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Abstract: Understanding how molecular binding couples with diffusion is fundamental 
to molecular engineering and biomedical applications. At the mesoscale, this coupling 
gives rise to a binding memory effect, characterized by power-law decays in temporal 
binding autocorrelations. This repeated binding-unbinding cycles transforms the static, 
affinity-limited binding picture into a dynamic landscape. While scaling theory has 
successfully described simple systems, the nature of this coupling in realistic, 
heterogeneous environments remains poorly understood. Here, we combine high-
throughput simulations, theoretical analysis and numerical modelling to reveal how 
environmental heterogeneity reshapes binding memory and transport statistics. We 
show that hopping, a nonlocal jump process, induces strong spatiotemporal correlations 
across binding sites. This leads to diffusion with non-Gaussian statistics and a spectrum 
of anomalous scaling behaviors for binding memory. In contrast to the universal scaling 
observed in homogeneous settings, the complex binding-diffusion interplay in 
heterogeneous binding landscape renders binding memory a tunable property, opening 
new avenues for molecular-level engineering of chemical reactions, catalysis, and 
materials design. 
 
Significance 
At the mesoscale, the processes of binding and diffusion are intrinsically coupled. 
Spatial heterogeneity, a ubiquitous feature of natural systems, profoundly complicates 
this interplay, yet its functional consequences remain elusive. Through integrated 
multiscale simulations, theoretical analysis, and numerical modeling, we uncover an 
anomalous binding memory effect in heterogeneous landscapes, driven by non-local 
molecular hopping. This effect is characterized by a power-law decay in the binding 
autocorrelation function. In contrast to the fixed scaling observed in homogeneous 
environments, the scaling exponent in heterogeneous systems is tunable by modulating 
molecular hopping dynamics or by engineering the spatial patterning of the 
heterogeneity itself. Our work thus establishes a bridge between fundamental physical 
principles, complex biological phenomena, and programmable materials design. 

 
Introduction  

Molecular systems, from enzymes (1–3) in living cells to transcription factors 
locating their DNA target sites (4–6), operate across multiple length and time scales, 
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with their dynamics primarily governed by two fundamental processes, spatial 
exploration (diffusion) and specific recognition (binding). At macroscopic scales, 
molecular motion appears as a continuous diffusive field, where the rapid contacts 
between individual molecules are averaged out and effectively invisible. Zooming to 
the single-molecule level allows for detailed observation of how a molecule selectively 
binds to its target, a process governed by the local energy landscape and thermal 
fluctuations. Bridging these extremes is the mesoscale, where molecules reach beyond 
their local area, sense distant partners, and form spatial correlations across regions. 
Diffusion paths are no longer passive trajectories but couple distinct binding events. 

Studying this cross-scale interplay necessitates experimental techniques that 
simultaneously resolve transient binding and track long-term trajectories. This dual 
requirement, however, confronts a longstanding trade-off between spatiotemporal 
resolution and observation duration in methods like single-molecule tracking (SMT) (7, 
8). Theoretically modeling these non-local, coupled dynamics is equally challenging, 
as it requires explicit consideration of complex many-body effects. Several 
phenomenological approaches, including reaction-diffusion models, address part of this 
complexity by treating molecular populations as continuum fields and coupling bulk 
diffusion to binding via mean-field exchange rates (9–11). However, these frameworks 
inherently overlook fluctuations at the single-molecule level, even though such 
fluctuations often drive biological function (12). For example, gene transcription can 
be initiated by a transient spike in transcription factor occupancy that crosses a high 
activation threshold (13, 14). In this way, biological systems leverage large fluctuations, 
rather than just population averages, to trigger decisive, irreversible responses. 
Deciphering binding-diffusion coupling at the single-molecule level is thus necessary 
to uncover the physical mechanisms of living systems. 

Our previous work addressed this challenge though an integrated methodology, 
combing active-feedback SMT experiment, scaling theory and simulations. We 
revealed that the intrinsic coupling between binding and diffusion creates a binding 
memory (15). It manifested as a power-law decay in the binding autocorrelation 
function (BAF), defined as  

𝐵𝐴𝐹(Δ𝑡) =
∑ 𝑛(𝑡)𝑛(𝑡 + ∆𝑡)!"∆$
$%&

∑ 𝑛(𝑡)'!"∆$
$%&

 

where 𝑛(𝑡) denote the number of bound molecules at time 𝑡, and 𝑛(𝑡 + ∆𝑡) is the 
number of those pairs remaining bound or rebinding after lag time ∆𝑡 . The non-
exponential kinetics suggests a new paradigm in which binding specificity can emerge 
from the cumulative effect of repeated weak interactions, rather than a single strong 
binding event (16–18). However, these investigations have largely focused on simple, 
homogeneous systems where binding events are weakly correlated. In reality, 
heterogeneous energy landscapes in biological and functional materials create history-
dependent binding with strong correlations. This spatial heterogeneity, when coupled 
with the binding-diffusion interplay, presents a dual complexity. A central question thus 
emerges: what is the nature of binding memory in such a complex regime? 
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To bridge this gap, we introduce a bottom-up multiscale simulation framework 
integrating large-scale all-atom molecular dynamics with Langevin 
dynamics.  Leveraging over 5×10⁶ core-hours of computation across an extensive 
range of systems, we systematically investigate how spatial heterogeneity, diffusion 
dimensionality, the nature of binding forces (e.g., isotropic versus directional), and 
physicochemical properties of the environment (e.g., viscosity and 
crowding) collectively dictate the emergence and strength of molecular binding 
memory. Our simulations reveal a rich, tunable spectrum of anomalous BAF 
scaling, distinct from the fixed exponent observed in homogeneous systems. These 
emergent behaviors share a common microscopic origin: non-Gaussian displacement 
statistics arising from spatially non-local molecular hopping. For heterogeneities 
arranged in well-defined geometries, we derive the limiting BAF scaling analytically. 
Building on this physical picture, we further show that engineered binding landscapes 
enable programmable control of binding memory. This work establishes binding-
diffusion coupling as a fundamental principle governing molecular specificity and 
transport in heterogenous environments, with broad implications for designing 
functional materials. 
 
Breakdown of universal BAF scaling in heterogeneous binding systems 

We begin our exploration of coupled molecular transport and binding in 3D 
heterogeneous environments. A classic example is the interaction between chromatin 
and trans-acting factors (TAFs). Chromatin, with its hierarchical organization and 
sequence-dependent binding heterogeneity presents a complex landscape for TAFs (e.g., 
transcription factors or chromatin remodelers) to navigate and bind (19–21). In our 
coarse-grained simulation framework, chromatin is represented as a 3D polymer chain 
with specific binding sites (𝜖 = 1.6) distributed randomly along its contour. TAFs are 
modeled as diffusing polymers subject to Langevin dynamics. To mimic crowded 
intracellular environments, we introduce inert crowders at varying concentrations.  

As a baseline, we first consider a homogeneous reference case with only nonspecific 
interactions (Fig. 1A). In this setting, the scaling exponent of the BAF remains fixed at 
-1.5, independent of the crowding level. This value is in line with the theoretical 
prediction 𝐷 𝜃⁄ , for the case of normal diffusion (𝜃 = 2 ) embedded in a three-
dimensional space (D=3). In contrast, the amplitude of the BAF is modulated by the 
crowding.  

Introducing a sparse distribution of specific binding sites imposes spatial 
heterogeneity, which we initially expected to disrupt the power-law behavior of BAF. 
Surprisingly, our simulations revealed that the power-law scaling persists. However, 
unlike the homogeneous case, the heterogeneous system exhibits a broad, crowding-
dependent spectrum of exponents, all of which consistently deviate from the 
homogeneous reference value. To decipher the underlying mechanism, we analyzed 
single-molecule trajectories (Fig. 1D), which reveal frequent, long-range hops between 

binding sites. These jumps induce path discontinuities, characteristic of a Lévy process, 

different from the Brownian motion in homogeneous systems (Fig. S1). The 
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displacement probability density function (PDF) accordingly becomes strongly non-
Gaussian (Fig.1E), which implies the breakdown of scaling theories predicated 
on trajectory homogeneity. For a system with fixed dimensionality, the steeper BAF 
decay would be interpreted within the original framework as evidence for anomalous 
diffusion. This interpretation is, however, inconsistent with our mean-squared 
displacement (MSD) analysis (Fig. S2), which shows normal diffusion. We therefore 
conclude that the faster BAF decay stems not from super-diffusion, but from the 
dynamic heterogeneity inherent to the intermittent hopping process. This anomalous 
BAF scaling is an emergent, non-asymptotic phenomenon manifesting in an 
intermediate time window, where transport couples with binding heterogeneity to 
generate non-Gaussian dynamics. At longer times, as the system fully samples the 
heterogeneity, these coupling-induced non-Gaussian effects decay, and the scaling 
crossovers back to the homogeneous exponent of -1.5 (see Fig. S3). 

To further understand how crowding regulates the BAF scaling, we performed a 
statistical analysis of hop lengths across a range of crowding conditions (see Fig. 1D & 
Fig. S4). Our results reveal a strong correlation between the scaling exponent and 
hopping capability. Increased diffusion rates facilitate longer-range jumps, allowing 
molecules to reach distal binding sites and reducing rebinding to nearby traps. 
Conversely, crowding slows diffusion, thereby confining molecular search to the local 
environment and strongly promoting immediate rebinding. 

Heterogeneity in binding environments often extends beyond a complex affinity 
landscape. Phase separation has emerged as a key and widespread mechanism for 
generating spatial complexity, as frequently observed in living systems (22–24). This 
process drives proteins to demix from the surrounding milieu, forming dense, liquid-
like condensates with physicochemical properties different from the dilute phase. To 
capture the protein dynamics within this multi-phase setting, we build a minimal 
computational model (Fig. 1F) where phase-separating proteins are represented as 
homopolymers with attractive interactions. At concentrations above the critical 
saturation threshold, droplets are spontaneously formed, coexisting with a dilute 
surrounding phase. We observe dynamic molecular exchange between these phases, 
and interestingly, the spatiotemporal heterogeneity of leaving and rebinding at the 
droplet interface can still be described by a power-law dependence. Through in silico 
adjustments of solvent viscosity (Fig. 1H), we further reveal that the material properties 
of the microenvironment do not only simply influence the molecular mobility, but also 
dynamically fine-tune the mesoscopic scaling laws. This dependence is fundamentally 
different from the trivial scaling behavior observed in single-phase systems. The 
insights gained from these two representative types of 3D heterogeneous binding 
systems may offer broader relevance and could potentially inform our understanding of 
other soft and biological matter systems, such as porous nanomaterials, mixed 
polyelectrolyte solutions, and colloidal gels. 

In homogeneous binding systems, we have already observed a stark contrast 
between the BAF and the distribution of continuous binding lifetime distribution (LDF). 
We revisit the LDF in heterogeneous environments with more complex energy 
landscapes (Fig. S5). Here, our calculations reveal that the LDF still deviate from 
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power-law and decays rapidly to negligible level. It suggests that binding memory, 
rather than static binding affinity, is the key factor in extending effective interactions. 
 
Binding dynamics in low-dimensional heterogenous systems 

Many fundamental biological processes unfold within low-dimensional landscapes. 
These include protein-lipid interactions on two-dimensional cell membranes (25), the 
transport of regulatory molecules (e.g., transcription factors and enzymes) within the 
fractal confines of chromatin (26, 27), and the one-dimensional motions such as TFs 
sliding along DNA (28) or cohesin-mediated DNA loop extrusion (29, 30). Moreover, 
these low-dimensional environments are inherently disordered. Biomembranes feature 
non-uniform chemical compositions and physical structures, while the chromatin fiber, 
as a 1D path, has a convoluted energy landscape shaped by its higher-order folding 
structures and sequence-dependent affinities.  

To investigate binding dynamics in low-dimensional heterogeneous systems, we 
constructed a set of minimal computational models. Specifically, we simulated 
adsorbate molecules interacting with a 2D membrane, polymers confined within a 
fractal scaffold (D=1.7) generated via diffusion-limited aggregation (31, 32), and a ring-
polymer sliding on a quasi-one-dimensional chromatin polymer. Heterogeneity was 
achieved through the random placement of specific binding sites within the topological 
space of each system. Homogeneous controls for these models (Fig. S6) showed 
insensitivity of BAF to diffusivity, with power-law exponents (-1.0, -0.62, -0.45) 
governed purely by system dimensionality. In striking contrast, heterogeneous systems 
retained power-law behavior but, more significantly, displayed a rich spectrum of 
anomalous exponents that could be dynamically tuned by the diffusive properties of the 
environment. Analysis of single-molecule trajectories (Fig. S7) further revealed 
universal features across dimensions, including sporadic trapping/release events and 
non-Gaussian dynamics (Fig. S8). These results, together with our 3D findings, 
establish that the non-Gaussian dynamics and emergent scaling from binding-diffusion 
coupling are a universal, dimensionality-robust phenomenon. 

In heterogeneous systems, molecular hopping typically weakens binding memory, 
reducing the BAF exponent below the homogeneous benchmark of -1.0. Paradoxically, 
we have uncovered a counteracting regime (boosting BAF scaling above -1.0) in our 
2D system where high binding-site density combined with suppressed diffusion gives 
rise to a caging effect. Here, molecules become dynamically confined by the densely 
packed traps, which prevents long-range escape and restricts their motion to localized, 
back-and-forth dynamics around their original sites. This dramatically enhances 
rebinding and consequently strengthens binding memory.  The generality of this 
caging effect is confirmed in a fractal system (Fig. S9A). Such bidirectional tunability 
of binding memory broadens the potential application space. 
 We now turn to the case of a zero-dimensional (D=0) system, an extreme case of 
low-dimensional system. Unlike our previous analysis of 3D protein transport across 
droplets, here we focus on internal polymer dynamics within individual condensates. 
Using a system with strong phase-separating capability, we tightly confine the polymer 
within a single droplet. This spatial confinement results in a BAF that approaches zero 
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(Fig. 2D), indicative of a quasi-0D environment on relevant timescales. However, 
introducing an additional component, such as scaffold proteins capable of interacting 
specifically with other proteins, shifts the BAF to -0.41. This demonstrates that the 
intrinsic compositional diversity of biomolecular condensates can generate a 
heterogeneous internal landscape, supporting dynamics far more complex than those in 
simplistic, single-component droplets.  Moreover, such internal heterogeneity is not 
restricted to multi-component systems. Even within condensates of uniform 
composition, heterogeneity can arise from the coexistence of distinct protein states. One 
potential mechanism for this is the formation of a percolated network, which could 
create a spectrum of dynamic modes ranging from transient trapping to random 
diffusion-like motion, within a single condensate (33, 34). 
 
Impact of binding nature on heterogeneous binding dynamics 
 Extending beyond isotropic interactions, we studied hydrogen-bond-mediated 
binding of water under nanoscale confinement including 2D graphene slits and 1D 
carbon nanotubes. While extensively studied, most previous work has 
considered idealized, homogeneous setups (35, 36). To move beyond this simplification, 
we use all-atom simulations to investigate the hydrogen-bond binding memory of water 
within spatially heterogeneous chemical landscapes. These are created by randomly 
functionalizing the confining surfaces with epoxy and hydroxyl groups, which act as 
specific hydrogen-bonding sites (Fig. 3A&D). Anomalous BAF scaling, deviating from 
ideal 1D and 2D cases, appears in our heterogeneous aqueous system as well, 
suggesting the universality of this phenomenon across different binding natures. In 
addition to calculating the hydrogen-bond autocorrelation (BAFHB), we also computed 
the residence autocorrelation (RAF). This function tracks whether a water molecule is 
present within a 5Å radius of a binding site over time, analogous to the BAF in isotropic 
systems, where binding is solely dependent on spatial proximity. The BAFHB exhibits a 
lower scaling exponent (Fig. 3B,C,E,F) relative to RAF. This stems from the fact that 
even if a water molecule revisits the spatial vicinity of a former binding site, rebinding 
is not guaranteed if those sites are already occupied. Such valency limitations lead to 
more complex, correlated dynamics that further reduce the scaling exponent. Another 
key difference from our earlier models is the use of an explicit solvent description, 
which naturally includes hydrodynamics. The consistency of these anomalous scaling 
laws is particularly notable given that this system incorporates directional interactions 
and explicit hydrodynamics features absent in our coarse-grained model. It reinforces 
the robustness of the binding-diffusion coupling phenomenon and rules out possible 
artifacts from implicit solvent approximations. These insights have implications for the 
development of functional nanomaterials where adaptable water transport is essential, 
such as selective nanofiltration membranes and nanofluidic ion circuits. 
 
Interfacial effects in heterogenous systems of mixed dimensionalities 

So far, we have focused on systems with binding sites randomly dispersed 
throughout the entire space.  We now turn to a more intriguing class of heterogeneity 
where binding sites are confined to sub-domains that are geometrically distinct from 
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the embedding diffusion space, forming mixed-dimensional systems. We ask the 
question: how does such spatially compartmentalized heterogeneity influence the 
behavior of binding memory? To address this, we construct three representative 
systems: a 2D binding surface within 3D space (2D+3D; Fig.4A), a 1D adsorption 
chain embedded in a 2D plane (1D+2D; Fig.4C), and a 1D chain in 3D space (1D+3D; 
Fig.4E). Their BAF scaling exponents, measured as -2.4, -1.95, and -1.70 (Fig. 4B,D,F), 
lying far outside the predicted range for homogeneous systems (-1.0 and -1.5). This 
consistent anomaly originates from heterogeneity-induced non-Gaussian dynamics, as 
confirmed in Fig. 4B, D, F. 
 To decipher the physics of 2D+3D and 1D+2D cases, we developed a simplified 
theoretical model (see Supporting Information for details). The geometric nature of 
the heterogeneity in these systems allows for a well-defined adsorption boundary 
condition, which we treat as perfectly absorbing. Using the method of images, this 
model predicts rebinding probability of 𝑃()*+,-~𝑡"'./  and 𝑃()*+,-~𝑡"'.& , 
respectively. These analytical results align closely with our simulation measurements, 
though slightly lower due to the model’s idealization of a single, non-return hopping 
event, which represents a theoretical limiting case equivalent to a hop of infinite length. 
In practice, a molecule undergoes a series of finite-length hops that keep it within the 
vicinity of its original binding site, allowing for repeated rebinding opportunities. Our 
use of a relatively fast diffusion setting promotes longer hops, thus minimizing such 
returns and narrowing the gap between simulation and the theoretical limit. This model 
is particularly useful for predicting the asymptotic behavior in such heterogeneous 

distributions, yielding a universal scaling: 𝐵𝐴𝐹~𝑡"
!
""0  with D and D-1 being the 

dimensionalities of the diffusion space and the heterogeneity, respectively.  
The scaling law summarized previously applies to systems with a one-dimensional 

difference between the heterogeneity and diffusion spaces. An interesting extension is 
to a two-dimensional gap, as in 1D+3D system, where analytical tractability is 
challenging. We therefore determined the corresponding scaling limit numerically 
(further details in Supporting Information). As shown in Fig. S11, the resulting limit 
agrees well with our simulation results presented in Fig. 4F. We now place this result in 
a broader context by comparing it to other 3D systems with distinct heterogeneity 
patterns, such as binding sites confined to a 2D plane or randomly dispersed in 3D 
space. A clear hierarchy emerges: the 3D+3D system displays the steepest scaling, 
followed by the 2D+3D and then the 1D+3D systems. This trend highlights that the 
dimensionality of spatial heterogeneity (i.e., spatial architecture of heterogeneity) is a 
key determinant of molecular binding memory. It determines the level of disruption to 
spatial homogeneity from minimal perturbation by a 1D line to a fully disordered 3D 
arrangement.  
 
Molecular binding memory in heterogenous systems with binding gradient 

Building on the role of heterogeneous distributions, we next ask how asymmetric 
patterns, common in non-equilibrium systems, influence binding memory. For this 
purpose, we designed a 2D membrane featuring six adjacent regions with a stepwise 
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increase in densities of binding sites (see Fig. 5A), creating a continuous binding 
gradient. This design generated strong inter-region binding correlations, causing BAF 
scaling in the gradient-connected setup to deviate sharply from that in isolated 
counterparts (see Fig. 5E). Notably, it induced a pronounced spatially polarized binding 
memory. In the highest-density region, BAF values exceeded -1.0 (Fig. 5D), reflecting 
robust binding memory that promotes stable attachments, while the sparsest regions 
dropped to BAF=-2.25 (Fig. 5C), indicating weak memory that favors molecular 
turnover. Unlike our static gradient, real biological systems often shape their 
heterogeneous binding landscapes through dynamic, temporally evolving processes, 
yielding context-dependent memory to support function. For example, when a virus or 
signaling ligand bind to a membrane, it can trigger local receptor clustering and 
recruitment of downstream effectors (37–39). This converts a temporal sequence of 
binding events into persistent spatial heterogeneity, such as density gradients or 
functional domains. The resulting heterogeneity, in turn, preferentially 
direct subsequent binding events to these enriched regions, revealing a strong 
memory. Even in our minimal 2D gradient pattern, binding memory is inherently 
spatiotemporally entangled. Scaling up to more complex higher-dimensional patterns 
or to real non-equilibrium systems with dynamically evolving patterns, would enable 
more sophisticated binding-memory networks, pointing to a potential direction for 
engineering functional biomaterials. 
 
Discussions  

Our work, supported by extensive simulations, has discovered a rich spectrum of 
anomalous BAF scaling laws in multidimensional heterogeneous systems, which stands 
in sharp contrast to homogeneous environments. Non-local hopping events 
spatiotemporally couples the binding pathways of different molecules and induces non-
Gaussian dynamics. For heterogeneities confined to well-defined geometries, we 
combined simulations and theoretical analysis to confirm the robustness of these 
anomalous scalings and derive their asymptotic limits. Finally, by engineering binding 
patterns with asymmetry that mimic non-equilibrium systems, we show that binding 
memory becomes context-sensitive, pointing to this being an intrinsic property under 
non-equilibrium conditions. 

Based on our findings, we propose some new perspectives on several fundamental 
problems. First, we expand the concept of molecular specificity beyond static binding 
affinity. We demonstrate that the local environment flexibly tunes binding memory, 
thereby establishing specificity as a dynamic and context-dependent property where the 
environment serves as an additional control layer. Second, many biological models 
overlook heterogeneity-driven non-Gaussian dynamics. For instance, the classic 
transcription factor search is often simplified as a 1D/3D switch, ignoring the inherent 
heterogeneity of chromatin and nuclear space, a condition that produces non-Gaussian 
dynamics. Similarly, in biomolecular condensates, spatial heterogeneity is an intrinsic 
property. This arises from either the diversity of molecular interactions in 
multicomponent systems or the complex network structures in single-component 
condensates (33). Such heterogeneity manifests as a spectrum of transient dynamical 
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states. While often reflected in anomalous diffusion, it can also lead to complex 
phenomena like “Fickian yet non-Gaussian” diffusion (40). Consequently, these 
dynamic signatures are averaged out in ensemble measurements. Direct observation of 
the underlying inhomogeneous kinetics therefore necessitates a single-molecule 
perspective, which spatially and temporally resolves individual molecular behaviors. 
Finally, our research holds significant implications for material processing. 
Heterogeneity can be harnessed to precisely modulate binding memory at the single-
molecule level, thereby influencing the overall material properties and functions. Our 
work thus establishes a bridge connecting fundamental physical phenomena with 
complex biological processes and cutting-edge material design.  

Our current research is limited by the use of a static, “frozen” designed binding 
landscape. It is a necessary simplification that isolates the effect of the heterogeneity 
pattern from temporal fluctuations, allowing us to establish clear relationships between 
spatial heterogeneity, topological dimensions, and binding memory. This 
approximation is physically justified by the widespread phenomenon of timescale 
separation in biological systems. Specifically, the processes that establish 
heterogeneous structures (e.g., chromatin looping, condensate formation) often evolve 
over seconds to minutes, far slower than the microsecond to millisecond 
binding/dissociation dynamics we study. 

In our future work, we will explore a more realistic and complex scenario: a 
dynamically fluctuating energy landscape. We hypothesize that living systems not only 
utilize static spatial heterogeneity to encode information but also achieve dynamic 
editing of molecular binding memory by precisely regulating the temporal dynamics of 
these heterogeneities. 
 
Methods 
Multi-scale simulation framework 

We employed a multi-scale computational approach that integrates coarse-grained 
molecular simulations for the physical reconstruction of complex biological systems, 
all-atom studies of confined water, and engineered systems with designed 
heterogeneous patterns. This allowed us to systematically investigate molecular binding 
and diffusion across a wide spectrum of spatially heterogeneous environments. 

The specific systems modeled include: (1) protein polymers interacting with 
chromatin fibers and liquid-liquid phase separation (LLPS) droplets; (2) binding 
dynamics of particles in 2D-confined substrate and fractal DLA scaffolds; (3) sliding 
of a ring polymer topologically constrained to a chromatin fiber; (4) the dynamics of 
protein polymers confined within LLPS droplets; and (5) all-atom molecular dynamics 
of water under 1D and 2D confinement.  

Coarse-grained simulations utilized Langevin dynamics with specific and non-
specific interactions tuned via Lennard-Jones potentials. All-atom water simulations 
employed the SPC/E model with the OPLS-AA force field for carbon nanomaterials, 
using the GROMACS package (42). All systems were custom-built. Full construction 
protocols, parameters, and the simulation code are detailed in Supporting Information 
and have been archived on GitHub (https://github.com/sqin5/binding-memory).   
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Analyses of binding dynamics 
To characterize binding memory, we defined a binding time autocorrelation 

function, Binding events were identified at every sampling frame based on either a 
distance-based or a hydrogen-bonding criterion. Capturing the rapid decay of temporal 
correlations required high-frequency sampling and robust statistical averaging, which 
we achieved by running multiple independent replicas of large-scale simulations. This 
procedure generated large datasets of molecular binding events, making their post-
processing a severe computational bottleneck with conventional analysis methods.  

The computational challenge centered on constructing the intermolecular contact 
matrix at each sampling timestep. Conventional methods that store the full matrix of all 
molecular pairs are highly inefficient for sparse, transient interactions, as they waste 
significant memory and computational resources on zero entries. We addressed this by 
implementing a hashmap-based data structure that recorded only active molecular pairs. 
Each interacting pair was stored as a unique key (e.g., “i_j”) mapped to a Boolean 
binding state. This sparse representation significantly reduced memory usage, enabled 
constant-time state lookup, and dramatically accelerated the temporal comparison of 
contact matrices required for BAF calculation. The analysis code was further 
parallelized using OpenMP. All custom analysis tools and the modified LAMMPS (42) 
version are available on Github (https://github.com/sqin5/binding-memory). 
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Figures and Tables 

 

Fig. 1 Comparison of binding dynamics in heterogeneous and homogeneous 3D 
binding systems. (A) Simulation snapshot of protein polymers interacting with a long 
chromatin fiber in 3D, with non-specific interactions only. (B) Corresponding system 
configuration with 30% specific binding sites (red beads) interspersed along the 
chromatin fiber (gray). Crowding agents are shown as blue lines. (C) Binding 
autocorrelation functions (BAFs) under varying crowding conditions for the 
homogeneous system (left) and the heterogeneous one (right). The BAF in the 
heterogeneous system shows strong crowding-dependent regulation, unlike the 
homogeneous counterpart. (D, Left) A representative single-molecule trajectory in the 
heterogeneous system, showing hopping dynamics. Prolonged residence at binding 
sites is marked by red dots. (D, Right) Corresponding frequency distribution of hop 
lengths. (E) Displacement probability distributions (PDF) for heterogeneous and 
homogeneous systems, revealing non-Gaussian dynamics in the heterogeneous case. (F, 
G) Simulation snapshots of systems without and with liquid-liquid phase separation 
(LLPS), respectively. (H) BAFs for systems with and without LLPS. (I, Left) A 
representative molecular trajectory within the LLPS system. (I, Right) Frequency 

Langtaosha (LTS) Preprint doi: https://doi.org/10.65215/LTSpreprints.2026.01.20.000096. This version posted January 20, 2026. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder. Creative Commons license: CC Attribution-NonCommercial-NoDerivatives 4.0

https://creativecommons.org/licenses/by-nc-nd/4.0



distribution of hop lengths under LLPS conditions. (J) Comparison of PDFs in the 
presence and absence of LLPS.  
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Fig 2. Binding dynamics in low-dimensional heterogeneous systems. (A, Left) 
Simulation snapshot of a 2D heterogeneous system with 10% specific binding sites 
(red). Adsorbed molecules and crowders are shown in green and blue, respectively. (A, 
Right) Corresponding BAF under varying crowding levels, showing crowding 
regulation. (B, Left) Schematic of a branched, fractal binding environment (D=1.7) 
generated via diffusion-limited aggregation. Here, 10% of the wall beads are 
functionalized as specific binding sites (green). (B, Right) BAF under varying solvent 
viscosities. (C, Left) Configuration of a ring polymer (green) undergoing facilitated 
sliding along a chromatin fiber (gray), where specific binding sites are marked as red 
dots. (C, Right) BAF as a function of solvent viscosity. (D, Left) Schematic of protein 
condensate (blue) with embedded specific sites (red). (D, Right) BAF measured in this 
quasi-zero-dimensional droplet environment, with and without specific binding sites. 
(E) Cartoon showing the bidirectional regulation of molecular binding memory through 
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hopping and caging mechanisms. (F) Cartoon: a rich spectrum of BAF scaling regimes 
emerge in low-dimensional heterogeneous environments. 
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Fig 3. All-atom simulations of water molecule dynamics in nanoconfined 
heterogeneous environments. (A) Visualization of water molecules confined within a 
quasi-one-dimensional carbon nanotube (radius = 1.5 nm) functionalized with hydroxyl 
and epoxy groups at 5% surface coverage. (B) Binding autocorrelation function of 
hydrogen bonds formed between water molecules and the functional groups on the 
oxidized nanotube. (C) Residence time autocorrelation function for water molecules at 
specific adsorption sites (within 5 Å). (D) Simulation snapshot of water confined 
between two graphene layers (interlayer spacing d = 2.5 nm), forming a quasi-two-
dimensional slit pore with 10% coverage of functional groups on the lower surface. (E) 
Corresponding hydrogen-bond BAF for the 2D case (F) Residence time autocorrelation 
for confined water in 2D. In all panels (B, C, E, F), power-law fits are shown as dashed 
lines with the corresponding scaling exponents indicated. 
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Fig. 4 Binding dynamics in systems where heterogeneous binding sites are confined 
to a well-defined geometry. (A) Schematic of molecular binding between 3D diffusing 
molecules and a 2D surface. (B, Top) Binding autocorrelation function measured for 
polymer-surface binding, revealing a universal 𝑡"'./  scaling. (B, Bottom) Non-
Gaussian probability density function (PDF) of molecular displacements. The dashed 
line represents an attempted Gaussian fit. (C, E) Simulation snapshots of 2D and 3D 
diffusing molecules bound to a 1D polymer. (D, F) The identical analysis presented in 
(B) is applied to (D) 2D diffusing molecules specifically binding to a 1D array and (F) 
3D diffusing molecules binding to a 1D linear array. 
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Fig. 5 Molecular binding memory on surfaces with engineered binding 
gradients. (A) Snapshot from molecular dynamics simulation, showing particle 
binding on a surface with a gradient of binding site density along the x-axis. (B) 
Schematic of the control surface with a random spatial distribution of binding sites. (C, 
D) Binding autocorrelation functions on the gradient-patterned surface compared to 
those random-patterned surfaces, at specific site densities of 10% (C) and 30% (D). (E) 
Scaling exponents derived from power-law fits to the BAFs, plotted as a function of 
specific site density for both surface patterns. 

  

Langtaosha (LTS) Preprint doi: https://doi.org/10.65215/LTSpreprints.2026.01.20.000096. This version posted January 20, 2026. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder. Creative Commons license: CC Attribution-NonCommercial-NoDerivatives 4.0

https://creativecommons.org/licenses/by-nc-nd/4.0



Supplementary Information 

Anomalous binding memory in heterogeneous molecular systems 

Shiyi Qin1,†,*, Fangxuan Lyu1,† , Xuebo Quan1, Bing Miao2, Kai Huang1,* 
1Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen, 

518107, China 
2Center of Materials Science and Optoelectronics Engineering, College of Materials 

Science and Opto-Electronic Technology, University of Chinese Academy of Sciences 
(UCAS), Beijing 100049, China 

†These authors contribute equally 
*Correspondence: qinsy@szbl.ac.cn (S.Q.), huangkai@szbl.ac.cn (K.H.) 

 
The PDF file includes: 

Supplementary Text 

Supplementary Figures. 1 to 11 

  

Langtaosha (LTS) Preprint doi: https://doi.org/10.65215/LTSpreprints.2026.01.20.000096. This version posted January 20, 2026. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder. Creative Commons license: CC Attribution-NonCommercial-NoDerivatives 4.0

https://creativecommons.org/licenses/by-nc-nd/4.0



Protein polymer interacting with specific sites on chromatin fiber 

Our molecular system was modeled in a 100×100×100 simulation box containing a 
chromatin fiber of 10000 beads and 250 protein polymers, each represented by a coarse-
grained chain of 10 beads linked via harmonic bonds. Specific binding sites, defined as 
segments of three consecutive chromatin beads, were distributed along the fiber at 30% 
coverage. Non-specific interactions used a Lennard-Jones potentials with 𝜖 = 0.1 , 
while specific protein-site interactions used 𝜖 = 1.6. The simulation ran for 1 × 101 
steps, recording protein positions every 500 steps to track binding events.  

Liquid-liquid phase separation droplet ensembles 

To study a 3D heterogeneous binding environment formed by LLPS droplets, we 
simulated protein polymers in an 80×80×80 cubic simulation box with periodic 
boundary conditions in all dimensions. Each protein polymer, represented as a chain of 
5 coarse-grained beads, had a number density of 0.005. Phase separation was induced 
by a strong polymer-polymer interaction strength of 𝜖 = 0.53. The periodic boundaries 
effectively created a system of multiple droplets, each assigned a unique index for 
tracking. Over a total simulation of 5 × 102 steps, we recorded the center-of-mass 
positions of all polymers and droplets every 500 steps to analyze the probability of 
polymers rebinding to their original droplets. 

2D confined heterogeneous system 

We modeled the binding dynamics of 50 polymer chains in a quasi-2D geometry using 
a simulation box of dimensions 100×100×2.5. The polymers were placed above a 
functionalized substrate, modeled as a 200×200 array of beads, with 10% randomly 
selected as specific binding sites. Polymer-site interactions were governed by a 
Lennard-Jones potential (𝜖 = 1.7). Periodic boundary conditions were applied in the x 
and y directions to mimic an infinite plane, while confinement in the z direction 
restricted motion, enforcing quasi-2D behavior. The simulation was run for 5 × 102 
steps, and the center-of-mass positions of all polymers were recorded every 500 steps 
for trajectory analysis.  

Fractal heterogeneous binding system 

To explore particle binding dynamics in fractal settings, we created diffusion-limited 
aggregation (DLA) generated branched structures through random walks. The void 
spaces within these structures were filled with immobile wall particles, after which the 
original DLA template was removed to yield a porous scaffold with a well-defined 
fractal dimension. Within this environment, 200 mobile adsorbate particles interacted 
weakly with each other via a Lennard-Jones potentials (𝜖 = 0.15) and experienced 
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steric repulsion from walls. Strong, specific binding was introduced by assigning 5% 
of the wall particles randomly with a high interaction strength (𝜖 = 3.5). The system 
was simulated using Langevin dynamics for 5 × 102 timesteps, and particle positions 
were sampled every 500 timesteps to analyze the binding kinetics. 

1D heterogeneous binding system 

We modeled the interaction between a ring polymer and a chromatin fiber within a 
400×400×400 simulation box. The ring polymer, composed of 50 beads, was initially 
configured as a circle of fixed radius 3 and wrapped around a flexible chromatin fiber 
comprising 20000 beads. The chromatin fiber is represented as a flexible polymer, with 
harmonic bonding 𝑈*(𝐫) = 70(𝑟 − 𝑟&)' (𝑟& = 1) and a bending potential, 𝑈3(𝐫) =
5(𝜃 − 𝜃&)' (𝜃& = 180). To introduce binding specificity, 5% of the chromatin beads 
were randomly selected as high-affinity sites for the ring polymer, interacting with the 
ring with a Lennard-Jones potential with strength 𝜖 = 0.65. Interactions between the 
ring and the remaining non-specific chromatin beads were weaker (𝜖 = 0.05). The 
system was equilibrated and evolved using Langevin dynamics for 2 × 102 steps. The 
positions of the ring and all binding sites were recorded every 500 steps to analyze 
binding and sliding dynamics, with the ring’s position monitored to ensure it remained 
constrained to the fiber. 

Binding dynamics of molecules within LLPS droplets 

To confine protein polymers within LLPS droplets and establish a quasi-0D 
environment, we set interaction strength between protein polymers to 𝜖 = 0.75. This 
strong LLPS ability ensured the dilute phase concentration was negligible, effectively 
suppressing exchange between the dense droplets and the surrounding medium. 
Heterogeneous binding within the droplets was introduced via six scaffold polymers 
(each a 5-bead chain, matching the protein polymer length), which served as specific 
high-affinity binding sites (𝜖 = 1.25). Binding dynamics were analyzed from particle 
trajectories recorded every 500 timesteps over a total simulation time of 101 timesteps. 

All-atom molecular dynamics simulations of confined water 

Water dynamics under nanoscale confinement were studied using all-atom MD. In the 
1D system, water was confined within a single-walled oxidized carbon nanotube, 
restricting motion along the z-axis. An armchair (21,21) carbon nanotube (diameter 3 
nm, length ~50 nm) was generated using an in-house MATLAB script. The structure 
was generated by replicating the translational unit cell along the tube axis, with 
duplicate atoms at periodic boundaries removed. To mimic internal surface oxidation, 
hydroxyl (-OH) and bridging epoxy (-O-) groups were randomly grafted onto the inner 
wall, each at a density of ~2.5% of the total carbon atoms, maintaining a minimum 
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inter-group distance of 4 Å. For the two-dimensional (2D) system, water was confined 
between two parallel graphene oxide sheets (30.3 × 31.5 × 2.0 nm³), with periodic 
boundaries in x and y to model an infinite slab. The OPLS-AA force field was used for 
the graphene oxide (GRO) and oxidized carbon nanotubes, and water was modeled with 
SPC/E. All simulations were conducted using GROMACS 2023.3. Each system was 
energy-minimized for 5000 steps and subsequently equilibrated in the NVT ensemble 
for 100 ps. Production simulations were then run for 40 ns. The leap-frog algorithm 
integrated the equations of motion with a 2-fs time step. Temperature was maintained 
at 300 K using the Nosé–Hoover thermostat with a 1.0 ps coupling constant. Non-
bonded interactions were treated with a 1.2 nm real-space cutoff, applying a switch 
function for van der Waals potentials between 1.0 and 1.2 nm. Long-range electrostatics 
were handled by the Particle-Mesh Ewald method, and all bonds involving hydrogen 
were constrained using LINCS. 

Heterogeneous binding systems of mixed dimensions 

A. Binding of polymers with 2D solid surfaces in 3D bulk (2D+3D) 

A 2D solid plane was constructed in a simulation box of dimensions 60×60×500 by 
placing immobile beads at 0.5 intervals along the x- and y- axes at z=0. Periodic 
boundary conditions in x and y created an infinite plane. The adsorbate polymers were 
coarse-grained 5-bead chains connected by harmonic springs 𝑈*(𝐫) = 𝑘(𝑟 − 𝑟&)' 
with a spring constant k =70 and an equilibrium bond length 𝑟& = 1. Non-bonded 
isotropic interactions between monomers were described by the standard 12-6 Lennard-

Jones (LJ) potential, 𝑈+4 = 4𝜖 CD5
(
E
0'
− D5

(
E
2
F , with the well depth 𝜖  varied to 

represent different binding affinities. The polymer concentration was fixed at 0.002, 
and the system was simulated for 1.5 × 106 steps, with the center-of-mass positions 
of all polymers recorded every 1000 steps to track surface binding. 

B. Interactions of polymers with 1D chains in 2D and 3D bulk (1D+2D/2D+3D) 

We studied binding dynamics in systems where specific interaction sites are strictly 
confined to a one-dimensional substrate embedded within higher-dimensional space 
(2D and 3D). In the 1D+2D system, a linear chain of binding sites was constructed 
along the x-axis in a 1000×1000×2 box, with periodic boundaries in x and y and 
reflective walls in z to enforce planar confinement. The affinity between the 1D solid 
chain surface and adsorbing molecules was set to 𝜖 = 0.5. For the 1D chain embedded 
in 3D space (1D+3D), the chain was positioned at the center of the x-y plane and 
extended along the entire z-axis. The specific binding strength is set as 𝜖 = 0.75. Both 
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systems were simulated for a total of 4 × 102 timesteps, with binding states sampled 
every 500 timesteps. 

Simplified theory analysis 

A. Analysis of BAF limits in mixed 2D and 3D environments  

When we study the binding dynamics between polymers and a 2D adsorbing surface, 
we can use a 3D Fokker-Planck equation with absorbing boundary conditions to 
determine the limiting value of the binding autocorrelation function in the system: 

𝜕𝑃(𝑥, 𝑦, 𝑧, 𝑡)
𝜕𝑡 = 𝐷 L

𝜕'𝑃
𝜕𝑥' +

𝜕'𝑃
𝜕𝑦' +

𝜕'𝑃
𝜕𝑧'M 

𝐼𝐶: 𝑃(𝑥, 𝑦, 𝑧, 0) = 𝛿(𝑥)𝛿(𝑦)𝛿(𝑧 − 𝑧&) 
𝐵𝐶:	𝑃(𝑥, 𝑦, 𝑧 = 0, 𝑡) = 0 

The solution was obtained via the method of images, combining the free diffusion 
Green's function with a negative mirror source:  

𝐺(𝑥, 𝑦, 𝑧, 𝑡; 𝑧&) =
1

(4𝜋𝐷𝑡)7/' exp	 L−
𝑥' + 𝑦' + (𝑧 − 𝑧&)'

4𝐷𝑡 M 

𝑃(𝑥, 𝑦, 𝑧, 𝑡) = 𝐺(𝑥, 𝑦, 𝑧, 𝑡; 𝑧&) − 𝐺(𝑥, 𝑦, 𝑧, 𝑡; −𝑧&) 
This simplifies to the leading-order long-time asymptotic form: 

𝑃(𝑥, 𝑦, 𝑧, 𝑡) ≈
1

(4𝜋𝐷𝑡)
7
'
L1 −

𝑥' + 𝑦' + (𝑧 − 𝑧&)'

4𝐷𝑡 M

−
1

(4𝜋𝐷𝑡)
7
'
L1 −

𝑥' + 𝑦' + (𝑧 + 𝑧&)'

4𝐷𝑡 M

=
1

(4𝜋𝐷𝑡)
7
'
L
𝑥' + 𝑦' + (𝑧 − 𝑧&)'

4𝐷𝑡 −
𝑥' + 𝑦' + (𝑧 + 𝑧&)'

4𝐷𝑡 M

=
1

(4𝜋𝐷𝑡)
7
'

𝑧𝑧&
𝐷𝑡 =

𝑧𝑧&

(4𝜋𝐷)
7
'𝑡
/
'
 

The time-dependent rebinding probability, defined as the survival probability within a 
cutoff distance 𝑟9  from the desorption site, is then obtained by 
integrating 𝑃(𝑥, 𝑦, 𝑧, 𝑡) over a hemispherical interaction volume: 

𝑃()*+,-(𝑡) ≈ Z Z Z
𝑟𝑐𝑜𝑠𝜃𝑧&

(4𝜋𝐷)
7
'𝑡
/
'
𝑟'𝑠𝑖𝑛𝜃𝑑𝜃𝑑𝜙𝑑𝑟

:
'

&

':

&

(#

&
=

𝑧&

(4𝜋𝐷)
7
'𝑡
/
'

𝑟9;𝜋
4 ∼ 𝑡"

/
' 
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The extreme scaling of the BAF for polymers interacting with a 1D adsorptive chain in 
a 2D space was determined by solving the following simplified problem: 

𝜕𝑃(𝑥, 𝑦, 𝑧, 𝑡)
𝜕𝑡 = 𝐷 L

𝜕'𝑃
𝜕𝑥' +

𝜕'𝑃
𝜕𝑦'M 

with initial condition 𝑃(𝑥, 𝑦, 𝑧, 0) = 𝛿(𝑥)𝛿(𝑦 − 𝑦&)  and an absorbing boundary 
condition at the chain location 𝑃(𝑥, 𝑦 = 0, 𝑡) = 0. Using the method of images, the 
solution is constructed as: 

𝑃(𝑥, 𝑦, 𝑡) = 𝐺(𝑥, 𝑦, 𝑡; 𝑦&) − 𝐺(𝑥, 𝑦, 𝑡; −𝑦&) 

where 𝐺(𝑥, 𝑦, 𝑧, 𝑡; 𝑧&) =
0

(;:=$)$/"
exp	 D− ?"@(A"A&)"

;=$
E is free-space Green's function 

in 2D. For small distances and long times, we approximate the exponential terms using 
𝑒"B ≈ 1 − 𝑢 for small 𝑢: 

exp	(−
𝑥' + (𝑦 − 𝑦&)'

4𝐷𝑡 ) ≈ 1 −
𝑥' + (𝑦 − 𝑦&)'

4𝐷𝑡 	

exp	(−
𝑥' + (𝑦 + 𝑦&)'

4𝐷𝑡 ) ≈ 1 −
𝑥' + (𝑦 + 𝑦&)'

4𝐷𝑡  

Thus: 

𝑃(𝑥, 𝑦, 𝑡) ≈
1

4𝜋𝐷𝑡 [(1 −
𝑥' + (𝑦 − 𝑦&)'

4𝐷𝑡 ) − (1 −
𝑥' + (𝑦 + 𝑦&)'

4𝐷𝑡 )]	

=
1

4𝜋𝐷𝑡 [
𝑥' + (𝑦 + 𝑦&)' − 𝑥' − (𝑦 − 𝑦&)'

4𝐷𝑡 ]	

=
1

4𝜋𝐷𝑡 [
(𝑦 + 𝑦&)' − (𝑦 − 𝑦&)'

4𝐷𝑡 ] =
1

4𝜋𝐷𝑡 [
(𝑦' + 2𝑦𝑦& + 𝑦&') − (𝑦' − 2𝑦𝑦& + 𝑦&')

4𝐷𝑡 ]	

=
1

4𝜋𝐷𝑡 ⋅
4𝑦𝑦&
4𝐷𝑡 =

𝑦𝑦&
4𝜋𝐷'𝑡' 

We integrate over a semicircular interaction range around the origin in the upper half-
plane (𝑦 ≥ 0) with radius 𝑟9, using polar coordinates where 𝑥 = 𝑟cos	 𝜃, 𝑦 = 𝑟sin	 𝜃: 

𝑃rebind(𝑡) ≈ Z Z
(𝑟sin	 𝜃)𝑦&
4𝜋𝐷'𝑡' 𝑟 𝑑𝑟 𝑑𝜃

:

&

(#

&
	

=
𝑦&

4𝜋𝐷'𝑡'Z 𝑟' 𝑑𝑟
(#

&
Z sin	 𝜃 𝑑𝜃
:

&
∼ 𝑡"' 

C. Numerical Modeling of BAF limits in mixed 1D and 3D environments 
We modeled the rebinding dynamics of a molecule to a 1D absorbing polymer in 

3D space by solving the azimuthally symmetric Fokker-Planck equation in cylindrical 
coordinates: 

𝜕𝑃(𝑟, z, 𝑡)
𝜕𝑡 = 𝐷 L

𝜕'𝑃
𝜕𝑟' +

1
𝑟
∂𝑃
𝜕𝑟 +

𝜕'𝑃
𝜕𝑧'M 

with initial condition: 
𝑃(𝑟, 𝑧, 0) = 𝛿(𝑟 − 𝑟&)𝛿(𝑧) 

corresponding to a molecule initially desorbed at a small radial distance 𝑟& from the 
polymer axis at 𝑟 = 0. The polymer was treated as a perfectly absorbing line (a strong 
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sink) at 𝑟 = 0, enforced by 𝑃(𝑟 = 0, z, 𝑡) = 0. The rebinding probability is quantified 
by computing the time-dependent survival of the molecule within a cutoff radius 𝑟9
 from its starting location. 

The equation was solved using an explicit finite-difference scheme on a uniform 
grid with 𝑁( = 𝑁C = 5000points, spatial steps 𝛥𝑟 = 𝛥𝑧 = 0.1, and time step 𝛥𝑡 =
0.05 (satisfying the stability criterion 𝛥𝑡 ≤ 1/[2𝐷(𝛥𝑟"' + 𝛥𝑧"')] for 𝐷 = 10"7). 
The radial coordinate was discretized as 𝑟+ = (𝑖 − 1)𝛥𝑟 (𝑖 = 1,… ,𝑁() and the axial 
coordinate as 𝑧4 = (𝑗 − 𝑁𝑧/2 − 0.5)𝛥𝑧 (𝑗 = 1,… ,𝑁C), with the probability density 

𝑃+,4, ≈ 𝑃(𝑟+ , 𝑧4 , 𝑡,). Spatial derivatives were discretized using central differences:  

𝜕'𝑃
𝜕𝑟' →

𝑃+@0,4 − 2𝑃+,4 + 𝑃+"0,4
Δr'  

1
𝑟
𝜕𝑃
𝜕𝑟 →

1
𝑟+
𝑃+@0,4 − 𝑃+"0,4

2∆𝑟  

𝜕'𝑃
𝜕𝑧' →

𝑃+,4@0 − 2𝑃+,4 + 𝑃+,4"0
Δz'  

applied at the interior points 2 ≤ 𝑖 ≤ 𝑁( − 1, 2 ≤ 𝑗 ≤ 𝑁C − 1. Time integration was 
performed via the forward Euler method: 

𝑃,@0 = 𝑃, + 𝛥𝑡 ⋅ 𝐷ℒ[𝑃,]  

where ℒ is the discretized diffusion operator. The computation was parallelized over 
the (i,j) grid using OpenMP. Boundary conditions are imposed as: 

𝑃0,4 = 0 at r=0 

𝑃E',4 = 𝑃E'(),4 at rFGH 

𝑃+,0 = 𝑃+,', 𝑃+,E* = 𝑃+,E*() 
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Fig. S1 Representative single-molecule trajectories in (A) polymers interacting non-
specifically with chromatin fibers and (B) a homogeneous phase without phase 
separation. 
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Fig. S2 Mean-squared displacement (MSD) of diffusing polymers in a TAF-chromatin 
binding system (A) and a liquid-liquid phase separation (LLPS) system (B). Power-law 
fits to the MSD curves are shown as red dashed lines. 
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Fig. S3 (A) Binding autocorrelation function for protein polymers interacting with 
randomly distributed specific binding sites on chromatin. Compared with the 
simulation in Fig. 1, the duration was extended to 2 × 101. A clear scaling transition 
is observed at 𝑡 = 7.2 × 102 (indicated by the dashed line). Power-law fits to the two 
distinct temporal regimes are indicated by red dashed lines. (B) Displacement 
probability distribution function (PDF) for the protein polymers, computed at  ∆𝑡 =
1.25 × 101. A Gaussian fit to the distribution is indicated by the red dashed line. 

 

  

Langtaosha (LTS) Preprint doi: https://doi.org/10.65215/LTSpreprints.2026.01.20.000096. This version posted January 20, 2026. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder. Creative Commons license: CC Attribution-NonCommercial-NoDerivatives 4.0

https://creativecommons.org/licenses/by-nc-nd/4.0



 

Fig. S4 Statistics of maximum and mean hop lengths for polymers in a TAF-chromatin 
interaction system (A) and a liquid-liquid phase separation (LLPS) system (B). 
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Fig. S5 Binding lifetime distribution analysis for protein polymers interacting with a 
long chromatin fiber with 30% specific binding sites. 

 

  

Langtaosha (LTS) Preprint doi: https://doi.org/10.65215/LTSpreprints.2026.01.20.000096. This version posted January 20, 2026. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder. Creative Commons license: CC Attribution-NonCommercial-NoDerivatives 4.0

https://creativecommons.org/licenses/by-nc-nd/4.0



 

Fig. S6 Binding autocorrelation functions in homogeneous counterparts (nonspecific 
interactions only) of low-dimensional systems. Data are shown for systems of different 
dimensionalities: (A) 2D, (B) fractal (D = 1.7), and (C) 1D. For each system, BAF are 
measured under varying diffusion conditions, with fitted scaling laws indicated by red 
dashed lines. 
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Fig. S7 Representative single-molecule trajectories in a confined quasi-2D system (A), 
a fractal system (B), and a 1D system (C), each with embedded specific binding sites. 
Red dots indicate regions of high trajectory density corresponding to molecular 
trapping events. 
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Fig. S8 Probability distribution functions of molecular displacement for heterogeneous 
binding systems in different dimensions: (A) 2D, (B) fractal (D = 1.7), (C) 1D, and (D) 
0D. 
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Fig. S9 Analysis of the binding autocorrelation function in (A) fractal and (B) 2D 
heterogeneous binding systems with varying proportions of binding defects. All 
simulations employ slow diffusion to suppress the hopping of single-bead binders. As 
the density of specific binding sites increases, adsorbed molecules experience enhanced 
local trapping, causing the BAF to drop below the homogeneous scaling baseline. 
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Fig. S10 Distribution of continuous binding residence times in mixed-dimensionality 
systems: (A) 2D + 3D, (B) 1D + 2D, and (C) 1D + 3D. All distributions are well 
described by single-exponential decay (red dashed lines). 
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Fig. S11 Probability of a molecule rebinding to the original site on a one-dimensional 
chain with perfectly absorbing boundaries, corresponding to the no-return limiting case 
of single hopping. A power-law fit to the data is shown by the dashed line. 
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