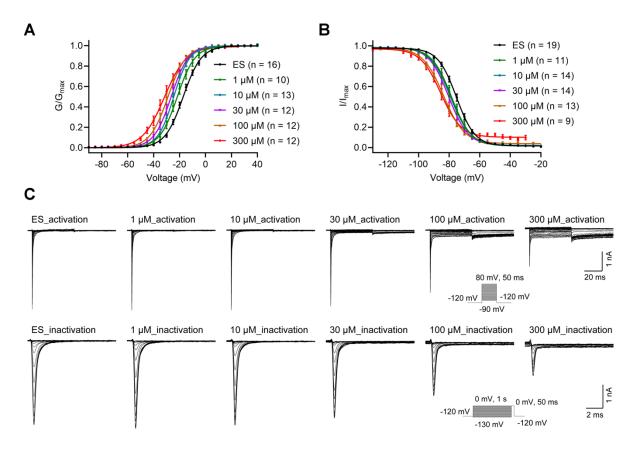
Supplementary Materials for

Open-state structure of veratridine-activated human $Na_v 1.7$ reveals the molecular choreography of fast inactivation

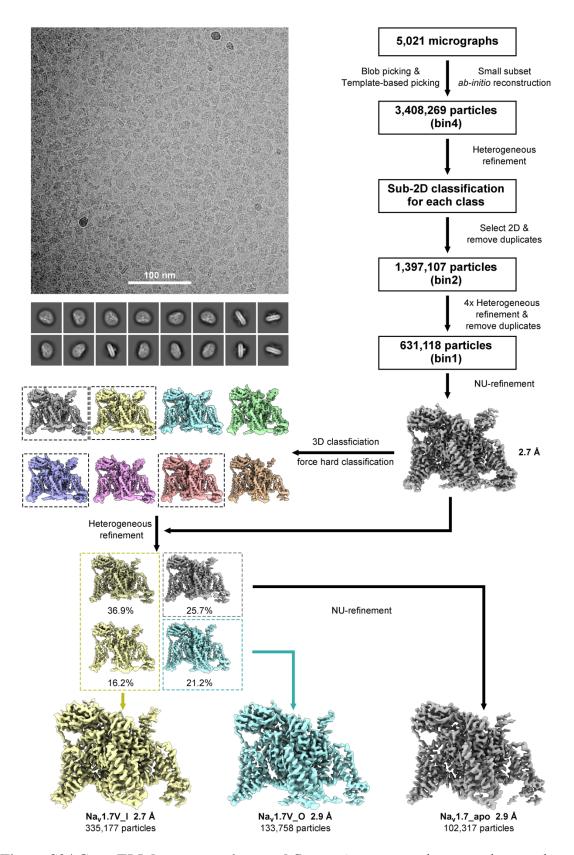
Xiao Fan^{1,4,5}, Jiaofeng Chen^{2,4}, Lingfeng Xue^{3,4}, Huan Wang², Tong Wu², Xiaoshuang Huang¹, Fangzhou Lu¹, Xueqin Jin², Chen Song^{3,5}, Jian Huang^{1,5}, and Nieng Yan^{1,2,5}

¹Institute of Bio-Architecture and Bio-Interactions (IBABI), Shenzhen Medical Academy of Research and Translation, Guangming District, Shenzhen 518107, Guangdong, China

²Beijing Frontier Research Center for Biological Structures, State Key Laboratory of Membrane Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China


³Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China

⁴These authors contribute equally.


⁵To whom correspondence should be addressed: Nieng Yan (<u>nyan@tsinghua.edu.cn</u>), Jian Huang (<u>huangjian@smart.org.cn</u>), Chen Song (<u>c.song@pku.edu.cn</u>), and Xiao Fan (<u>xfan@smart.org.cn</u>).

The PDF file includes:

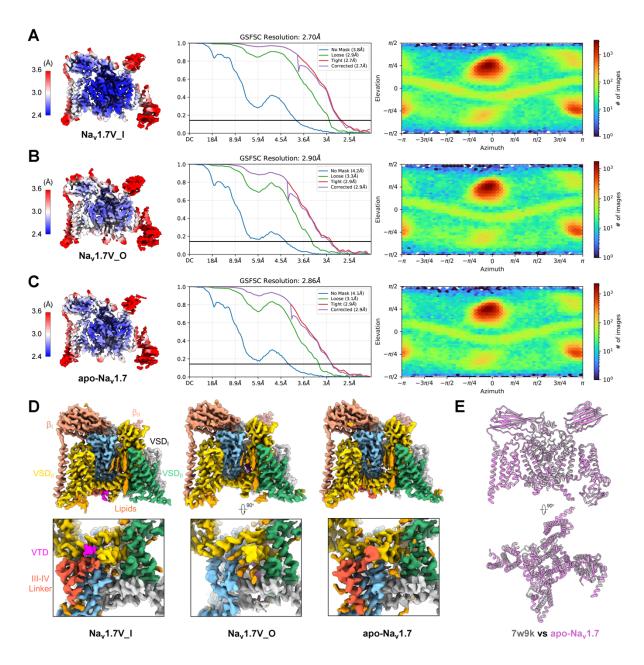

Figures S1 to S7 Tables S1 to S5 Movies S1

Figure S1 | **Functional characterization of veratridine modulation on human Na_v1.7.**(A) Voltage-dependent activation curves and (B) steady-state inactivation curves of Na_v1.7 recorded at varying concentrations of veratridine. (C) Representative current traces showing voltage-dependent activation (top) and steady-state inactivation (bottom) of Na_v1.7 in the presence of veratridine at the indicated concentrations. Insets show the corresponding recording protocols.

Figure S2 | **Cryo-EM data processing workflow.** A representative raw micrograph and corresponding 2D class averages are shown. Details are provided in *Materials and Methods*.

Figure S3 | Cryo-EM analysis of the Na_v1.7-VTD complex reveals three distinct classes. (A-C) Local resolution estimations (*left*), gold-standard Fourier shell correlation (GSFSC) curves (*middle*), and angular distributions (*right*) for (A) classes Na_v1.7V_I, (B) Na_v1.7V_O, and (C) apo-Na_v1.7, respectively. (D) Overall cryo-EM 3D reconstructions (*top*) and corresponding zoomed-in views of the intracellular gate (*bottom*), highlighting the distinct ligand-binding features in each class. (E) Structural superposition revealed that the apo-Na_v1.7 class closely matches the previously reported apo structure (PDB: 7w9k), with an RMSD of 0.60 Å over 1,235 Cα atoms.

Fan et al.

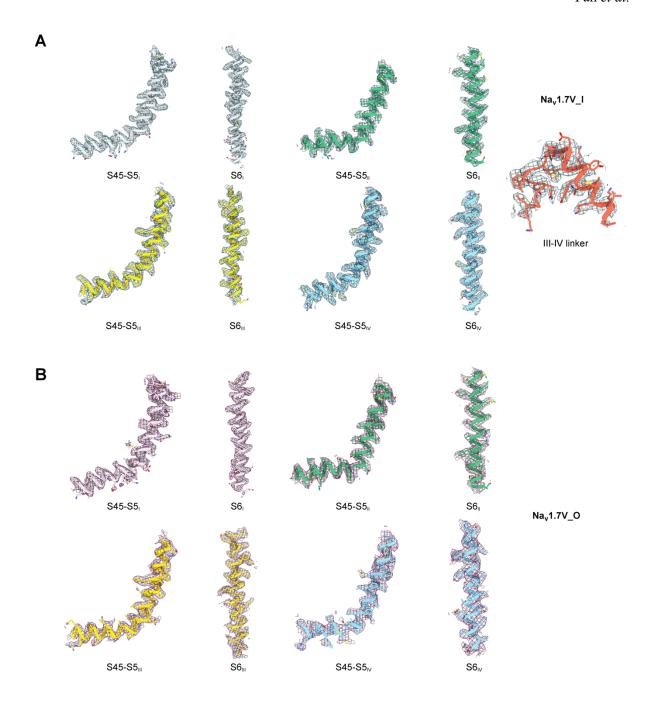


Figure S4 | Local cryo-EM densities of the $Na_v1.7$ -VTD pore domains. Local cryo-EM densities of the pore-domain helices are shown for (A) $Na_v1.7V_I$ class, and (B) $Na_v1.7V_O$ class, each exhibiting well-resolved features that corroborate the reconstructed maps and corresponding atomic models.

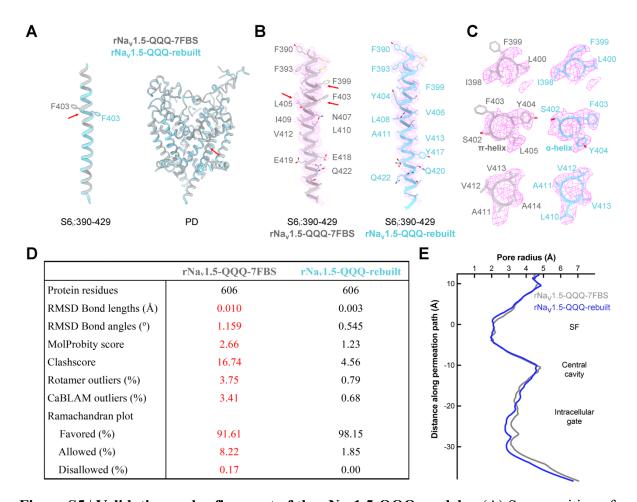


Figure S5 | Validation and refinement of the rNa_v1.5-QQQ model. (A) Superposition of the original (PDB:7FBS, grey) and rebuilt (cyan) pore-domain structures of rNa_v1.5-QQQ. The most significant change is the rebuilt α-helix spanning residues 400-403 within the S6_I segment (*left*). Red arrows indicate the origin of the assignment error. (B) Model-to-density fit for the original and rebuilt rNa_v1.5-QQQ S6_I segments within the deposited EM map (EMD-31519). Red arrows highlight examples of poorly fitted side chains in the original model that were corrected during refinement. (C) Close-up views of the S6_I helix fit at each turn. The rebuilt model (cyan) shows improved density agreement, supporting an α-helical conformation at Phe403 instead of the previously assigned π-helix. (D) Quantitative metrics of model validation support the improved quality of the refined model. (E) Ion permeation path analysis indicates subtle alterations to the conduction path in the refined model compared to the original structure.

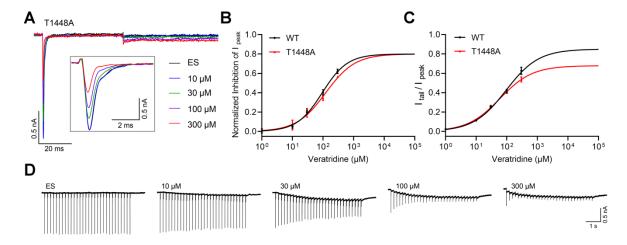
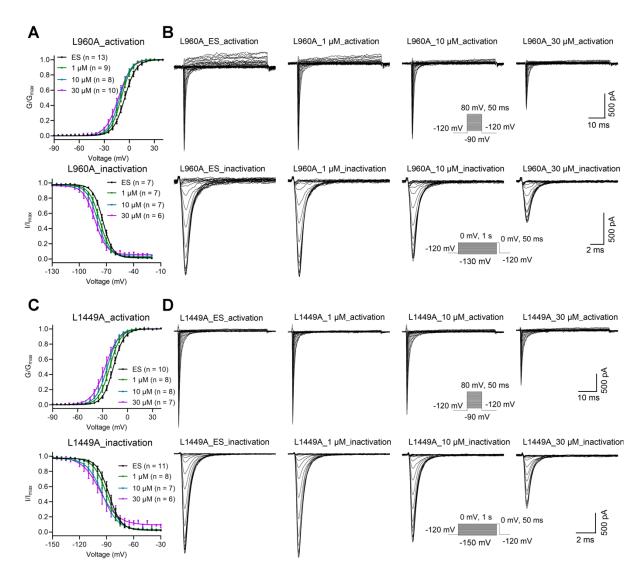



Figure S6 | Functional characterizations of veratridine modulation on hNa_v1.7-T1448A. Single point mutation T1448A does not influence VTD-mediated Na_v1.7 modulation. (A) Representative traces for the measurement of VTD on Na_v1.7-T1448A currents. The protocol is the same as for the WT channel. Cells were held at –120 mV and depolarized to a test pulse to 0 mV for 50 ms. An enlarged view of the peak current is shown in the inset. (B) Concentration-response relationships for VTD-mediated peak current inhibition of Na_v1.7-T1448A compared to Na_v1.7-WT. (C) Concentration-response relationships for VTD-evoked accumulated tail current of Na_v1.7-T1448A compared to Na_v1.7-WT. (D) Representative traces illustrating the use-dependent modulation of VTD on Na_v1.7-T1448A, evoked by a 5-Hz train stimulation (30 pulses of 5-ms duration from –120 mV to 0 mV). The effect is also close to that on Na_v1.7-WT.

Figure S7 | **Functional characterizations of veratridine modulation on hNa_v1.7-L960A** and L1449A. Voltage-dependent activation curves (*top*) and steady-state inactivation curves (*bottom*) of (**A**) Na_v1.7-L960A and (**C**) Na_v1.7-L1449A recorded under varying concentrations of veratridine. Representative current traces illustrating voltage-dependent activation (*top*) and steady-state inactivation (*bottom*) of (**B**) Na_v1.7-L960A and (**D**) Na_v1.7-L1449A in the presence of veratridine at the indicated concentrations. Inserts are the recording protocols.

Table S1 | Parameters of the concentration-response relationships for veratridine-mediated inhibition of peak currents in $hNa_v1.7$ variants.

Parameters	WT		L960A		T1448A		L1449A	
IC ₅₀ (μM)	92.66 ± 18.41		27.56 ± 2.30 ****		122.6 ± 27.14		15.68 ± 0.97 ****	
P	/		< 0.0001		0.6044		< 0.0001	
k (mV)	1.06 ± 0.18		1.53 ± 0.20		0.91 ± 0.31		1.61 ± 0.17 *	
P	/		0.0708		0.5278		0.0335	
Тор	0.80 ± 0.11		0.92 ± 0.04		0.80 ± 0.30		0.94 ± 0.02	
P	/		0.4049		0.9369		0.3253	
[VTD]	Mean ± SEM	n	Mean ± SEM	n	Mean ± SEM	n	Mean ± SEM	n
1 μΜ	0.005 ± 0.021	13	-0.016 ± 0.024	10	/	/	0.033 ± 0.025	9
10 μΜ	0.052 ± 0.017 17		0.158 ± 0.036	10	0.066 ± 0.051	2	0.302 ± 0.034	10
30 μΜ	0.201 ± 0.021	16	0.495 ± 0.030	11	0.193 ± 0.045	2	0.700 ± 0.022	10
100 μΜ	0.405 ± 0.028	15	0.799 ± 0.020	10	0.344 ± 0.024	2	0.886 ± 0.012	8
300 μΜ	0.620 ± 0.023	15	0.907 ± 0.007	7	0.565 ± 0.002	2	0.936 ± 0.005	8

*P < 0.05, ****P < 0.0001 versus $Na_v1.7$ -WT. The extra sum-of-squares F test was used to compare the IC_{50} , slope factor (k) and top of concentration-response curves. Each data point represents mean \pm s.e.m (standard deviation of mean), and n denotes the number of independently recorded cells.

Table S2 | Parameters of the concentration-response relationships for veratridine-mediated enhancement of accumulated tail currents in $hNa_v1.7$ variants.

Parameters	WT		L960A		T1448A		L1449A		
EC ₅₀ (μM)	95.44 ± 16.65	2			53.87 ± 12.20				
P	/				0.6747				
k (mV)	0.82 ± 0.12		,		0.86 ± 0.14		,		
P	/	/				0.9175		/	
Тор	0.85 ± 0.12				0.66 ± 0.07				
P	/				0.3194				
[VTD]	Mean ± SEM	n	Mean ± SEM	n	Mean ± SEM	n	Mean ± SEM	n	
0 μΜ	0.013 ± 0.004	18	0.015 ± 0.002	13	0.017 ± 0.005	2	0.021 ± 0.005	10	
1 μΜ	0.023 ± 0.004	10	0.021 ± 0.002	10	/	/	0.038 ± 0.010	9	
10 μΜ	0.112 ± 0.006	12	0.067 ± 0.008	11	0.118 ± 0.007	2	0.055 ± 0.007	10	
30 μΜ	0.252 ± 0.011	13	0.127 ± 0.006	11	0.256 ± 0.014	2	0.136 ± 0.018	6	
100 μΜ	0.416 ± 0.019	13	,		0.406 ± 0.012	2	,		
300 μΜ	0.626 ± 0.037	11	/		0.536 ± 0.027	2	/		

The extra sum-of-squares F test was used to compare the IC₅₀, slope factor (k) and top of concentration-response curves. Each data point represents mean \pm s.e.m (standard deviation of mean), and n denotes the number of independently recorded cells.

Table S3 \mid Parameters of voltage-dependent activation of hNa_v1.7 variants with and without veratridine.

	Parameters	ES	1 μΜ	10 μΜ	30 μΜ	100 μΜ	300 μΜ	
	$V_{1/2}$ (mV)	-17.21 ±	-21.77 ±	-24.50 ±	-26.45 ±	-28.93 ±	-31.68 ±	
		0.21	0.34 ****	0.21 ****	0.30 ****	0.37 ****	0.50 ****	
	P	/	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	
WT	k (mV)	7.00 ±	6.84 ±	6.17 ±	6.68 ±	7.03 ±	8.46 ±	
	K (III V)	0.18	0.29	0.18 **	0.26	0.31	0.43 ***	
	P	/	0.5992	0.0013	0.2959	0.9420	0.0004	
	n	16	10	13	12	12	12	
	$V_{1/2}$ (mV)	-5.449 ±	-9.642 ±	-11.40 ±	-12.94 ±			
		0.3097 ****	0.2729 ****	0.3363 ****	0.4201 ****			
	P	< 0.0001	< 0.0001	< 0.0001	< 0.0001			
L960A	L960A	6.877 ±	6.400 ±	6.678 ±	7.746 ±	/		
		0.2643	0.2344	0.2880	0.3606 *			
	P	0.3531	0.1990	0.6259	0.0496			
	n	13	9	8	10			
	T. (T.)	-16.96 ±	-21.31 ±	-24.22 ±	-26.78 ±			
	$V_{1/2}$ (mV)	0.24	0.36 ****	0.41 ****	0.55 ****			
L1449A	P	0.8391	< 0.0001	< 0.0001	< 0.0001			
	k (mV)	6.43 ±	6.66 ±	6.86 ±	8.13 ±	,	/	
		0.21 **	0.31	0.35	0.47 ***			
	P	0.0090	0.5218	0.2658	0.0002			
	n	10	8	8	7			

P < 0.01, **P < 0.0001 versus $Na_v1.7$ -WT on the condition of external solution (ES). **P < 0.01, ***P < 0.001, ****P < 0.0001 versus the corresponding variant of $Na_v1.7$ on the condition of external solution. The extra sum-of-squares F test was used to compare the $V_{1/2}$ and slope factor (k) of activation. Each data point represents mean \pm s.e.m (standard deviation of mean) and n is the number of independently recorded cells.

Table S4 | Parameters of voltage-dependent steady-state inactivation of hNa_v1.7 variants with and without veratridine.

	Parameters	ES	1 μΜ	10 μΜ	30 μΜ	100 μΜ	300 μΜ
	V _{1/2} (mV)	-75.29 ±	-78.51 ±	-79.28 ±	-80.39 ±	-83.69 ±	-85.54 ±
		0.23	0.40 ****	0.36 ****	0.36 ****	0.42 ****	0.53 ****
	P	/	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001
WT	1- (m.V)	-6.06 ±	-6.41 ±	-6.54 ±	-6.42 ±	-6.83 ±	-6.63 ±
	k (mV)	0.20	0.35	0.32	0.32	0.37 *	0.47
	P	/	0.3524	0.1792	0.3115	0.0488	0.2136
	n	19	11	14	14	13	9
	V (mV)	-73.91 ±	-77.26 ±	-79.83 ±	-82.73 ±		
	$V_{1/2}$ (mV)	0.2360 ***	0.3081 ****	0.3592 ****	0.5390 ****		
	P	0.0004	< 0.0001	< 0.0001	< 0.0001		
L960A	1 (17)	-5.509 ±	-5.977 ±	-6.047 ±	-6.372 ±	ı	/
	k (mV)	0.2061	0.2700	0.3154	0.4740		
	P	0.1106	0.1700	0.1483	0.0683		
	n	7	7	7	6		
	V (mV)	-87.29 ±	-89.96 ±	-94.78 ±	-97.19 ±		
	$V_{1/2}$ (mV)	0.50 ****	0.81 **	0.97 ****	1.72 ****		
	P	< 0.0001	0.0037	< 0.0001	< 0.0001		
L1449A	k (mV)	-6.73 ±	-7.45 ±	-8.59 ±	-10.14 ±	ı	/
		0.44	0.72	0.88 *	1.57 **		
	P	0.1216	0.3697	0.0405	0.0058		
	n	11	8	7	6		

P < 0.001, *P < 0.0001 versus $Na_v1.7$ -WT on the condition of external solution (ES). *P < 0.05, **P < 0.01, ****P < 0.0001 versus the corresponding variant of $Na_v1.7$ on the condition of external solution. The extra sum-of-squares F test was used to compare the $V_{1/2}$ and slope factor (k) of inactivation. Each data point represents mean \pm s.e.m (standard deviation of mean) and n is the number of independently recorded cells.

Table S5 \mid Statistics for cryo-EM data and structural refinement.

	Na _v 1.7V_I	Na _v 1.7V_O
Data collection and processing	5	
Magnification	105,000	105,000
Voltage (kV)	300	300
Electron dose (e-/Ų)	50	50
Defocus range (µm)	-1.2~-1.6	-1.2~-1.6
Pixel size (Å)	1.114	1.114
Symmetry	C1	C1
Total good particle	631,118	631,118
Final particles	335,177	133,758
Map resolution (Å)	2.7	2.9
FSC threshold	0.143	0.143
Refinement		
Map sharpening B factor	103.9	101.6
$(Å^2)$		
Model composition		
Non-hydrogen atoms	13,103	12,531
Protein residues	1,538	1,472
Ligands	26	25
B factors ($Å^2$)		
Protein	65.92	99.95
Ligand	110.59	116.04
R.m.s deviations		
Bond lengths (Å)	0.003	0.002
Bond angles (°)	0.527	0.499
Validation		
MolProbity score	1.39	1.37
Clashscore	7.15	6.80
Rotamer outliers (%)	0.22	0.08
CaBLAM outliers (%)	0.80	0.77
Ramachandran plot		
Favored (%)	98.69	98.69
Allowed (%)	1.31	1.31
Disallowed (%)	0.00	0.00

Movie S1 | Proposed mechanism of fast inactivation in Na $_{v}$. The movie presents a morph from the open-state structure (Na $_{v}$ 1.7 $_{-}$ 0) to the inactivated state (PDB: 7W9M).