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18 Abstract

19  Both natural and directed evolution are powerful in improving protein functions but they are slow
20  inexploring the nearly endless sequence space. Here, we present SPIN-dvEvo that couples few-shot
21 low-rank adaptation (LoRA) of an ESM-2 protein language model with a genetic algorithm to
22 quickly evolve functional remote homologs from a local cluster of highly-homologous, binary-
23 labeled sequences. We experimentally tested SPIN-dvEvo on an enzyme (the core deaminase
24 component of adenine base editors, TadA) and an intrinsically disordered protein (antitoxin CcdA).
25  In TadA, virtually evolved sequences with low sequence identity to the starting sequences achieved
26  a 38% success rate (23/60) in the first round and a 51% success rate along with a one-order-of-
27  magnitude improvement in enzymatic activity in the second round, for which SPIN-dvEvo was
28  retrained on first-round labels. Virtual evolution of the disordered protein CcdA was also successful,
29  albeit at low success rate of 2.6%. Thus, SPIN-dvEvo can simulate billions of years of evolution

30  injust minutes, rapidly creating new functional clusters.

31 Introduction

32 Directed evolution is a central strategy for engineering functional proteins, enabling stepwise
33 improvement of enzymes and binders directly in the laboratory through iterative cycles of
34  mutagenesis, selection, and amplification. It has produced catalysts with enhanced activity, altered
35 specificity, and improved stability for applications ranging from therapeutics to industrial
36  biocatalysis" 2. Despite these successes, both natural and laboratory evolution remain intrinsically
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37  constrained by the locality of accessible mutational steps: most variants that can be efficiently
38  sampled and screened in practice differ from their progenitors by only a small number of
39  substitutions®, and optimization therefore proceeds as a “local walk” on a rugged fitness landscape®.
40  Because protein function is shaped by epistasis and higher-order constraints, such local searches can
41 become trapped on suboptimal peaks, leaving distant but potentially functional better-fitness regions
42 of sequence space systematically underexplored® *. While deep mutational scanning and deep
43 sequencing expanded access to large-scale sequence—function measurements >, they were also
44 largely limited to local sequence space.

45

46  More recently, directed virtual evolution has emerged as a sequence-first alternative that learns
47  surrogate fitness landscapes from sequence—function data and improves sequences by in silico
48  search. Early work established probabilistic surrogate modeling, with Gaussian processes trained on
49  measured activities to guide navigation of fitness landscapes.®? In parallel, structure-first pipelines
50  such as AICE integrate inverse-folding models with structural and evolutionary constraints to
51  propose fold-compatible variants when reliable templates are available.'’ These approaches for
52 directed virtual evolution can be grouped by how they obtain supervision and how far they can
53  reliably search. One class relies on regression-style predictors trained on quantitative measurements
54  (activity, fitness, binding, or other continuous phenotypes). These methods include deep supervised
55  models or protein language models (PLM) with evolutionary context and active-learning pipelines
56  for multi-round optimization such as ECNet!! and EVOLVEpro'?, active-learning evolution of
57  artificial metalloenzymes by Vornholt and colleagues'’, iterative deep-learning—guided directed
58  evolution described by Li and colleagues'®, and Active Learning-assisted Directed Evolution
59  (ALDE) by Yang et al.'® A second class focuses on improving label efficiency, exemplified by Low-
60 N protein engineering, which trains data-efficient predictors from small labeled sets and then screens
61 large virtual libraries. '® A third class formalizes “design—test-learn” iteration and can be coupled to
62  automated platforms or biofoundries for higher-throughput cycles, exemplified by the STAR web

63  server'’

and biofoundry-integrated PLM workflows for automated protein evolution.'® Despite
64  substantial gains in these systems, the learned surrogates continue to be most reliable near the
65 starting scaffold. That is, the search remains implemented as local exploration (for example, small-
66  step mutation moves, Bayesian optimization, or iterative screening) rather than sampling remote,
67  low-identity functional sequences directly.

68

69  Another limitation of the above methods is their reliance on strong, quantitative supervision. Many
70 successful workflows train regression-style surrogate landscapes on continuous activity
71 measurements, kinetic readouts, or well-calibrated phenotypes, often requiring hundreds to
72  thousands of assayed variants per round to achieve predictive accuracy that is sufficient to guide
73 search.!*14 1619 When the available signal is weaker—binary functional labels or enrichment
74  counts from pooled selections—performance can degrade because the training objective becomes
75  less informative per variant and experimental noise from low counts and sampling variance becomes
76  a dominant factor that must be modeled carefully.® 7% In practice, this data requirement can be the
77  primary bottleneck early in a campaign, when only a small number of positives exist and quantitative
78  characterization is costly or not yet available.

79

80  Here we introduce SPIN-dvEvo (Sequence Prediction with Integrated Neural networks — directed
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81 virtual Evolution), a directed virtual evolution framework that unifies discovery and multi-round
82  refinement in a single, sequence-first, low-data workflow. In contrast to conventional generative
83  models that necessitate vast functional datasets, SPIN-dvEvo maintains high precision in label-
84  scarce regimes by harnessing the evolutionary priors embedded within ESM-2'® and fine-tuning its
85  trajectory through lightweight LoRA.?! The resulting model was employed as a scorer for directed
86  virtual evolution powered by a genetic algorithm. SPIN-dvEvo was applied to virtually evolve TadA
87  adenosine deaminase activity and the intrinsically disordered antitoxin CcdA. In both systems, only
88  sparse binary functional labels were used to train a LoRA-based activity scorer on a frozen ESM-2
89  encoder, and candidate sequences were then generated by iterative mutation—crossover search
90  guided by the fixed scorer, with additional feedback round performed for TadA by updating the
91  LoRA head with newly obtained experimental labels. Experimental results confirmed the ability of
92  SPIN-dvEvo to quickly evolve from a local cluster of a few highly homologous sequences to remote
93  functional clusters.

94

95 Results

96 Directed virtual evolution by SPIN-dvEvo
97  The SPIN-dvEvo framework consists of two tightly coupled components: (i) a LoRA-adapted ESM-
98 2 scoring model that trained task-specific functional scores using a small set of positive and negative
99  sequences, and (ii) a genetic algorithm (GA) that directs sequence sampling and virtual evolution
100  under this learned landscape. Each run starts from an initial seed pool generated by applying 20%
101 random substitutions to the starting sequences. Here, SPIN-dvEvo was fine-tuned using only
102 qualitatively labeled sequences with binary activity labels (1 for active, 0 for inactive) (Fig. 1).
103

104  Directed virtual evolution from the neighborhood of an enzyme: TadA

105  To evaluate the enzyme-evolution capability of SPIN-dvEvo, we selected the tRNA-specific
106  adenosine deaminase TadA as our model enzyme. TadA, originally evolved to target tRNA, has been
107  engineered into adenine base editors that catalyze A*T—Ge+C conversions in DNA?. This system
108  utilizes an R67 DHFR-based codon reversion reporter to rapidly detect the intracellular DNA-
109  editing activity of evolved TadA variants, as in prior studies* ?*. In this codon reversion assay, an
110 active variant reverts a premature TAG stop codon to TGG in the reporter, enabling growth under
111 trimethoprim (TMP) selection (Fig. 2A). We quantified intracellular DNA-editing activity as the
112 mutation frequency f = N; / No—the number of TMP-resistant revertants (N; ) divided by the total
113 number of viable cells plated without TMP (Ng)—and converted it into uspy, (per base per
114  generation; See Methods).

115

116 ~ We compiled a compact set of 10 TadA sequences spanning the wild type from E. coli (UniProt ID
117  P68398) (Supplementary Table S1) and previously engineered active variants from E. coli with 6-
118 20 mutations, (>88.6% sequence identity) and labeled all these sequences as 1. That is, we started
119  with a sequence cluster of close functional neighbors. An equal number of 10 hypothetical inactive
120  sequences were obtained by performing random mutations at 20% of positions in these TadA
121 sequences (See Methods).

122
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123 We then employed SPIN-dvEvo to produce (evolved virtually) 1,000 sequences by starting from the
124 inactive sequences pool (20% random mutations). We confirmed that such virtual evolution started
125  from a tightly clustered sequence region (in red) and quickly expands to other regions according to
126 the t-SNE projection of ESM-2 sequence embeddings (Fig 2B).

127

128  To examine whether the TadA function was preserved during the virtual evolution, we obtained
129 sequence logos from 1000 natural TadA homologs compiled as in Ref ?° with a median sequence
130  identity of 34.1% and compared them to sequence logos from 1000 evolved sequences (median
131 identity 55.8%) in Fig 2C. The sequence motifs found previously®® in the TadA family such as HAE
132 and PCXXC zinc-dependent deaminase motifs and structural-core signatures EVP and TLE were
133 also conserved in the evolved sequences while allowing substantial variation elsewhere. Thus,
134 essential sequence information preserved in the natural sequences evolved over billions of years
135 was captured by SPIN-dvEvo in a short 12 minutes of computing time with AMD EPYC 9654/ RTX
136 4090 (24 GB) starting from a local sequence cluster around E. coli TadA.

137

138 As protein structures play an essential role in enzymatic functions, we predicted structures of these
139  evolved sequences and compared them to the structure of wild-type TadA (PDB ID:2B3J). We
140  employed PLM-based OmegaFold*’ to make predictions because it does not require homologous
141 sequences for input, and therefore permits fast, large-scale calculations for all 1000 evolved
142 sequences. We obtained the distribution of structural accuracy (measured by TM-score®, 1 for
143 perfect match and 0 for no match) for predicted structures of those evolved SPIN-dvEvo sequences
144 and compared it to two baseline models PLM-based sequence generators Pinal*** and structure-
145  based protein-design method ProteinMPNN3!, ProteinMPNN employed a native structure template;
146  Pinal was prompted with a natural-language TadA functional description (adenosine
147  deaminase/base-editor context; EC 3.5.4.33) together with the wild-type TadA sequence (Methods).
148  The results show that most evolved sequences given by SPIN-dvEvo adopted near-native structures
149  (TMscore ~0.8, 89.6% sequences with TM-score>0.5), and was only slightly worse than the
150 structure-based method ProteinMPNN (TMscore ~0.95) (Fig. 2D). The baseline sequence-based
151 method Pinal shows a bimodal TM-score distribution, with one major peak at low TM-scores (~0.2—
152 0.3, 53.9% sequences with TM-score<0.5) and another in the near-native range (~0.8-0.9),
153  indicating a mixture of largely off-fold sequences and a smaller subset that retains the TadA fold.
154  An example of a predicted structure for a SPIN-dvEvo sequence is compared to the native structure
155  in Supplementary Fig. 1, highlighting near-perfect match, particularly in the regions interacting
156  with a DNA substrate and near catalytic core.

157

158  We further selected 60 evolved sequences to validate their enzymatic functions experimentally with
159  the R67 DHFR-based codon reversion assay (Fig. 2A). These 60 sequences were selected from the
160  above 1000 evolved sequences according to the high structure-confidence scores (normalized
161  pLDDT> 0.9 given by AlphaFold 3°? with a single natural MSA to save computing time) and low
162  sequence identity (<0.5) to the wild type (as shown in Fig. 2E). Functional validation identified 23
163 active variants out of 60 tested (38.3% success rate). Activities spanned more than three orders of
164  magnitude, with several variants matching or exceeding the reference activity of E. coli TadA (Fig.
165  2F, Supplementary Fig. 2 A, Table S3, Table S4). More importantly, these individually validated
166  functional sequences span 39-79% amino-acid identity to the E. coli TadA wild type, confirming
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167  the ability of SPIN-dvEvo to find functional solutions by going significantly beyond the immediate
168  neighborhood of the starting sequences within the identity neighborhood of >88% E. coli TadA (Fig.
169  2E).

170

171 Given 60 newly experimentally tested sequences, we re-trained the LoRA model with the enlarged
172 binary-labelled dataset and performed sequence evolutions again by GA. The newly 1000 evolved
173 sequences (Round II) are now forming new sequence clusters (Fig. 2B). The TMscore distribution
174  of predicted structures for the second-round sequences improves over that of the first round. All
175  predicted structures (100%) are now with TMscore > 0.78 and the highest peak located at TMscore
176  of 0.88, compared to 0.80 in the first round (Fig. 2D). We tested 60 new variants chosen according
177  to high AlphaFold 3's pLDDT and low sequence similarity. In this second round, 31 of 60 new
178  variants were active. The higher success rate in Round II than in Round I (51% versus 38.3%)
179  indicates that incorporating new experimental labels with definitive inactive sequences improved
180  the classifier-guided evolution (Supplementary Fig. 2B, Table S3, Table S5). Moreover, the
181 measured activity for the functional sequences in the second round shifted upward relative to the
182  first-round actives by one order of magnitude (Fig. 2F). These validated evolved sequences in
183  Round II are more divergent from wild type (29-54% identity, compared to 39-79% in the first
184  round; Fig. 2E), confirming the formation of new functional clusters with improved activity (Fig.
185  2B). This is remarkable considering the fact that only binary labels were employed to train SPIN-
186  dvEvo.

187

188 A few selected variants are illustrated along with positive and negative controls by plating on TMP-
189  selective medium (dvTadA-55 and dvTadA-56 from round 1; dvTadA-2-02 from round 2). These
190  evolved sequences produced markedly more TMP-resistant colonies than the negative control of
191 expressing only an Xten linker-T7RNAP cassette in place of TadA and thus lacking deaminase
192 activity and were comparable to the positive control (E. coli TadA) (Fig. 2G), consistent with robust
193 in vivo editing activity.

194

195  Directed virtual evolution of intrinsically-disordered binder: anti-toxin CcdA

196

197  To test whether SPIN-dvEvo can generalize beyond enzymes with well-defined structures to
198  intrinsically disordered binding proteins, we applied it to the CcdA—CcdB toxin—antitoxin system.
199  In E. coli, the antitoxin CcdA is a 72-residue protein. Here we only engineered its C-terminal
200  segment (CcdA®¢ 7% 36 residues), which mediates binding to CcdB and thereby blocks CcdB
201  binding to GyrA to neutralize toxicity®®>. This 36-residue C-terminal domain is intrinsically
202  unstructured prior to binding to CcdB* 34, We started from the canonical E. coli CcdA (P62552),
203  retrieved CcdA family homologs from closely related Enterobacterales/ Gammaproteobacteria,
204  removed incomplete or atypical entries as well as those sequences at 100% sequence identity cutoff.
205  This yielded 22 close homologs (Supplementary Table S2) at 55.2-97.2% sequence identity. A
206  LoRA head on a frozen ESM-2 encoder was fine-tuned on this curated set and then coupled to the
207  GAto generate candidate binders, without introducing any CcdB sequence or structural information
208  during training or sampling. We chose this CcdA-CcdB system because bacterial growth is
209  directly correlated to the ability of the CcdA evolved by SPIN-dvEvo to bind and neutralize CcdB,
210  enabling straightforward functional selection (Fig. 3A).
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211

212 As in the TadA case, we evolved 1000 CcdA variants by SPIN-dvEvo. As shown in Fig 3B, these
213 sequences moved far away from the original sequence cluster and formed multiple clusters
214  according to the t-SNE projections of the base ESM-2 embeddings. When we generated the
215 sequence-logo from SPIN-dvEvo sequences (with a median sequence identity of 50.2%), it has
216  similar sequence motifs as those from 100 natural homologs collected by querying the canonical
217 ‘Antitoxin CcdA’ and filtering to a non-redundant set with a median sequence identity of 38.7%
218  from UniProtKB, suggesting that key binding determinants preserved such as W44, E54,>5 G63,
219  S64, F65, D71 and W72%¢ 3"(Fig. 3C, blue box) in natural CcdA homologs were captured during
220  virtual evolution by SPIN-dvEvo, despite that it was started from a highly local seed set.

221

222 To test those sequences experimentally, we synthesized a library of 3,041 evolved CcdA variants
223 and evaluated them using a pooled bacterial growth selection, because the ability for the bacterium
224 to grow is correlated to the ability of the evolved CcdA to neutralize CcdB by binding (Fig. 3A).
225  Thatis, the fitness of activity of CcdA variants can be measured by counting the number of a specific
226  variant pre- and post-selections from high-throughput sequencing®® (Fig. 3A). We estimated

227  enrichment and uncertainty with the DiMSum pipeline 3°4°

with Poisson—Delta variance modeling
228  and overdispersion correction. Among 3,041 synthesized CcdA variants, only 2,363 variants were
229  found with >30 reads and a minimum frequency of 10~%in both the pre-selection and post-selection
230  libraries from high-throughput-sequencing data. Further application of an FDR-controlled filter
231 relative to internal stop-codon negative controls of g_value < 1073 yielded 155 statistically
232 significant functional variants (a 6.6% hit rate). We further employed an effect-size threshold to
233 define more robust positives as those variants with log , (fitness) > 3.0, resulting in 62 active CcdA
234 variants (a 2.6% hit rate, Fig. 3D). These variants contain 26 with log , (fitness) > 5 and some
235  comparable to the fitness of E. coli CcdA (log ,(fitness) = 8.5).

236

237  To validate the above high-throughput result, we selected four variants around the stringent
238  threshold of 3.0 with log ,(fitness) = 3.3, 3.3, 3.2, and 3.0, respectively, along with two positive
239  controls E. coli CcdA and an evolved variant with log , (fitness) =5.3 for in vivo functional testing
240  (Supplementary Table S7). As shown in Fig. 3E by serial 10-fold dilution spot assays, we
241 confirmed that all variants with log , (fitness)> 3.0 are functional and the variant 878 with a larger
242  fitness value has stronger growth. In particular, the variant 1654 with log ,(fitness) = 3.0 showed
243 weak growth only at the dilution factor of 102 It is noted that sequences with log , (fitness) > 3.0
244 retained only ~60—70% sequence identity to the E. coli CcdA (Supplementary Fig. 3), indicating
245 substantial novelty among functional hits, given that only 36 residues were targeted for virtual
246  evolution.

247

248  Discussion

249

250  SPIN-dvEvo directly addresses a practical gap in current directed virtual evolution: most existing
251 methods either require substantial labelled datasets to optimize a single scaffold locally, or function
252 as one-shot generators whose sequences are not coupled to an explicit score-and-search loop that
253 can be iterated with newly acquired labels. In contrast, SPIN-dvEvo mimics natural evolution by
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254  employing a LoRA adaptor on the top of a frozen ESM-2 encoder to learn functional restraints. We
255 showed that the functional restraints learned from a few dozen positive, binary-labeled samples of
256  a highly homologous sequence cluster are sufficient to drive virtual evolution from dysfunctional
257  sequences to functionally active proteins that are substantially away from original positive
258  sequences by using a genetic algorithm. Some of these sequences, despite low sequence identity,
259  are experimentally validated for their functions on two illustrative cases: enzymatic activity (TadA
260  adenosine deaminase) and toxin-binding intrinsically disordered protein CcdA.

261

262  For virtual evolution of TadA enzyme, no structural information of was used to train SPIN-dvEvo
263  and to drive evolution. Yet most evolved TadA variants have TadA structural folds (Fig 2D,
264  Supplementary Fig. 1) in the first round (89.7% of sequences with predicted structural
265  accuracy >0.5 in TMscore). A minor peak with TMscore<0.5 in the first round was eliminated after
266  including experimental results from 60 variants (still in binary coding). The improved structural
267  similarity to the wild type highlights the importance of a larger and cleaner dataset because in the
268  first round, negatives represented by 20% random mutations may not be negatives. Interestingly, the
269  second-round success rate increased from 38% to 51% along with a one-order-of-magnitude
270  improvement in enzymatic activity, indicating that adding new experimental labels can improve
271 classifier-guided search even for enzymatic activity, despite lacking quantitative labels.

272

273 We have selected sequences with high confidence in predicted structures for experimental
274  validations. The high (38% in Round I) but not yet >90% success rate for TadA's virtual evolution
275  illustrates that the structural fold alone is not sufficient as an indicator of enzymatic activity. This is
276  because enzyme function not only requires highly precise active-site geometry and transition-state
277  stabilization, but also depends on compatible conformational dynamics and kinetics that enable
278  efficient substrate binding and product release on a productive timescale.*'"** More studies are
279  needed to search for a better activity indicator as well as improving scoring for virtual evolution of
280  enzymes.

281

282  SPIN-dvEvo evolved functional TadA starting from a 20% randomly mutated (inactive) seed. We
283  kept starting sequences close to the TadA family where the LoRA scorer remains informative. We
284  also tried to start from fully random sequences and found that evolution from these sequences is not
285  productive according to analysis of their predicted structures. This indicates that the sequence space
286 s too large to be located by starting from purely random sequences within practical GA generations.
287  Nevertheless, it can start from one neighborhood of an active sequence to locate other
288  neighborhoods far away from the original sequence cluster as shown in Fig. 2B and Fig 3B.

289

290  However, the success rate of SPIN-dvEvo for a disordered protein CcdA is only 2.6%. This is much
291 lower than virtual evolution of TadA enzyme. Designing an intrinsically disordered protein is a
292  challenging task because activity is typically encoded in an ensemble of rapidly interconverting
293  conformations and mediated by weak, context-dependent interactions, so improvements in fold
294  stability or a single “best” structure provide little guidance. Recent progress has come from
295  explicitly optimizing ensemble-level objectives, for example by using sequence-to-ensemble
296  predictors for IDRs and by combining generative models with biophysical/simulation-based
297  forward models to design sequences that realize targeted disordered-state properties, as well as from
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298  diffusion-based binder design strategies that focus the objective on functional binding constraints
299  rather than enforcing an ordered fold.** Here, we achieved a success (albeit low success rate) without
300  relying on any information from binding partner CcdB or predicted complex structures.

301

302 Itis of interest to know how new functional clusters would have been evolved naturally if they were
303  mixed with natural homologs when building phylogenetic trees(see SI). As shown in Fig. 4A and
304  Fig. 4B, both virtually evolved TadA and CcdA are forming several phylogenetically distinct
305  clusters but do share common ancestors with naturally occurring sisters at different time points. For
306  TadA, this split corresponds to an evolutionary timescale on the order of ~0.2—1.2 Ga, based on
307  TimeTree-derived lineage-age estimates for these taxa*>*’. Similarly, the estimates for the virtually
308  evolved CcdA clade dating to approximately 2.508 Ga as diverging from a Gammaproteobacteria-
309  associated branc. By comparison, these virtual evolutions took only 713 seconds for TadA and 761
310  seconds for CcdA by SPIN-dvEvo on a workstation equipped with an AMD EPYC 9654 (96-core,
311 2.4 GHz) CPU and an NVIDIA RTX 4090 GPU (24 GB).

312

313 SPIN-dvEvo was purposefully trained on binary-labeled sequences (1 for functional and 0 for
314  nonfunctional). This is because most proteins with known functions do not have a quantitative
315  functional label. One immediate improvement for SPIN-dvEvo is to employ a regression head,
316  rather than a classification head, when quantitative functional data such as a fitness score, binding
317  affinity, or enzymatic activity is available for a small dataset. A regression head would contain a
318  more accurate evolution direction than a classification head. This is a subject of an ongoing study.
319

320  One limitation of SPIN-dvEvo is its reliance on the ESM-2 650M. While ESM-2 is one of the best
321  protein language models available, we did not have the resource to test other language models or
322  utilization of multiple language models that could be potentially more beneficial than ESM-2 in
323 directed virtual evolution. Moreover ESM-2 may be inherently biased toward some protein
324  sequences with large family of homologous sequences as it was indiscriminately trained on all
325  protein sequences.*® %’ Further studies in this area are needed.

326

327  Moreover, current implementation of SPIN-dvEvo is optimized for a single functional objective. A
328  multi-objective model, where functional objectives are optimized alongside other property
329  objectives such as stability, pH tolerance, and thermostability, can be easily implemented. This
330  research is also currently ongoing.

331

332 Methods

333  Data Collection and Curation

334  For TadA, we compiled 10 functional sequences from previously engineered DNA-editing TadA
335  variants®? (listed in Supplementary Table S1). For CcdA, we constructed the 22-sequence set by
336  sequence-identity clustering of UniProtKB CcdA homologs. Starting from the canonical E. coli
337  CcdA (P62552; 36 aa) as the query, we retrieved annotated CcdA family homologs from closely
338  related Enterobacterales/Gammaproteobacteria. We then removed incomplete/aberrant entries (e.g.,
339  truncated sequences or atypical lengths) and identical sequences (100% sequence identity). This
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340  yielded a deduplicated set by keeping only unique amino-acid sequences, yielding 22 non-redundant
341 homologs (accessions in Supplementary Table S2). To balance classes during few-shot training,
342  we generated synthetic decoys by randomly mutating 20% of residues in each positive sequence.
343  All positive sequences were labeled as 1 (functional), and all negative sequences—whether
344  randomly generated or literature-confirmed—were labeled as 0 (non-functional).

345

346 LoRA-Based Model Adaptation

347  We adapted ESM-2 (650M parameters) to each task using low-rank adapters (LoRA) while keeping
348  all base model weights frozen. This model size offered a practical trade-off between representation
349  quality and computational cost, allowing training on a single 24—40 GB GPU.

350

351  LoRA modules were inserted into the self-attention Q/K/V projection layers of every transformer
352 block. For each pretrained projection W € R%*¢, LoRA adds a trainable low-rank update AW =
353 s AB withrank r and scaling s = a/r:

355 W=W+sAB,A€e R¥™", BER™4, s = a/r.

354

356  We employed (r,a) = (16,16) . This setting adds 4,055,040 LoRA trainable parameters
357  (excluding the final linear head), corresponding to ~0.62% of the ~650M-parameter ESM-2 base
358  model, and was used throughout this work.

359

360  Classification head (binary activity)

361 For binary activity prediction y; € {0,1}, the frozen ESM-2 produces a sequence representation
362  h € R%(pooled from token embeddings), which is mapped to a scalar logit

364 z=uTh+ b,score = f(x) = 0(z) € [0,1]
363
365  The classifier was trained with binary cross-entropy:
L&
367 Loce = — ) [vilog pi + (1= ylog (1= p)l.
i=1
366

368  Only the LoRA parameters (A’B) and the classification head parameters (w b) were updated
369 during training; all ESM-2 weights remained frozen,

370

371 Sequences were truncated to 1,000 amino acids and fine-tuned for 5 epochs using AdamW (learning
372 rate 5x 107* weight decay 1073) with a cosine schedule and gradient clipping (Il Vllyax= 0.5).
373  LoRA adapters targeted the attention Q/K/V projections (rank r = 16, a = 16, dropout 0.2; base
374  model frozen) with batch size 4.

375

376 Genetic Algorithm Sampling

377  We performed an iterative mutation—crossover search guided by a fixed LoRA activity scorer.
378  Diversity arose implicitly from uniform parent sampling and stochastic point mutations, and exact
379  duplicate children were removed during population construction. In each generation, parent
380  sequences were sampled uniformly from the current mating pool and recombined to produce a child.
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381 Each sequence was scored by the LoRA-adapted ESM-2 classifier, with the positive-class
382  probability computed from the logits as

exp (z1)
exp (zo) + exp (z1)

383 Pact(x) =

384 Initialization.

385  The initial population consisted of N sequences (equal to the size of the seed pool), generated by
386  applying 20% random substitutions to a set of positive sequences (natural homologs or previously
387  engineered variants).

388

389  Embedding & activity model.

390  Each sequence was scored by a LoRA-tuned binary activity classifier on a frozen ESM-2 (650M),
391 returning  p,(x) . (Sequence embeddings ¢(x) were computed when needed for
392  visualization/analysis, by mean-pooling the last hidden state over non-special tokens followed by
393 L2 normalization.)

394

395 Variation & constraints.

396  Children were generated using a one-point crossover plus point-mutation operator
397  (mutate crossover). One parent was first chosen as the base; a crossover point ¢ € [1, min (| p; ||
398  p, |) — 1] was sampled, and the suffix was swapped with the other parent, yielding a recombinant
399  whose length follows the suffix donor. After crossover, each position was independently mutated
400  with probability 0.02 by substituting a uniformly sampled amino acid from the 20 standard residues.
401 Candidate sequences were filtered with NCBI segmasker™ to reject sequences containing low-
402  complexity segments longer than 5 residues.

403

404 Selection & replacement.

405  For each parent sequence x with score p,.(x), a child x’ was proposed and evaluated to obtain
406  p,(x"). The acceptance ratio was computed as

= Pact(x")

408 = .
Pact (X)

407

409  The child was accepted if r > 1; otherwise, it was accepted with probability 0.125 X r. After
410  iterating this accept/reject update across the population, sequences were ranked by score (by p, in
411 probability-only mode) and the top 25% sequences (ranked by score) were retained as the mating
412 pool for the next generation. Unless stated otherwise, virtual evolutions were conducted for a pre-
413 specified number of generations (default is 100) and the per-generation mean score was logged.
414

415  Parallel runs. Each run outputs N evolved sequences (set by the seed pool size). Larger libraries
416  were obtained by launching multiple independent runs in parallel with different random seeds and
417 by aggregating the resulting sequences.

418

419  Sequence sampling of baseline models: ProteinMPNN and Pinal

420 ProteinMPNN
421 A structure-templated baseline library was generated using ProteinMPNN in fixed-backbone design
422  mode with the experimental TadA reference structure as the input template (PDB: 2B3J, Chain A).
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423  The structure file was preprocessed to retain only the designed protein chain (non-protein atoms
424  were removed) and was provided to ProteinMPNN to compute per-position amino-acid distributions
425  conditioned on the backbone coordinates. 1,000 sequences were then sampled stochastically from
426  the model using temperature-controlled decoding (temperature = 0.1) with otherwise default
427  ProteinMPNN settings. Sampled sequences were post-processed to remove exact duplicates and
428  were written to FASTA for downstream structure prediction and evaluation.

429

430  Prompt for Pinal Sequence Generation

431 TadA Prompt: TadA (tRNA adenosine deaminase) is an enzyme that catalyzes the deamination of
432 adenosine to inosine at the wobble position (A34) of tRNA molecules, thereby expanding codon
433 recognition during translation, adenosiness in tRNA + H20 + H' = inosiness in tRNA + NH4".
434  EC:3.5.4.33. Through the introduction of two key mutations, A106V and D108N, the substrate
435 specificity of E.coli TadA has been reprogrammed, enabling the enzyme to catalyze adenosine and
436  cytosine deamination directly on DNA substrates. These engineered TadA variants are incorporated
437  into adenine base editors (ABEs), facilitating the precise conversion of A*T base pairs to G*C in
438  DNA without introducing double-strand breaks. This strategy offers an efficient and high-fidelity
439  tool for genome editing, particularly for the correction of disease-associated point mutations.

440

441 CcdA Prompt: CcdA is a bacterial antitoxin protein that functions as part of the CcdA—CcdB type
442 I toxin-antitoxin system encoded by the F plasmid in *Escherichia coli*. The CcdA protein
443  comprises 72 amino acids and adopts a two-domain structure: an N-terminal dimerization and DNA-
444  binding domain, followed by a C-terminal domain that binds to the CcdB toxin. In the absence of
445  CcdB, the C-terminal domain of CcdA is intrinsically disordered. Upon binding to CcdB, CcdA
446  undergoes a conformational change, forming a stable CcdA—CcdB complex that neutralizes the
447  toxicity of CcdB. This complex also acts as a transcriptional repressor of the ccd operon by binding
448  tothe operator region. The CcdA—CcdB interaction is dynamic, with varying stoichiometries leading
449  to different complex formations, including (CcdA)2—(CcdB)2 and (CcdA)2—(CcdB)4 complexes.
450  The balance between CcdA and CcdB concentrations regulates the stability of the complex and the
451 repression of the operon. CcdA is subject to degradation by the Lon protease, which modulates the
452  levels of the antitoxin and, consequently, the activity of the toxin.",

453

454  Structure prediction for SPIN-dvEvo sequences

455 SPIN-dvEvo sequences were evaluated by two complementary structure-prediction pipelines with
456  distinct roles. For high-throughput, distribution-level benchmarking across large libraries, we used
457  the MSA-free, PLM-based OmegaFold (v2.3.2)*” to predict structures for all sequences, and
458  quantified global fold similarity to experimental references using TM-align (TM-score). For TadA,
459  PDB 2B3J (tRNA adenosine deaminase from Staphylococcus aureus in complex with RNA) was
460  used as the reference structure, because it provides a substrate-bound, catalytically relevant
461 conformation for a consistent TM-score fold-similarity benchmark; in contrast, the available E. coli
462  TadA structure PDB 1Z3A is apo and does not capture the RNA-engaged state®'. TM-scores reported
463  in the main text refer to alignments between the native structure (PDB 2B3J) and OmegaFold-
464  predicted structures for SPIN-dvEvo-evolved variants.

465
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466  Separately, we used AlphaFold3 (AF3) to obtain model confidence estimates for experimental
467  prioritization. To reduce the computational time for MSA retrieval, sequences were clustered at 80%
468  pairwise identity; a representative sequence per cluster was used to query the AF3 MSA database,
469  and the resulting MSAs were reused for all members of that cluster during the batch inference. For
470  TadA, per-chain pLDDT was used as the confidence metric.

471

472 TadA experimental methods

473 Reagents and Strains

474  All PCR reactions for cloning restriction sites and generating recombineering targeting cassettes
475  were performed using 2 x Phanta UniFi Master Mix DNA Polymerase (Vazyme, Nanjing, China,
476  P516-02). Colony PCR reactions for subsequent sequencing were conducted using Premix Taq™
477 DNA Polymerase (Takara, Dalian, China, R901A). Homologous recombination was performed
478  using the CloneExpress II One Step Cloning Kit (Vazyme, C112-02). All primers were synthesized
479 by GENEWIZ (Suzhou, China). Gene sequences for R67, which confers resistance to trimethoprim
480  (TMP), and engineered TadA variants were synthesized by GENERAL BIOL (Anhui, China).
481 Antibiotics, including ampicillin sodium (Sangon Biotech, Shanghai, China, A100339-0025) and
482  chloramphenicol, along with L-arabinose, were obtained from commercial sources. Chemically
483  competent E. coli DH5a cells were purchased from AlpalifeBio (Beijing, China), and chemically
484  competent E. coli DH10B cells were obtained from Biomed (Beijing, China).

485

486  Plasmid construction

487  Engineered TadA variants used in this study are detailed in Tables S3. Expression plasmids for these
488  variants and T7 RNA polymerase (T7RNAP) were constructed using the pMuta088 vector backbone.
489  This backbone, derived from pDae079, carries the tandem PmCDA1-T7 RNA polymerase and uracil
490  glycosylase inhibitor (UGI).

491 For this study, expression plasmids for the engineered TadA variants were constructed by replacing
492  the PmCDAI1 gene in the pMuta088 scaffold with the specific TadA sequences via homologous
493  recombination. A negative control plasmid (pT7RNAP-ATadA), expressing only an Xten-linker—
494  T7RNAP cassette, was constructed using the same strategy.”

495

496  TadA editing activity was quantified by measuring the frequency of trimethoprim-resistant
497  revertants following the general MutaT7/eMutaT7 workflow with minor modifications as detailed
498  below.>? To characterize the A*T-to-G+C editing activity of TadA variants via antibiotic resistance
499  reversion, a reporter plasmid was developed. The R67 gene, encoding dihydrofolate reductase
500  (DHFR) which confers resistance to trimethoprim (TMP), was cloned into a low-copy-number
501  plasmid (T7 promoter + terminators reporter plasmid). This was achieved by replacing the existing
502  neoR/ kanR gene (from Tn5) in a precursor plasmid via homologous recombination. In the final
503  reporter construct (pReporter-R67), expression of the R67 gene is driven by a T7 promoter and
504  transcription is terminated by a tandem array of ten T7 terminators. Subsequently, site-directed
505  mutagenesis was employed to convert the tryptophan codon (TGG) at position 23 into a premature
506  stop codon (TAG), resulting in the final reporter construct pReporter-R67%>3*, In this system, TadA-
507  mediated adenine deamination reverts the stop codon to wild-type, thereby restoring functional R67
508  expression and conferring TMP resistance.

509
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510  Evaluation of TadA Variant Activity in E. coli

511 To quantitatively characterize intracellular DNA-editing activity, the mutation (editing) frequency
512 was defined as the ratio of the total TMP-resistant revertants to the total viable cell population.

513

514  To perform this assay, chemically competent E. coli DH10B cells were co-transformed with two
515  plasmids: (1) The reporter plasmid (AmpR) pReporter-R67%*"; (2) a chloramphenicol-resistant
516  (CmR) expression plasmid (pDae079 derivative) encoding either pT7RNAP-ATadA (negative
517  control), wild-type TadA (positive control), or an engineered TadA variant.

518

519  Transformants were selected on LB agar plates containing 100 pg/mL ampicillin and 25 pg/mL
520  chloramphenicol, followed by incubation at 37°C for 12—16 hours. Individual colonies were then
521  inoculated directly into 10 mL of LB broth supplemented with 100 pg/mL ampicillin, 25 pg/mL
522 chloramphenicol, and 0.2% (w/v) L-arabinose, followed by overnight incubation (16 h) at 37°C with
523  shaking at 220 rpm to initiate TadA expression and mutation accumulation.

524

525  On the following day, the overnight cultures were diluted 1:100 into fresh LB medium containing
526  the same concentrations of ampicillin, chloramphenicol, and L-arabinose. To promote the fixation
527  of mutations during active growth, these cultures were incubated for 4 hours at 37°C with shaking
528  at220 rpm.

529

530  Editing activity Assay

531 At the endpoint, cultures were serially diluted (10-fold). To determine the total viable cell population
532 (Ny), 10 pL aliquots of each serial dilution were spotted onto a single non-selective LB agar plate
533  (containing 100 pg/mL ampicillin and 25 pg/mL chloramphenicol). To enumerate the TMP-resistant
534 population (N;), 300 pL aliquots of undiluted culture were spread onto three selective LB agar plates
535  containing 20 pg/mL TMP (supplemented with the same antibiotics). Plating for N; was performed
536  in triplicate. Colony counts were extrapolated to the full 10 mL culture volume to derive the total
537  wviable cells (N, scaled from the 10 pL spot and dilution factors) and total TMP-resistant revertants
538  (Ny, scaled from the 300 pL spread). The frequency f was calculated as the ratio N; / Ny.

539

540  Mutation-rate calculation.

541  For cross-study comparison to prior eMutaT7 reports, endpoint TMP-reversion frequencies were
542  converted to per-base, per-generation mutation rates using the Luria—Delbriick rare-mutation
543  approximation, where the expected mutant frequency satisfies E[f] = uln (Ref) . Although
544  induction was maintained for 16 h, the calculation was normalized to the effective population
545  expansion of the final outgrowth step, as mutation fixation is replication-dependent. This single 4 h
546  propagation propagation round used a 1:100 reinoculation followed by regrowth to saturation,
547  corresponding to ~ 6.6 generations (G ). Assuming binary fission (R = 2%), In (Reg) =
548  Gln 2 = 4.57. Because TMP-resistance restoration of the R67 reporter requires a single-base
549  reversion, the effective target size was set to S = 1 and rates were reported as site-specific values
550  (not normalized by the 192-bp reporter length):

f f

- GlIn?2 ~ 457 (per base per generation)

551 Ms.p.b.
552
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553 Verification of R67 Gene Reversion

554  To confirm that TMP resistance resulted from the targeted A*T-to-G+C edit in the R67 gene, colony
555  PCR was performed. For a representative subset of TadA variants tested, five independent TMP-
556  resistant colonies were randomly picked from the selective agar plates for each selected variant. The
557  R67 gene locus was PCR-amplified from these colonies. The resulting amplicons were purified and
558  subjected to Sanger sequencing (GENEWIZ, Suzhou, China). The obtained sequences were aligned
559  with the reference R67V**" sequence and the wild-type R67 gene sequence to identify the specific
560  A-to-G reversion at codon 23 and any other potential off-target mutations within the amplified
561 region.

562

563  CcdA library generation, selection, and validation

564  The Plasmids Construction

565  The pUC57-Kan-ccdA/B plasmid was constructed to co-express the CcdA*®*7? domain and ccdB in
566  E. coli. In this generation, the forward strand carries the J23119 promoter—driven CcdA3¢7? cassette,
567  and the reverse strand carries the AmpR promoter—driven ccdB gene. A 21-bp spacer was inserted
568  between the two stop codons to facilitate PCR amplification. Both ccdA* "2 and ccdB were codon-
569  optimized for E. coli, synthesized by General Biosystems, and subcloned into pUC57-Kan using
570 Pcil and Ndel restriction sites. For construction of the ccdA mutant library, we generated pUC57-
571 Kan-2BspQI-ccdB by inserting two BspQI sites using primers BspQI-FP and BspQI-RP
572 (Supplementary Table S4); this cloning step was performed in DB3.1 competent cells, which are
573 resistant to ccdB toxicity. All plasmids were verified by Sanger sequencing, and complete vector
574  and primer sequences are provided in Supplementary Table S4.

575

576  Library Construction, Selection and High-Throughput Sequencing

577  The SPIN-dvEvo-evolved ccdA*¢"? variants, codon-optimized for E. coli, were synthesized as an
578  oligo pool containing the BspQI site by GenScript (China). The oligo pool was first amplified using
579  PrimerSTAR HS DNA polymerase (Takara) and subsequently digested with BspQI. The digested
580  fragments were then ligated into the BspQI-linearized pUC57-Kan-2BspQI-ccdB vector using T4
581 DNA ligase (Takara). Finally, the ligation products were purified and eluted in nuclease-free water,
582  ready for electroporation.

583

584  The ligation products were electroporated into electrocompetent DB3.1 cells using a Bio-Rad
585  Micropulser according to the manufacturer's protocol. Transformants were recovered in 10 mL of
586 LB medium at 37°C for 1 hour. To estimate the library size, a portion of the culture was serially
587  diluted, plated on LB agar containing kanamycin, and incubated for colony counting. Meanwhile,
588  kanamycin was added to the main culture to a final concentration of 50 pg/mL, followed by
589  incubation at 37°C for 10 hours. Subsequently, 100 pL of this culture was inoculated into 10 mL of
590  fresh LB medium for amplification and subsequent plasmid extraction. The remainder of the
591  overnight culture was harvested, resuspended in LB medium with 15% glycerol, and stored at -80°C.
592 The initial, unselected ccdA library consisted of plasmids extracted from the CcdB-resistant DB3.1
593 strain. To perform functional selection, this library was electroporated into the CcdB-sensitive DH5a
594  strain. Plasmids successfully recovered from DHS5a transformants then represented the selected
595  ccdA library. The CcdA3®7? gene was PCR-amplified from both libraries using INDEX-containing
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596  primers. The amplicons were gel-purified and sequenced by Salus Pro platform (ShenZhen Salus
597  Biomed Ltd)..

598

599 In vivo functional analysis of the SPIN-dvEvo-evolved CcdA variants

600  Selected CcdA variants (see Supplementary Table S7), encompassing a range of fitness scores,
601 were cloned into a pUC57-Kan-ccdA/B expression vector. All gene sequences were synthesized and
602  subsequently confirmed by DNA sequencing (General Biol). To evaluate in vivo function, 80 ng of
603  each plasmid construct was transformed into the ccdB-sensitive Escherichia coli strain DHS5a.
604  Transformants were selected on LB agar plates supplemented with kanamycin. A ten-fold serial
605  dilution series of each transformation was plated to enable quantitative assessment. After incubation
606 (37 °C, 20 h), colony-forming units (CFUs) were counted at matched dilution factors and reported
607  as relative survival/growth under co-expression of ccdB, where functional CcdA variants rescue
608  colony formation (Supplementary Fig. 6).

609

610 Sequencing data processing

611 Raw reads were demultiplexed, adapter-trimmed, and quality-filtered. Reads were assigned to
612  SPIN-dvEvo-evolved variants by matching the variable region to the SPIN-dvEvo-evolved

613  dictionary (allowing <1 mismatch to tolerate sequencing error; ambiguous matches were discarded).

post
i

¢ and c

614  For each variant i counts clp " were tabulated. Samples with <10° total mapped reads
615  were excluded. Unless noted, a small pseudocount (0=0.5) was used only for descriptive
616  normalization of very low counts; final fitness estimates and uncertainty were obtained from
617  DiMSum.”

618

619  Fitness estimation and statistical analysis

620  After read mapping and quality filtering, 2,363 SPIN-dvEvo-evolved variants were retained for
621 downstream analysis. For each variant s, we denote the pre-selection and post-selection read counts

622 as cpre(s)and Cpost(s), with total library depths

624 Npre = z Cpre (s), Npost = Z Cpost (s)-

N N
623
625  Counts were library-size normalized, and per-variant enrichment was defined as
627 ES(S) _ Cpost(s)/Npost .

Cpre (S)/Npre
626
628  Variant fitness was then defined as the log; enrichment without any wild-type normalization:
CpOSt(S) Npost

630 F(s) =log, ES(s) =log, (Cpre ) ) —log, (Npre > .
629

631 Fitness (log2 enrichment) and associated uncertainty were estimated with DiMSum (Poisson—Delta
632  model with overdispersion correction), consistent with the definition above.

633

634  To identify significantly enriched variants, we applied an FDR-controlled significance filter based
635  on DiMSum-reported g-values:

636 q_value < 1073,
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637
638  For effect-size stratification, we labeled variants with log2 enrichment F(s) > 3.0 as functional and
639  those with F(s) > 5.0 as wild-type-like
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640  Code availability

641 The SPIN-dvEvo source code and the LoRA model weights for TadA and CcdA will be soon publicly
642 available

643  Data availability

644  All data generated or analyzed in this study are included in the main text and Supplementary
645 Information. Input and output sequence files (including training seeds, natural homolog sets, and
646  evolved sequence libraries), as well as analysis-ready intermediate results, are publicly available at
647  https://zhouyg-lab.szbl.ac.cn/download/. Additional materials are available from the corresponding

648  authors upon reasonable request.
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775 Figure 1. Schematic overview of the framework for directed virtual evolution: SPIN-dvEvo. A

776  LoRA-adapted ESM-2 model is fine-tuned utilizing only a few curated positive and randomly
777  generated negative (binary) samples. The model is then integrated into a genetic algorithm as a
778  scorer to iteratively evolve sequences toward desired functionality but away from the original
779  sequence cluster.
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782 Figure 2. Validation of virtually evolved enzyme TadA from sequence motifs, predicted structures
783  and experiments. (A) Schematic of the experimental reporter system employed for quantifying AsT-
784  to-Ge<C editing activity. TadA-mediated reversion of a premature TAG stop codon to a TGG codon
785  inthe R67 gene confers resistance to trimethoprim (TMP), enabling selection of active variants. (B)
786  Newly emerged clusters from directed virtual evolution by SPIN-dvEvo according to the t-SNE
787  projections of the base ESM-2 embeddings of the 10 starting TadA sequences to 1000 evolved
788 sequences in Round 1 and Round 2. (C) Similar conserved functional and structural core motifs
789  between virtual evolved sequences and natural homologs (top). (D) The accuracy for the predicted
790 structures (according to TMscore) for 1000 TadA variants generated by four models (sequence generators
791 Pinal and structure-based designs ProteinMPNN) compared to those given by SPIN-dvEvo in two rounds.
792  (E) Scatter plot of the predicted confidence score pLDDT versus sequence identity to the wild type
793  (E. coli TadA) for 1000 evolved sequences by SPIN-dvEvo in Round 1 and Round 2. The 60
794  experimentally tested sequences selected from Round 1 and the 60 from Round 2 are highlighted as
795  filled points. (F) Boxplots comparing experimental activities of validated first- and second-round
796  evolved TadA sequences, showing an upward-shifted distribution after including the first-round
797  resultin training. (G) Illustrative examples of the plates from the R67 DHFR-based E. coli reporter
798  assay on TMP-selective medium. Shown are the negative control (ATadA cells only expressing Xten
799 linker—T7RNAP), a positive-control TadA variant (E. coli TadA), and cells expressing SPIN-dvEvo-
800 evolved TadA variants dvTadA-55, dvTadA-56 and dvTadA-2-02.
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803  Figure 3. Experimental validation of evolved variant library of intrinsically disordered protein
804  CcdA.

805  (A) Schematic diagram for high-throughput validation of evolved CcdA according to the ability of
806  a CcdA variant that can neutralize CcdB toxin in E. coli growth, measured by sequence counts pre
807  and post selections. (B) Emergence of new clusters in SPIN-dvEvo sequences evolved from the
808  starting 22 natural CcdA input sequences according to the t-SNE projections of the base ESM-2
809  embeddings. (C) Sequence motifs from SPIN-dvEvo sequences are highly similar to those obtained
810  from natural homologs according to key conserved residues highlighted in blue boxes. (D) The
811 distribution in number of variants as measured fitness scores (Log: fitness distributions normalized
812 by the library size). (E) Activity confirmation of selected variants according to their fitness. Serial
813 10-fold dilution spot assay showing CcdA WT from E. coli and five CcdA variants (1654 (Log:
814  fitness = 3.0), 924 (Log: fitness = 3.2), 903 (Log: fitness = 3.3), 854 (Log: fitness = 3.3), and 878
815  (Log: fitness = 5.3) along with the wild type (Log: fitness = 8.5)) for rescuing toxin CcdB at a
816  dilution factor of 10>-~10*. Higher colony counts indicate stronger neutralization activity.
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Figure 4. Phylogenetic novelty of SPIN-dvEvo TadA and CcdA variants in joint natural-
evolved trees.

Maximum-likelihood phylogenies inferred from multiple sequence alignments containing natural
homologs and experimentally validated SPIN-dvEvo evolved variants (sequences combined prior
to alignment and tree building). Triangles denote nodes with bootstrap support in the 70-100
range. (A) TadA: alignment includes 1000 natural TadA homologs and 54 dvTadA variants.
Highlighted sectors mark major, evolve-enriched dvTadA branches separated from dominant
natural clades, supporting phylogenetically distinct lineages beyond the initial natural
neighborhood. (B) CcdA: alignment includes 100 natural CcdA homologs and 62 dvCcdA
variants. Light-blue and red sectors highlight two major evolved dvCcdA branches, indicating
phylogenetically distinct lineages relative to the bulk of natural homologs.



