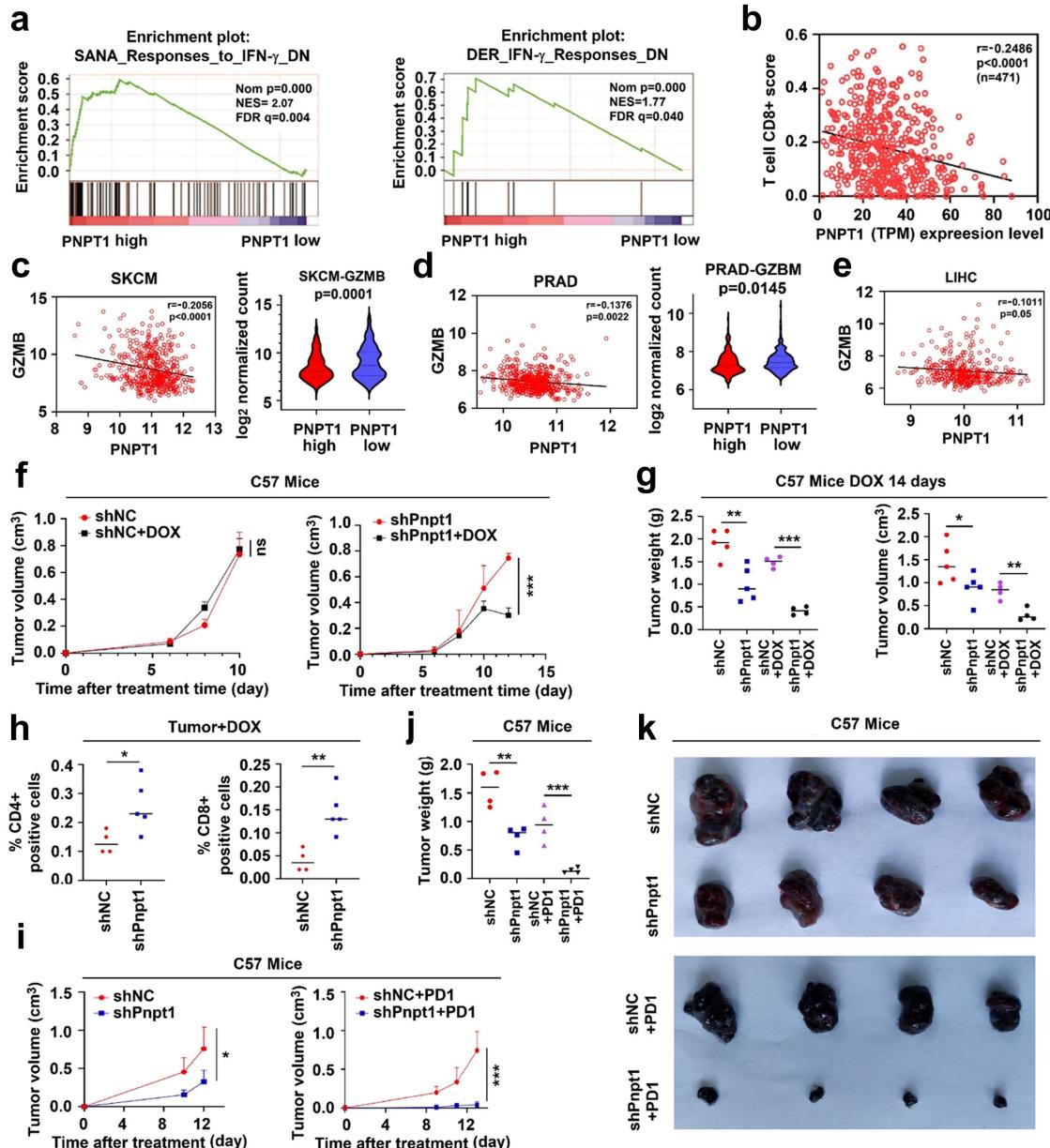
951 shPnpt1-infected B16 cells (n = 4), with tumor growth curves (c, left), tumor weights (c,

952 right), H&E analyses of tumor tissues (d), scale bar = 1000 μ m or 100 μ m, and CD4+ (e, top)

953 and CD8+ T cell (e, bottom), scale bar = 50 μ m, infiltrations measured.

954 (f, g) Analysis of Pnpt1 expression in non-metastatic and metastatic tissues from SKCM (f)

955 and LIHC (g) using the UALCAN portal analysis.

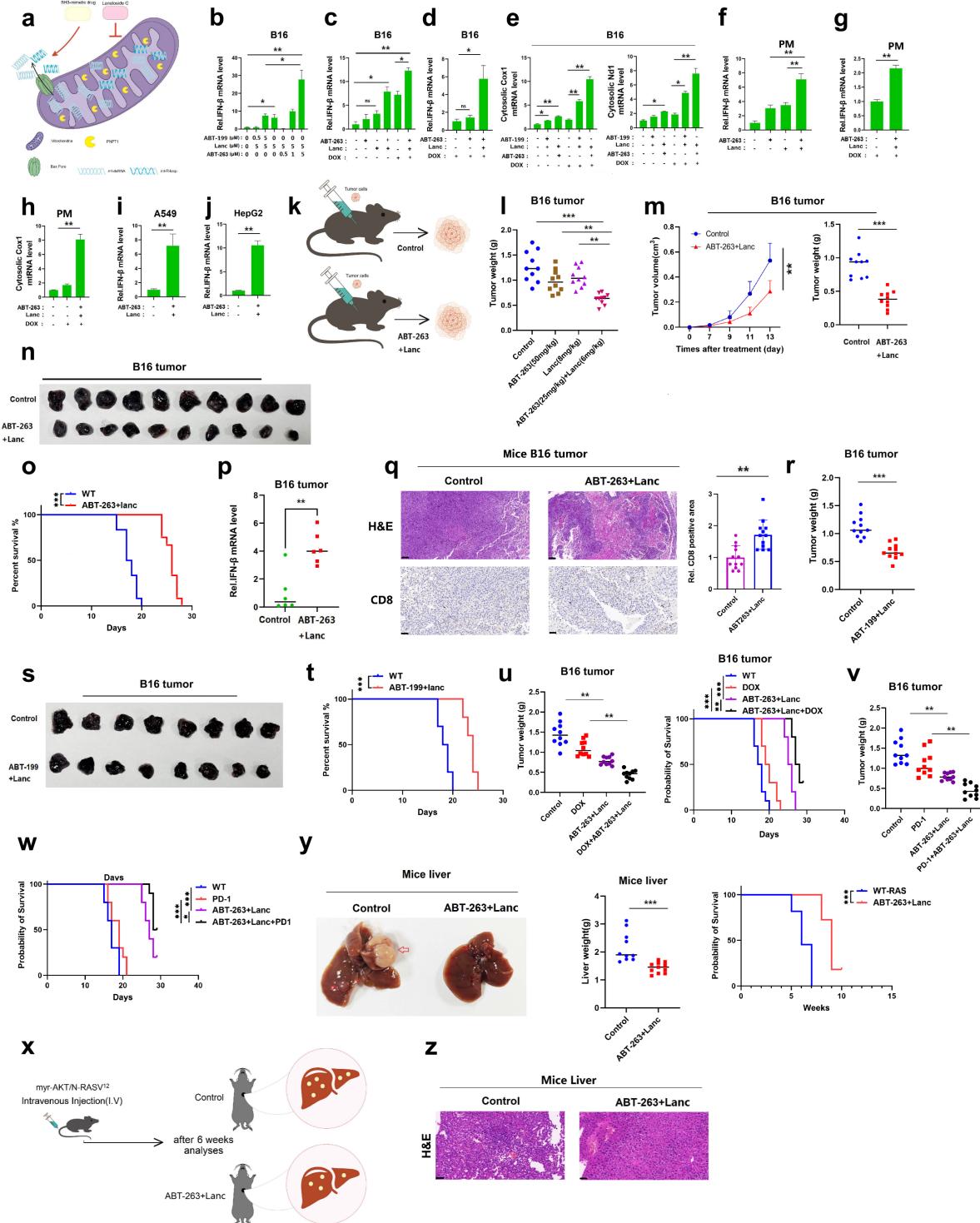

956 (h–l) Experimental scheme for the B16 lung metastatic tumor model (h). Representative
957 images and quantification of lung metastases in C57BL/6 mice inoculated intravenously with
958 shNC-B16 cells or shPnpt1-B16 cells were shown, including metastatic lung (i), metastatic
959 clones in the lung (j), lung weights (k), and analyses of metastatic lung tissues (l), scale bar =
960 2000 μ m.

961 (m) B16 cells infected with shPnpt1 were subsequently infected with shMAVS, measuring
962 IFN- β , IL-6, and MAVS mRNAs by RT-PCR.

963 (n, o) C57BL/6 mice were inoculated intravenously with shNC-B16 cells (n = 5), shPnpt1-
964 B16 cells (n = 6), and shPnpt1 plus shMAVS-B16 cells (n = 6), with tumor growth curves (n,
965 left), tumor weights (n, right), and tumor sizes (o) determined.

966 Error bars are mean \pm s.e.m. and are representative of 3 independent experiments. Statistical
967 analyses were performed using Student's t-test or one-way ANOVA test with multiple
968 comparisons; *P < 0.05.

969



970

971 **Fig. 5. Loss of PNPT1 overcomes therapeutic resistance**

972 **(a)** Positive correlation between PNPT1 and IFN γ down pathway in the expression profiles of
 973 the TCGA SKCM dataset according to PNPT1 expression level.
 974 **(b)** Correlation between CD8+ T cells and PNPT1 levels in SKCM patients in the TCGA
 975 dataset.

976 (c–e) Comparison of GzmB expression between PNPT1 low and high groups in SKCM (C),
977 PRAD (D), and LIHC (E) based on TCGA datasets.
978 (f) C57BL/6 mice were inoculated with shNC-B16 or shPNPT1-B16 cells (n = 3) and treated
979 with DOX; tumor growth curves were measured.
980 (g) Mice inoculated with shNC-B16, shPNPT1-B16 (n = 5), shNC-B16 with DOX (n = 4), or
981 shPNPT1-B16 with DOX (n = 4), tumor weights and sizes assessed after 14 days.
982 (h) C57BL/6 mice were inoculated with shNC-B16 cells treated with DOX (n = 4) or
983 shPNPT1-B16 cells treated with DOX (n = 5). Infiltration levels of CD4⁺T and CD8⁺T cells
984 were determined.
985 (i–k) C57BL/6 mice inoculated with shNC-B16 (n = 4), shPNPT1-B16 (n = 4), shNC-B16
986 treated with PD1 (n = 4), or shPNPT1-B16 treated with PD1 (n = 4), tumor growth curves (i),
987 tumor weights (j), and tumor sizes (k) determined.
988 Statistical analyses were performed using the Mann-Whitney U test, Student's t-test, two-way
989 ANOVA test with multiple comparisons, or one-way ANOVA test with multiple comparisons;
990 *P < 0.05.
991

992

993 **Fig. 6. Pharmacological inhibition of PNPT1 synergizes with the BH3 mimetic drugs**

994 **results in robust antitumor immunity and overcomes therapeutic resistance**

995 **(a) Demonstration of pharmacological inhibition of PNPT1 synergizing with BH3-mimetic**
 996 **drugs.**

997 (b-d) B16 cells treated with various drug combinations for 12 hours and their IFN- β levels
998 measured by RT-PCR.

999 (e) After 12 hours of treatment with different drug combinations, cytosolic mtRNAs in B16
1000 cells were measured by RT-PCR.

1001 (f, g) PM cells treated with various drug combinations for 12 hours and their IFN- β levels
1002 assessed by RT-PCR.

1003 (h) PM cells are treated with different combinations of drugs, after 12h, cytosolic mtRNAs
1004 were measured by RT-PCR.

1005 (i, j) A549 and HepG2 cell treated with ABT-263 plus Lanc, after 12h, the IFN- β in the
1006 treated cells were measured by RT-PCR.

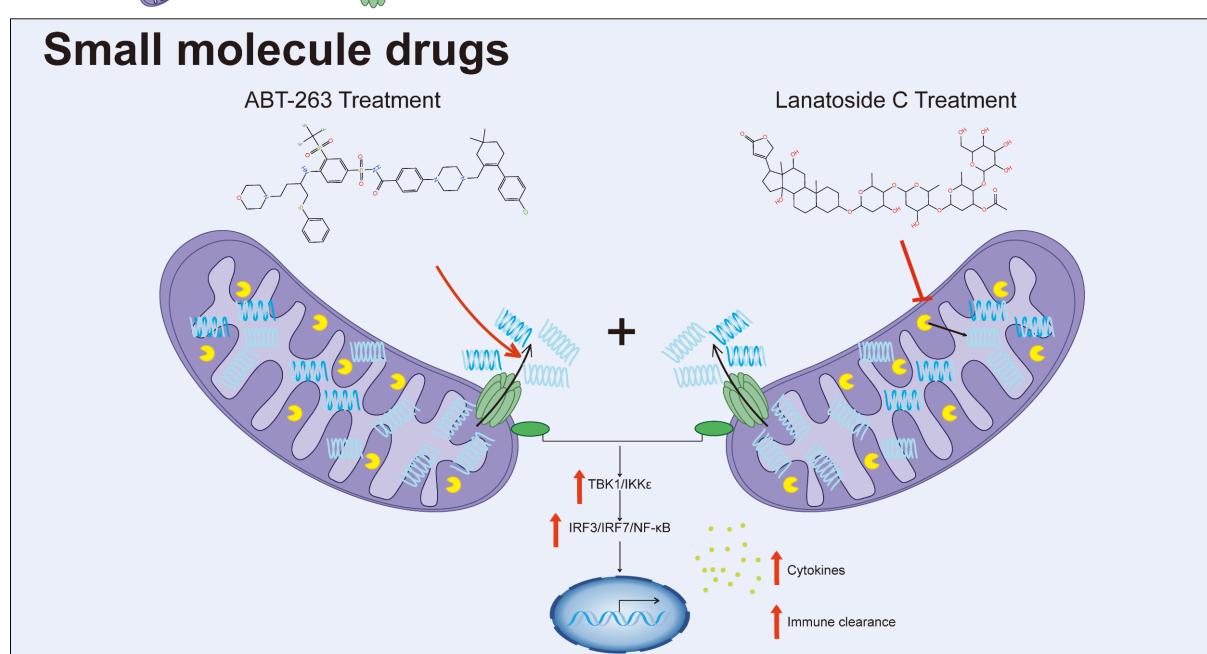
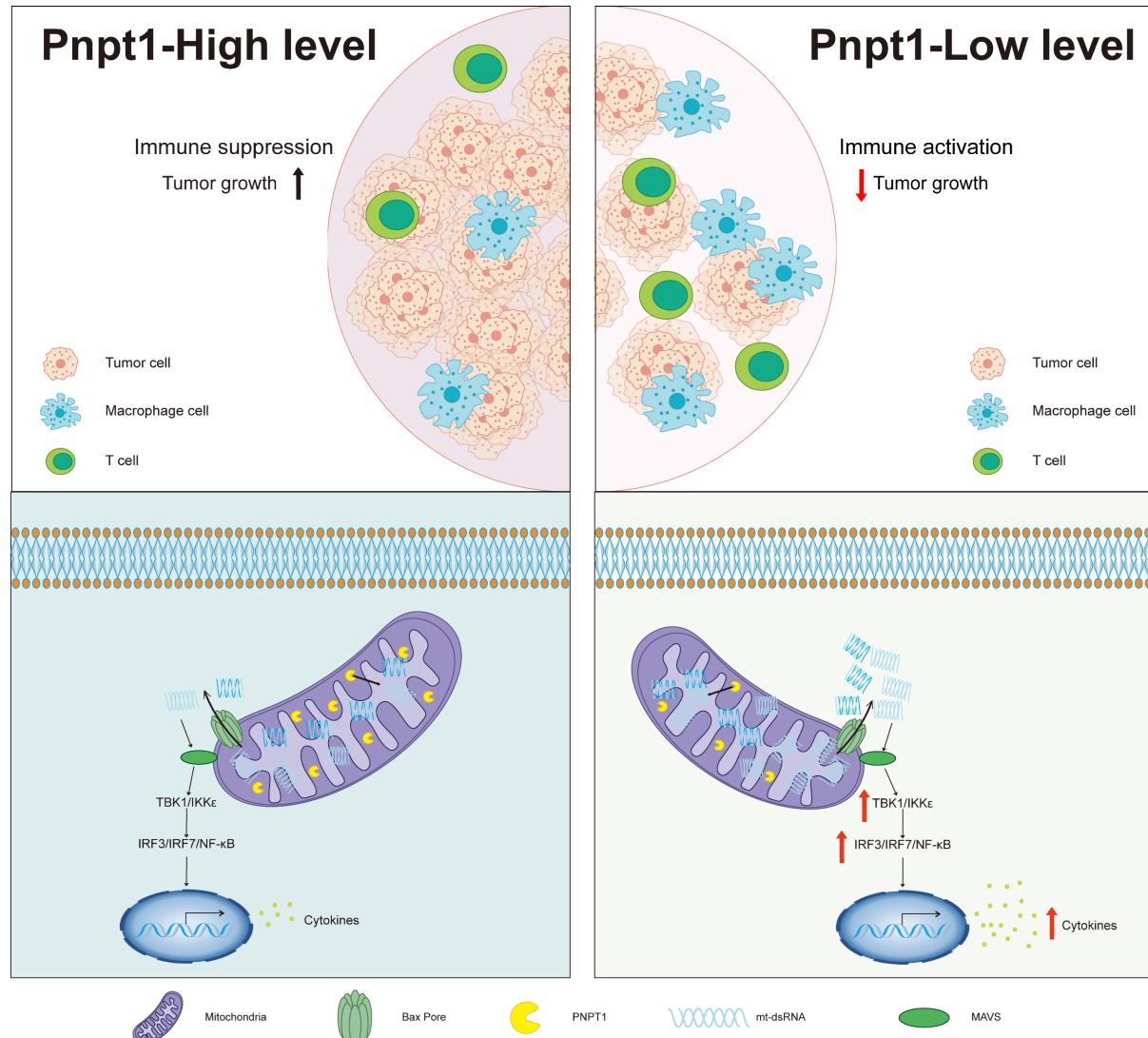
1007 (k) Experimental scheme of mice B16 subcutaneous tumor model with drug combination
1008 treatment.

1009 (l) C57BL/6 mice inoculated with B16 cells and treated with various drug combinations (n =
1010 10 per group) and their tumor weights were determined after 14 days.

1011 (m-o) C57BL/6 mice were inoculated with B16 cells, treated with ABT-263 plus Lanc (n =
1012 10-12 per group) in day 7, 9, and 11. The tumor growth curves; tumor weight (m), tumor
1013 sizes (n) and survival curve (o) were determined.

1014 (p, q) C57BL/6 mice were inoculated with B16 cells, treated with ABT-263 plus Lanc (n =
1015 10-12 per group) in day 7, 9, and 11. The IFN- β in the tumor tissues were measured by RT-
1016 PCR (p). H&E analyses of tumor tissues and CD8+ T cell (q) infiltrations measured. Scale
1017 bar = 50 μ m.

1018 (r-t) C57BL/6 mice were inoculated with B16 cells, treated with ABT-199 plus Lanc (n = 8-
1019 12 per group) in day 7, 9, and 11. The tumor weight (r), tumor sizes (s) and survival curve
1020 were determined.



1021 (u-w) C57BL/6 mice were inoculated with B16 cells, treated with different combinations of
1022 drugs (n=10-12 per group) in day 7, 9, and 11. The tumor weight and survival curve were
1023 determined.

1024 (x) Experimental scheme for hydrodynamic injection of transposon-based vectors expressing
1025 myr-AKT and NRASV12 in mice treated with ABT-263 plus Lanc.

1026 (y, z) C57BL/6 mice underwent hydrodynamic injection of transposon-based vectors
1027 expressing myr-AKT and NRASV12 (n = 10-12 per group), with liver tumor presentation,
1028 liver weight, and survival curve measurements (y). H&E analyses of liver tissues(z). Scale
1029 bar = 50 μ m.

1030 Error bars are mean \pm s.e.m. and are representative of 3 independent experiments. Statistical
1031 analyses were performed using Student's t-test, one-way ANOVA test with multiple
1032 comparisons, or two-way ANOVA test with multiple comparisons; * $P < 0.05$.

1033

1035 **Mechanism underlying PNPT1-mtRNA aix in immune surveillance and anticancer**

1036 **therapy.**

1037 On the one hand, upon chemotherapy, mt-dsRNA is released to the cytoplasm via the
1038 BAX pore to induce innate immunity and immune surveillance through the MAVS pathway.
1039 On the other hand, tumor tissue upregulates PNPT1 to eliminate immunogenic mitochondrial
1040 nucleic acids, suppressing immune activation, leading to immune evasion and therapeutic
1041 resistance. Finally, pharmacological inhibition of PNPT1 synergizes with BH3-mimetic drugs
1042 to efficiently activate mtRNA-mediated antitumor immunity and overcome therapeutic
1043 resistance. Our findings suggest that inducing mitochondrial danger signals in combination
1044 with PNPT1 inhibition holds promise as an innovative strategy for anticancer therapy.