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Abstract 18 

Both natural and directed evolution are powerful in improving protein functions but they are slow 19 
in exploring the nearly endless sequence space. Here, we present SPIN-dvEvo that couples few-shot 20 
low-rank adaptation (LoRA) of an ESM-2 protein language model with a genetic algorithm to 21 
quickly evolve functional remote homologs from a local cluster of highly-homologous, binary-22 
labeled sequences. We experimentally tested SPIN-dvEvo on an enzyme (the core deaminase 23 
component of adenine base editors, TadA) and an intrinsically disordered protein (antitoxin CcdA). 24 
In TadA, virtually evolved sequences with low sequence identity to the starting sequences achieved 25 
a 38% success rate (23/60) in the first round and a 51% success rate along with a one-order-of-26 
magnitude improvement in enzymatic activity in the second round, for which SPIN-dvEvo was 27 
retrained on first-round labels. Virtual evolution of the disordered protein CcdA was also successful, 28 
albeit at low success rate of 2.6%.  Thus, SPIN-dvEvo can simulate billions of years of evolution 29 
in just minutes, rapidly creating new functional clusters. 30 

Introduction 31 

Directed evolution is a central strategy for engineering functional proteins, enabling stepwise 32 
improvement of enzymes and binders directly in the laboratory through iterative cycles of 33 
mutagenesis, selection, and amplification. It has produced catalysts with enhanced activity, altered 34 
specificity, and improved stability for applications ranging from therapeutics to industrial 35 
biocatalysis1, 2. Despite these successes, both natural and laboratory evolution remain intrinsically 36 
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constrained by the locality of accessible mutational steps: most variants that can be efficiently 37 
sampled and screened in practice differ from their progenitors by only a small number of 38 
substitutions3, and optimization therefore proceeds as a “local walk” on a rugged fitness landscape3. 39 
Because protein function is shaped by epistasis and higher-order constraints, such local searches can 40 
become trapped on suboptimal peaks, leaving distant but potentially functional better-fitness regions 41 
of sequence space systematically underexplored3, 4. While deep mutational scanning and deep 42 
sequencing expanded access to large-scale sequence–function measurements 5-7, they were also 43 
largely limited to local sequence space. 44 
 45 
More recently, directed virtual evolution has emerged as a sequence-first alternative that learns 46 
surrogate fitness landscapes from sequence–function data and improves sequences by in silico 47 
search. Early work established probabilistic surrogate modeling, with Gaussian processes trained on 48 
measured activities to guide navigation of fitness landscapes.8, 9 In parallel, structure-first pipelines 49 
such as AiCE integrate inverse-folding models with structural and evolutionary constraints to 50 
propose fold-compatible variants when reliable templates are available.10 These approaches for 51 
directed virtual evolution can be grouped by how they obtain supervision and how far they can 52 
reliably search. One class relies on regression-style predictors trained on quantitative measurements 53 
(activity, fitness, binding, or other continuous phenotypes). These methods include deep supervised 54 
models or protein language models (PLM) with evolutionary context and active-learning pipelines 55 
for multi-round optimization such as ECNet11 and EVOLVEpro12, active-learning evolution of 56 
artificial metalloenzymes by Vornholt and colleagues13, iterative deep-learning–guided directed 57 
evolution described by Li and colleagues14, and Active Learning-assisted Directed Evolution 58 
(ALDE) by Yang et al.15 A second class focuses on improving label efficiency, exemplified by Low-59 
N protein engineering, which trains data-efficient predictors from small labeled sets and then screens 60 
large virtual libraries. 16 A third class formalizes “design–test–learn” iteration and can be coupled to 61 
automated platforms or biofoundries for higher-throughput cycles, exemplified by the STAR web 62 
server17 and biofoundry-integrated PLM workflows for automated protein evolution.18 Despite 63 
substantial gains in these systems, the learned surrogates continue to be most reliable near the 64 
starting scaffold. That is, the search remains implemented as local exploration (for example, small-65 
step mutation moves, Bayesian optimization, or iterative screening) rather than sampling remote, 66 
low-identity functional sequences directly. 67 
 68 
Another limitation of the above methods is their reliance on strong, quantitative supervision. Many 69 
successful workflows train regression-style surrogate landscapes on continuous activity 70 
measurements, kinetic readouts, or well-calibrated phenotypes, often requiring hundreds to 71 
thousands of assayed variants per round to achieve predictive accuracy that is sufficient to guide 72 
search.12-14, 16, 19  When the available signal is weaker—binary functional labels or enrichment 73 
counts from pooled selections—performance can degrade because the training objective becomes 74 
less informative per variant and experimental noise from low counts and sampling variance becomes 75 
a dominant factor that must be modeled carefully.6, 7, 20 In practice, this data requirement can be the 76 
primary bottleneck early in a campaign, when only a small number of positives exist and quantitative 77 
characterization is costly or not yet available. 78 
 79 
Here we introduce SPIN-dvEvo (Sequence Prediction with Integrated Neural networks – directed 80 
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virtual Evolution), a directed virtual evolution framework that unifies discovery and multi-round 81 
refinement in a single, sequence-first, low-data workflow. In contrast to conventional generative 82 
models that necessitate vast functional datasets, SPIN-dvEvo maintains high precision in label-83 
scarce regimes by harnessing the evolutionary priors embedded within ESM-218 and fine-tuning its 84 
trajectory through lightweight LoRA.21 The resulting model was employed as a scorer for directed 85 
virtual evolution powered by a genetic algorithm. SPIN-dvEvo was applied to virtually evolve TadA 86 
adenosine deaminase activity and the intrinsically disordered antitoxin CcdA. In both systems, only 87 
sparse binary functional labels were used to train a LoRA-based activity scorer on a frozen ESM-2 88 
encoder, and candidate sequences were then generated by iterative mutation–crossover search 89 
guided by the fixed scorer, with additional feedback round performed for TadA by updating the 90 
LoRA head with newly obtained experimental labels. Experimental results confirmed the ability of 91 
SPIN-dvEvo to quickly evolve from a local cluster of a few highly homologous sequences to remote 92 
functional clusters. 93 
 94 

Results 95 

Directed virtual evolution by SPIN-dvEvo 96 
The SPIN-dvEvo framework consists of two tightly coupled components: (i) a LoRA-adapted ESM-97 
2 scoring model that trained task-specific functional scores using a small set of positive and negative 98 
sequences, and (ii) a genetic algorithm (GA) that directs sequence sampling and virtual evolution 99 
under this learned landscape. Each run starts from an initial seed pool generated by applying 20% 100 
random substitutions to the starting sequences. Here, SPIN-dvEvo was fine-tuned using only 101 
qualitatively labeled sequences with binary activity labels (1 for active, 0 for inactive) (Fig. 1). 102 
 103 

Directed virtual evolution from the neighborhood of an enzyme: TadA 104 

To evaluate the enzyme-evolution capability of SPIN-dvEvo, we selected the tRNA-specific 105 
adenosine deaminase TadA as our model enzyme. TadA, originally evolved to target tRNA, has been 106 
engineered into adenine base editors that catalyze A•T→G•C conversions in DNA22. This system 107 
utilizes an R67 DHFR-based codon reversion reporter to rapidly detect the intracellular DNA-108 
editing activity of evolved TadA variants, as in prior studies23, 24. In this codon reversion assay, an 109 
active variant reverts a premature TAG stop codon to TGG in the reporter, enabling growth under 110 
trimethoprim (TMP) selection (Fig. 2A). We quantified intracellular DNA-editing activity as the 111 
mutation frequency 𝑓𝑓 = 𝑁𝑁1 ∕ 𝑁𝑁0—the number of TMP-resistant revertants (𝑁𝑁1) divided by the total 112 
number of viable cells plated without TMP (𝑁𝑁0 )—and converted it into 𝜇𝜇s.p.b.  (per base per 113 
generation; See Methods). 114 
 115 
We compiled a compact set of 10 TadA sequences spanning the wild type from E. coli (UniProt ID 116 
P68398) (Supplementary Table S1) and previously engineered active variants from E. coli with 6-117 
20 mutations, (>88.6% sequence identity) and labeled all these sequences as 1. That is, we started 118 
with a sequence cluster of close functional neighbors. An equal number of 10 hypothetical inactive 119 
sequences were obtained by performing random mutations at 20% of positions in these TadA 120 
sequences (See Methods). 121 
 122 
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We then employed SPIN-dvEvo to produce (evolved virtually) 1,000 sequences by starting from the 123 
inactive sequences pool (20% random mutations). We confirmed that such virtual evolution started 124 
from a tightly clustered sequence region (in red) and quickly expands to other regions according to 125 
the t-SNE projection of ESM-2 sequence embeddings (Fig 2B). 126 
 127 
To examine whether the TadA function was preserved during the virtual evolution, we obtained 128 
sequence logos from 1000 natural TadA homologs compiled as in Ref 25 with a median sequence 129 
identity of 34.1% and compared them to sequence logos from 1000 evolved sequences (median 130 
identity 55.8%) in Fig 2C. The sequence motifs found previously26 in the TadA family such as HAE 131 
and PCXXC zinc-dependent deaminase motifs and structural-core signatures EVP and TLE were 132 
also conserved in the evolved sequences while allowing substantial variation elsewhere. Thus, 133 
essential sequence information preserved in the natural sequences evolved over billions of years 134 
was captured by SPIN-dvEvo in a short 12 minutes of computing time with AMD EPYC 9654/ RTX 135 
4090 (24 GB) starting from a local sequence cluster around E. coli TadA. 136 
 137 
As protein structures play an essential role in enzymatic functions, we predicted structures of these 138 
evolved sequences and compared them to the structure of wild-type TadA (PDB ID:2B3J). We 139 
employed PLM-based OmegaFold27 to make predictions because it does not require homologous 140 
sequences for input, and therefore permits fast, large-scale calculations for all 1000 evolved 141 
sequences. We obtained the distribution of structural accuracy (measured by TM-score28, 1 for 142 
perfect match and 0 for no match) for predicted structures of those evolved SPIN-dvEvo sequences 143 
and compared it to two baseline models PLM-based sequence generators Pinal29, 30 and structure-144 
based protein-design method ProteinMPNN31. ProteinMPNN employed a native structure template; 145 
Pinal was prompted with a natural-language TadA functional description (adenosine 146 
deaminase/base-editor context; EC 3.5.4.33) together with the wild-type TadA sequence (Methods). 147 
The results show that most evolved sequences given by SPIN-dvEvo adopted near-native structures 148 
(TMscore ~0.8, 89.6% sequences with TM-score>0.5), and was only slightly worse than the 149 
structure-based method ProteinMPNN (TMscore ~0.95) (Fig. 2D). The baseline sequence-based 150 
method Pinal shows a bimodal TM-score distribution, with one major peak at low TM-scores (~0.2–151 
0.3, 53.9% sequences with TM-score<0.5) and another in the near-native range (~0.8–0.9), 152 
indicating a mixture of largely off-fold sequences and a smaller subset that retains the TadA fold. 153 
An example of a predicted structure for a SPIN-dvEvo sequence is compared to the native structure 154 
in Supplementary Fig. 1, highlighting near-perfect match, particularly in the regions interacting 155 
with a DNA substrate and near catalytic core.  156 
 157 
We further selected 60 evolved sequences to validate their enzymatic functions experimentally with 158 
the R67 DHFR–based codon reversion assay (Fig. 2A). These 60 sequences were selected from the 159 
above 1000 evolved sequences according to the high structure-confidence scores (normalized 160 
pLDDT> 0.9 given by AlphaFold 332 with a single natural MSA to save computing time) and low 161 
sequence identity (≤0.5) to the wild type (as shown in Fig. 2E). Functional validation identified 23 162 
active variants out of 60 tested (38.3% success rate). Activities spanned more than three orders of 163 
magnitude, with several variants matching or exceeding the reference activity of E. coli TadA (Fig. 164 
2F, Supplementary Fig. 2 A, Table S3, Table S4). More importantly, these individually validated 165 
functional sequences span 39–79% amino-acid identity to the E. coli TadA wild type, confirming 166 
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the ability of SPIN-dvEvo to find functional solutions by going significantly beyond the immediate 167 
neighborhood of the starting sequences within the identity neighborhood of ≥88% E. coli TadA (Fig. 168 
2E).  169 
 170 
Given 60 newly experimentally tested sequences, we re-trained the LoRA model with the enlarged 171 
binary-labelled dataset and performed sequence evolutions again by GA. The newly 1000 evolved 172 
sequences (Round II) are now forming new sequence clusters (Fig. 2B). The TMscore distribution 173 
of predicted structures for the second-round sequences improves over that of the first round. All 174 
predicted structures (100%) are now with TMscore > 0.78 and the highest peak located at TMscore 175 
of 0.88, compared to 0.80 in the first round (Fig. 2D). We tested 60 new variants chosen according 176 
to high AlphaFold 3's pLDDT and low sequence similarity. In this second round, 31 of 60 new 177 
variants were active. The higher success rate in Round II than in Round I (51% versus 38.3%) 178 
indicates that incorporating new experimental labels with definitive inactive sequences improved 179 
the classifier-guided evolution (Supplementary Fig. 2B, Table S3, Table S5). Moreover, the 180 
measured activity for the functional sequences in the second round shifted upward relative to the 181 
first-round actives by one order of magnitude (Fig. 2F). These validated evolved sequences in 182 
Round II are more divergent from wild type (29–54% identity, compared to 39–79% in the first 183 
round; Fig. 2E), confirming the formation of new functional clusters with improved activity (Fig. 184 
2B). This is remarkable considering the fact that only binary labels were employed to train SPIN-185 
dvEvo. 186 
 187 
A few selected variants are illustrated along with positive and negative controls by plating on TMP-188 
selective medium (dvTadA-55 and dvTadA-56 from round 1; dvTadA-2-02 from round 2). These 189 
evolved sequences produced markedly more TMP-resistant colonies than the negative control of 190 
expressing only an Xten linker-T7RNAP cassette in place of TadA and thus lacking deaminase 191 
activity and were comparable to the positive control (E. coli TadA) (Fig. 2G), consistent with robust 192 
in vivo editing activity. 193 
 194 

Directed virtual evolution of intrinsically-disordered binder: anti-toxin CcdA 195 

 196 
To test whether SPIN-dvEvo can generalize beyond enzymes with well-defined structures to 197 
intrinsically disordered binding proteins, we applied it to the CcdA–CcdB toxin–antitoxin system. 198 
In E. coli, the antitoxin CcdA is a 72-residue protein. Here we only engineered its C-terminal 199 
segment (CcdA36–72, 36 residues), which mediates binding to CcdB and thereby blocks CcdB 200 
binding to GyrA to neutralize toxicity33. This 36-residue C-terminal domain is intrinsically 201 
unstructured prior to binding to CcdB33, 34. We started from the canonical E. coli CcdA (P62552), 202 
retrieved CcdA family homologs from closely related Enterobacterales/ Gammaproteobacteria, 203 
removed incomplete or atypical entries as well as those sequences at 100% sequence identity cutoff. 204 
This yielded 22 close homologs (Supplementary Table S2) at 55.2–97.2% sequence identity. A 205 
LoRA head on a frozen ESM-2 encoder was fine-tuned on this curated set and then coupled to the 206 
GA to generate candidate binders, without introducing any CcdB sequence or structural information 207 
during training or sampling. We chose this CcdA-CcdB system because bacterial growth is 208 
directly correlated to the ability of the CcdA evolved by SPIN-dvEvo to bind and neutralize CcdB, 209 
enabling straightforward functional selection (Fig. 3A). 210 
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 211 
As in the TadA case, we evolved 1000 CcdA variants by SPIN-dvEvo. As shown in Fig 3B, these 212 
sequences moved far away from the original sequence cluster and formed multiple clusters 213 
according to the t-SNE projections of the base ESM-2 embeddings. When we generated the 214 
sequence-logo from SPIN-dvEvo sequences (with a median sequence identity of 50.2%), it has 215 
similar sequence motifs as those from 100 natural homologs collected by querying the canonical 216 
‘Antitoxin CcdA’ and filtering to a non-redundant set with a median sequence identity of 38.7% 217 
from UniProtKB, suggesting that key binding determinants preserved such as W44, E54,35 G63, 218 
S64, F65, D71 and W7236, 37(Fig. 3C, blue box) in natural CcdA homologs were captured during 219 
virtual evolution by SPIN-dvEvo, despite that it was started from a highly local seed set.  220 
 221 
To test those sequences experimentally, we synthesized a library of 3,041 evolved CcdA variants 222 
and evaluated them using a pooled bacterial growth selection, because the ability for the bacterium 223 
to grow is correlated to the ability of the evolved CcdA to neutralize CcdB by binding (Fig. 3A). 224 
That is, the fitness of activity of CcdA variants can be measured by counting the number of a specific 225 
variant pre- and post-selections from high-throughput sequencing38 (Fig. 3A). We estimated 226 
enrichment and uncertainty with the DiMSum pipeline 39,40 with Poisson–Delta variance modeling 227 
and overdispersion correction. Among 3,041 synthesized CcdA variants, only 2,363 variants were 228 
found with >30 reads and a minimum frequency of 10−6in both the pre-selection and post-selection 229 
libraries from high-throughput-sequencing data. Further application of an FDR-controlled filter 230 
relative to internal stop-codon negative controls of 𝑞𝑞_value < 10−3 yielded 155 statistically 231 
significant functional variants (a 6.6% hit rate). We further employed an effect-size threshold to 232 
define more robust positives as those variants with log 2(fitness) > 3.0, resulting in 62 active CcdA 233 
variants (a 2.6% hit rate, Fig. 3D). These variants contain 26 with log 2(fitness) > 5  and some 234 
comparable to the fitness of E. coli CcdA (log 2(fitness) = 8.5).    235 
 236 
To validate the above high-throughput result, we selected four variants around the stringent 237 
threshold of 3.0 with log 2(fitness) = 3.3, 3.3, 3.2, and 3.0, respectively, along with two positive 238 
controls E. coli CcdA and an evolved variant with log 2(fitness) =5.3 for in vivo functional testing 239 
(Supplementary Table S7). As shown in Fig. 3E by serial 10-fold dilution spot assays, we 240 
confirmed that all variants with log 2(fitness)≥ 3.0 are functional and the variant 878 with a larger 241 
fitness value has stronger growth. In particular, the variant 1654 with log 2(fitness) = 3.0 showed 242 
weak growth only at the dilution factor of 102. It is noted that sequences with  log 2(fitness) ≥ 3.0  243 
retained only ~60–70% sequence identity to the E. coli CcdA (Supplementary Fig. 3), indicating 244 
substantial novelty among functional hits, given that only 36 residues were targeted for virtual 245 
evolution.  246 
 247 

Discussion 248 

 249 
SPIN-dvEvo directly addresses a practical gap in current directed virtual evolution: most existing 250 
methods either require substantial labelled datasets to optimize a single scaffold locally, or function 251 
as one-shot generators whose sequences are not coupled to an explicit score-and-search loop that 252 
can be iterated with newly acquired labels. In contrast, SPIN-dvEvo mimics natural evolution by 253 
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employing a LoRA adaptor on the top of a frozen ESM-2 encoder to learn functional restraints. We 254 
showed that the functional restraints learned from a few dozen positive, binary-labeled samples of 255 
a highly homologous sequence cluster are sufficient to drive virtual evolution from dysfunctional 256 
sequences to functionally active proteins that are substantially away from original positive 257 
sequences by using a genetic algorithm. Some of these sequences, despite low sequence identity, 258 
are experimentally validated for their functions on two illustrative cases: enzymatic activity (TadA 259 
adenosine deaminase) and toxin-binding intrinsically disordered protein CcdA.  260 
 261 
For virtual evolution of TadA enzyme, no structural information of was used to train SPIN-dvEvo 262 
and to drive evolution. Yet most evolved TadA variants have TadA structural folds (Fig 2D, 263 
Supplementary Fig. 1) in the first round (89.7% of sequences with predicted structural 264 
accuracy >0.5 in TMscore). A minor peak with TMscore<0.5 in the first round was eliminated after 265 
including experimental results from 60 variants (still in binary coding). The improved structural 266 
similarity to the wild type highlights the importance of a larger and cleaner dataset because in the 267 
first round, negatives represented by 20% random mutations may not be negatives. Interestingly, the 268 
second-round success rate increased from 38% to 51% along with a one-order-of-magnitude 269 
improvement in enzymatic activity, indicating that adding new experimental labels can improve 270 
classifier-guided search even for enzymatic activity, despite lacking quantitative labels.  271 
 272 
We have selected sequences with high confidence in predicted structures for experimental 273 
validations. The high (38% in Round I) but not yet >90% success rate for TadA's virtual evolution 274 
illustrates that the structural fold alone is not sufficient as an indicator of enzymatic activity. This is 275 
because enzyme function not only requires highly precise active-site geometry and transition-state 276 
stabilization, but also depends on compatible conformational dynamics and kinetics that enable 277 
efficient substrate binding and product release on a productive timescale.41-43 More studies are 278 
needed to search for a better activity indicator as well as improving scoring for virtual evolution of 279 
enzymes.  280 
 281 
SPIN-dvEvo evolved functional TadA starting from a 20% randomly mutated (inactive) seed. We 282 
kept starting sequences close to the TadA family where the LoRA scorer remains informative. We 283 
also tried to start from fully random sequences and found that evolution from these sequences is not 284 
productive according to analysis of their predicted structures. This indicates that the sequence space 285 
is too large to be located by starting from purely random sequences within practical GA generations. 286 
Nevertheless, it can start from one neighborhood of an active sequence to locate other 287 
neighborhoods far away from the original sequence cluster as shown in Fig. 2B and Fig 3B.  288 
 289 
However, the success rate of SPIN-dvEvo for a disordered protein CcdA is only 2.6%. This is much 290 
lower than virtual evolution of TadA enzyme. Designing an intrinsically disordered protein is a 291 
challenging task because activity is typically encoded in an ensemble of rapidly interconverting 292 
conformations and mediated by weak, context-dependent interactions, so improvements in fold 293 
stability or a single “best” structure provide little guidance. Recent progress has come from 294 
explicitly optimizing ensemble-level objectives, for example by using sequence-to-ensemble 295 
predictors for IDRs and by combining generative models with biophysical/simulation-based 296 
forward models to design sequences that realize targeted disordered-state properties, as well as from 297 
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diffusion-based binder design strategies that focus the objective on functional binding constraints 298 
rather than enforcing an ordered fold.44 Here, we achieved a success (albeit low success rate) without 299 
relying on any information from binding partner CcdB or predicted complex structures.  300 
 301 
It is of interest to know how new functional clusters would have been evolved naturally if they were 302 
mixed with natural homologs when building phylogenetic trees(see SI). As shown in Fig. 4A and 303 
Fig. 4B, both virtually evolved TadA and CcdA are forming several phylogenetically distinct 304 
clusters but do share common ancestors with naturally occurring sisters at different time points. For 305 
TadA, this split corresponds to an evolutionary timescale on the order of ~0.2–1.2 Ga, based on 306 
TimeTree-derived lineage-age estimates for these taxa45-47. Similarly, the estimates for the virtually 307 
evolved CcdA clade dating to approximately 2.508 Ga as diverging from a Gammaproteobacteria-308 
associated branc. By comparison, these virtual evolutions took only 713 seconds for TadA and 761 309 
seconds for CcdA by SPIN-dvEvo on a workstation equipped with an AMD EPYC 9654 (96-core, 310 
2.4 GHz) CPU and an NVIDIA RTX 4090 GPU (24 GB).  311 
 312 
SPIN-dvEvo was purposefully trained on binary-labeled sequences (1 for functional and 0 for 313 
nonfunctional). This is because most proteins with known functions do not have a quantitative 314 
functional label. One immediate improvement for SPIN-dvEvo is to employ a regression head, 315 
rather than a classification head, when quantitative functional data such as a fitness score, binding 316 
affinity, or enzymatic activity is available for a small dataset. A regression head would contain a 317 
more accurate evolution direction than a classification head. This is a subject of an ongoing study. 318 
 319 
One limitation of SPIN-dvEvo is its reliance on the ESM-2 650M. While ESM-2 is one of the best 320 
protein language models available, we did not have the resource to test other language models or 321 
utilization of multiple language models that could be potentially more beneficial than ESM-2 in 322 
directed virtual evolution. Moreover ESM-2 may be inherently biased toward some protein 323 
sequences with large family of homologous sequences as it was indiscriminately trained on all 324 
protein sequences.48, 49 Further studies in this area are needed. 325 
 326 
Moreover, current implementation of SPIN-dvEvo is optimized for a single functional objective. A 327 
multi-objective model, where functional objectives are optimized alongside other property 328 
objectives such as stability, pH tolerance, and thermostability, can be easily implemented. This 329 
research is also currently ongoing. 330 
  331 

Methods 332 

Data Collection and Curation 333 

For TadA, we compiled 10 functional sequences from previously engineered DNA-editing TadA 334 
variants22 (listed in Supplementary Table S1). For CcdA, we constructed the 22-sequence set by 335 
sequence-identity clustering of UniProtKB CcdA homologs. Starting from the canonical E. coli 336 
CcdA (P62552; 36 aa) as the query, we retrieved annotated CcdA family homologs from closely 337 
related Enterobacterales/Gammaproteobacteria. We then removed incomplete/aberrant entries (e.g., 338 
truncated sequences or atypical lengths) and identical sequences (100% sequence identity). This 339 
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yielded a deduplicated set by keeping only unique amino-acid sequences, yielding 22 non-redundant 340 
homologs (accessions in Supplementary Table S2). To balance classes during few-shot training, 341 
we generated synthetic decoys by randomly mutating 20% of residues in each positive sequence. 342 
All positive sequences were labeled as 1 (functional), and all negative sequences—whether 343 
randomly generated or literature-confirmed—were labeled as 0 (non-functional). 344 
 345 

LoRA-Based Model Adaptation  346 

We adapted ESM-2 (650M parameters) to each task using low-rank adapters (LoRA) while keeping 347 
all base model weights frozen. This model size offered a practical trade-off between representation 348 
quality and computational cost, allowing training on a single 24–40 GB GPU. 349 
 350 
LoRA modules were inserted into the self-attention Q/K/V projection layers of every transformer 351 
block. For each pretrained projection 𝑊𝑊 ∈ ℝ𝑑𝑑×𝑑𝑑, LoRA adds a trainable low-rank update Δ𝑊𝑊 =352 
𝑠𝑠 𝐴𝐴𝐴𝐴 with rank 𝑟𝑟 and scaling 𝑠𝑠 = 𝛼𝛼/𝑟𝑟: 353 

𝑊𝑊� = 𝑊𝑊 + 𝑠𝑠 𝐴𝐴𝐴𝐴,𝐴𝐴 ∈ ℝ𝑑𝑑×𝑟𝑟 ,  𝐵𝐵 ∈ ℝ𝑟𝑟×𝑑𝑑 ,  𝑠𝑠 = 𝛼𝛼/𝑟𝑟. 355 
 354 
We employed (𝑟𝑟,𝛼𝛼) = (16,16) . This setting adds 4,055,040 LoRA trainable parameters 356 
(excluding the final linear head), corresponding to ~0.62% of the ~650M-parameter ESM-2 base 357 
model, and was used throughout this work. 358 
 359 
Classification head (binary activity) 360 
For binary activity prediction 𝑦𝑦𝑖𝑖 ∈ {0,1}, the frozen ESM-2 produces a sequence representation 361 
ℎ ∈ ℝ𝑑𝑑(pooled from token embeddings), which is mapped to a scalar logit 362 

𝑧𝑧 = 𝑢𝑢⊤ℎ + 𝑏𝑏, 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 𝑓𝑓(𝑥𝑥) = 𝜎𝜎(𝑧𝑧) ∈ [0,1] 364 
 363 
The classifier was trained with binary cross-entropy: 365 

ℒBCE = −
1
𝑁𝑁
�[𝑦𝑦𝑖𝑖log 𝑝𝑝𝑖𝑖 + (1 − 𝑦𝑦𝑖𝑖)log (1 − 𝑝𝑝𝑖𝑖)]
𝑁𝑁

𝑖𝑖=1

. 367 

 366 
Only the LoRA parameters (𝐴𝐴,𝐵𝐵)  and the classification head parameters (𝑢𝑢, 𝑏𝑏)  were updated 368 
during training; all ESM-2 weights remained frozen, 369 
 370 
Sequences were truncated to 1,000 amino acids and fine-tuned for 5 epochs using AdamW (learning 371 
rate 5 × 10−4, weight decay 10−3) with a cosine schedule and gradient clipping (∥ ∇∥max= 0.5). 372 
LoRA adapters targeted the attention Q/K/V projections (rank 𝑟𝑟 = 16, 𝛼𝛼 = 16, dropout 0.2; base 373 
model frozen) with batch size 4. 374 
 375 

Genetic Algorithm Sampling 376 

We performed an iterative mutation–crossover search guided by a fixed LoRA activity scorer. 377 
Diversity arose implicitly from uniform parent sampling and stochastic point mutations, and exact 378 
duplicate children were removed during population construction. In each generation, parent 379 
sequences were sampled uniformly from the current mating pool and recombined to produce a child. 380 
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Each sequence was scored by the LoRA-adapted ESM-2 classifier, with the positive-class 381 
probability computed from the logits as 382 

𝑝𝑝act(𝑥𝑥) =
exp (𝑧𝑧1)

exp (𝑧𝑧0) + exp (𝑧𝑧1)
. 383 

Initialization.  384 
The initial population consisted of 𝑁𝑁 sequences (equal to the size of the seed pool), generated by 385 
applying 20% random substitutions to a set of positive sequences (natural homologs or previously 386 
engineered variants). 387 
 388 
Embedding & activity model.  389 
Each sequence was scored by a LoRA-tuned binary activity classifier on a frozen ESM-2 (650M), 390 
returning 𝑝𝑝act(𝑥𝑥) . (Sequence embeddings 𝜙𝜙(𝑥𝑥) were computed when needed for 391 
visualization/analysis, by mean-pooling the last hidden state over non-special tokens followed by 392 
L2 normalization.) 393 
 394 
Variation & constraints.  395 
Children were generated using a one-point crossover plus point-mutation operator 396 
(mutate_crossover). One parent was first chosen as the base; a crossover point 𝑐𝑐 ∈ [1, min (∣ 𝑝𝑝1 ∣, ∣397 
𝑝𝑝2 ∣) − 1] was sampled, and the suffix was swapped with the other parent, yielding a recombinant 398 
whose length follows the suffix donor. After crossover, each position was independently mutated 399 
with probability 0.02 by substituting a uniformly sampled amino acid from the 20 standard residues. 400 
Candidate sequences were filtered with NCBI segmasker50 to reject sequences containing low-401 
complexity segments longer than 5 residues. 402 
 403 
Selection & replacement.  404 
For each parent sequence 𝑥𝑥 with score 𝑝𝑝act(𝑥𝑥), a child 𝑥𝑥′ was proposed and evaluated to obtain 405 
𝑝𝑝act(𝑥𝑥′). The acceptance ratio was computed as 406 

𝑟𝑟 =
𝑝𝑝act(𝑥𝑥′)
𝑝𝑝act(𝑥𝑥)

. 408 

 407 
The child was accepted if 𝑟𝑟 ≥ 1 ; otherwise, it was accepted with probability 0.125 × 𝑟𝑟 . After 409 
iterating this accept/reject update across the population, sequences were ranked by score (by 𝑝𝑝act in 410 
probability-only mode) and the top 25% sequences (ranked by score) were retained as the mating 411 
pool for the next generation. Unless stated otherwise, virtual evolutions were conducted for a pre-412 
specified number of generations (default is 100) and the per-generation mean score was logged. 413 
 414 
Parallel runs. Each run outputs 𝑁𝑁 evolved sequences (set by the seed pool size). Larger libraries 415 
were obtained by launching multiple independent runs in parallel with different random seeds and 416 
by aggregating the resulting sequences. 417 
 418 

Sequence sampling of baseline models: ProteinMPNN and Pinal  419 

ProteinMPNN 420 
A structure-templated baseline library was generated using ProteinMPNN in fixed-backbone design 421 
mode with the experimental TadA reference structure as the input template (PDB: 2B3J, Chain A). 422 
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The structure file was preprocessed to retain only the designed protein chain (non-protein atoms 423 
were removed) and was provided to ProteinMPNN to compute per-position amino-acid distributions 424 
conditioned on the backbone coordinates. 1,000 sequences were then sampled stochastically from 425 
the model using temperature-controlled decoding (temperature = 0.1) with otherwise default 426 
ProteinMPNN settings. Sampled sequences were post-processed to remove exact duplicates and 427 
were written to FASTA for downstream structure prediction and evaluation. 428 
 429 
Prompt for Pinal Sequence Generation 430 
TadA Prompt：TadA (tRNA adenosine deaminase) is an enzyme that catalyzes the deamination of 431 
adenosine to inosine at the wobble position (A34) of tRNA molecules, thereby expanding codon 432 
recognition during translation, adenosine34 in tRNA + H2O + H+ = inosine34 in tRNA + NH4+. 433 
EC:3.5.4.33. Through the introduction of two key mutations, A106V and D108N, the substrate 434 
specificity of E.coli TadA has been reprogrammed, enabling the enzyme to catalyze adenosine and 435 
cytosine deamination directly on DNA substrates. These engineered TadA variants are incorporated 436 
into adenine base editors (ABEs), facilitating the precise conversion of A•T base pairs to G•C in 437 
DNA without introducing double-strand breaks. This strategy offers an efficient and high-fidelity 438 
tool for genome editing, particularly for the correction of disease-associated point mutations. 439 
 440 
CcdA Prompt：CcdA is a bacterial antitoxin protein that functions as part of the CcdA–CcdB type 441 
II toxin-antitoxin system encoded by the F plasmid in *Escherichia coli*. The CcdA protein 442 
comprises 72 amino acids and adopts a two-domain structure: an N-terminal dimerization and DNA-443 
binding domain, followed by a C-terminal domain that binds to the CcdB toxin. In the absence of 444 
CcdB, the C-terminal domain of CcdA is intrinsically disordered. Upon binding to CcdB, CcdA 445 
undergoes a conformational change, forming a stable CcdA–CcdB complex that neutralizes the 446 
toxicity of CcdB. This complex also acts as a transcriptional repressor of the ccd operon by binding 447 
to the operator region. The CcdA–CcdB interaction is dynamic, with varying stoichiometries leading 448 
to different complex formations, including (CcdA)2–(CcdB)2 and (CcdA)2–(CcdB)4 complexes. 449 
The balance between CcdA and CcdB concentrations regulates the stability of the complex and the 450 
repression of the operon. CcdA is subject to degradation by the Lon protease, which modulates the 451 
levels of the antitoxin and, consequently, the activity of the toxin.", 452 
 453 

Structure prediction for SPIN-dvEvo sequences  454 

SPIN-dvEvo sequences were evaluated by two complementary structure-prediction pipelines with 455 
distinct roles. For high-throughput, distribution-level benchmarking across large libraries, we used 456 
the MSA-free, PLM-based OmegaFold (v2.3.2)27 to predict structures for all sequences, and 457 
quantified global fold similarity to experimental references using TM-align (TM-score). For TadA, 458 
PDB 2B3J (tRNA adenosine deaminase from Staphylococcus aureus in complex with RNA) was 459 
used as the reference structure, because it provides a substrate-bound, catalytically relevant 460 
conformation for a consistent TM-score fold-similarity benchmark; in contrast, the available E. coli 461 
TadA structure PDB 1Z3A is apo and does not capture the RNA-engaged state51. TM-scores reported 462 
in the main text refer to alignments between the native structure (PDB 2B3J) and OmegaFold-463 
predicted structures for SPIN-dvEvo-evolved variants. 464 
 465 
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Separately, we used AlphaFold3 (AF3) to obtain model confidence estimates for experimental 466 
prioritization. To reduce the computational time for MSA retrieval, sequences were clustered at 80% 467 
pairwise identity; a representative sequence per cluster was used to query the AF3 MSA database, 468 
and the resulting MSAs were reused for all members of that cluster during the batch inference. For 469 
TadA, per-chain pLDDT was used as the confidence metric. 470 
 471 

TadA experimental methods  472 

Reagents and Strains 473 
All PCR reactions for cloning restriction sites and generating recombineering targeting cassettes 474 
were performed using 2 × Phanta UniFi Master Mix DNA Polymerase (Vazyme, Nanjing, China, 475 
P516-02). Colony PCR reactions for subsequent sequencing were conducted using Premix TaqTM 476 
DNA Polymerase (Takara, Dalian, China, R901A). Homologous recombination was performed 477 
using the CloneExpress II One Step Cloning Kit (Vazyme, C112-02). All primers were synthesized 478 
by GENEWIZ (Suzhou, China). Gene sequences for R67, which confers resistance to trimethoprim 479 
(TMP), and engineered TadA variants were synthesized by GENERAL BIOL (Anhui, China). 480 
Antibiotics, including ampicillin sodium (Sangon Biotech, Shanghai, China, A100339-0025) and 481 
chloramphenicol, along with L-arabinose, were obtained from commercial sources. Chemically 482 
competent E. coli DH5α cells were purchased from AlpalifeBio (Beijing, China), and chemically 483 
competent E. coli DH10B cells were obtained from Biomed (Beijing, China). 484 
 485 
Plasmid construction  486 
Engineered TadA variants used in this study are detailed in Tables S3. Expression plasmids for these 487 
variants and T7 RNA polymerase (T7RNAP) were constructed using the pMuta088 vector backbone. 488 
This backbone, derived from pDae079, carries the tandem PmCDA1-T7 RNA polymerase and uracil 489 
glycosylase inhibitor (UGI). 490 
For this study, expression plasmids for the engineered TadA variants were constructed by replacing 491 
the PmCDA1 gene in the pMuta088 scaffold with the specific TadA sequences via homologous 492 
recombination. A negative control plasmid (pT7RNAP-ΔTadA), expressing only an Xten-linker–493 
T7RNAP cassette, was constructed using the same strategy.23 494 
 495 
TadA editing activity was quantified by measuring the frequency of trimethoprim-resistant 496 
revertants following the general MutaT7/eMutaT7 workflow with minor modifications as detailed 497 
below.52 To characterize the A•T-to-G•C editing activity of TadA variants via antibiotic resistance 498 
reversion, a reporter plasmid was developed. The R67 gene, encoding dihydrofolate reductase 499 
(DHFR) which confers resistance to trimethoprim (TMP), was cloned into a low-copy-number 500 
plasmid (T7 promoter + terminators reporter plasmid). This was achieved by replacing the existing 501 
neoR/ kanR gene (from Tn5) in a precursor plasmid via homologous recombination. In the final 502 
reporter construct (pReporter-R67), expression of the R67 gene is driven by a T7 promoter and 503 
transcription is terminated by a tandem array of ten T7 terminators. Subsequently, site-directed 504 
mutagenesis was employed to convert the tryptophan codon (TGG) at position 23 into a premature 505 
stop codon (TAG), resulting in the final reporter construct pReporter-R67W23*. In this system, TadA-506 
mediated adenine deamination reverts the stop codon to wild-type, thereby restoring functional R67 507 
expression and conferring TMP resistance. 508 
 509 
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Evaluation of TadA Variant Activity in E. coli 510 
To quantitatively characterize intracellular DNA-editing activity, the mutation (editing) frequency 511 
was defined as the ratio of the total TMP-resistant revertants to the total viable cell population. 512 
 513 
To perform this assay, chemically competent E. coli DH10B cells were co-transformed with two 514 
plasmids: (1) The reporter plasmid (AmpR) pReporter-R67W23*; (2) a chloramphenicol-resistant 515 
(CmR) expression plasmid (pDae079 derivative) encoding either pT7RNAP-ΔTadA (negative 516 
control), wild-type TadA (positive control), or an engineered TadA variant. 517 
 518 
Transformants were selected on LB agar plates containing 100 µg/mL ampicillin and 25 µg/mL 519 
chloramphenicol, followed by incubation at 37℃ for 12–16 hours. Individual colonies were then 520 
inoculated directly into 10 mL of LB broth supplemented with 100 µg/mL ampicillin, 25 µg/mL 521 
chloramphenicol, and 0.2% (w/v) L-arabinose, followed by overnight incubation (16 h) at 37℃ with 522 
shaking at 220 rpm to initiate TadA expression and mutation accumulation. 523 
 524 
On the following day, the overnight cultures were diluted 1:100 into fresh LB medium containing 525 
the same concentrations of ampicillin, chloramphenicol, and L-arabinose. To promote the fixation 526 
of mutations during active growth, these cultures were incubated for 4 hours at 37℃ with shaking 527 
at 220 rpm. 528 
 529 
Editing activity Assay 530 
At the endpoint, cultures were serially diluted (10-fold). To determine the total viable cell population 531 
(𝑁𝑁0), 10 µL aliquots of each serial dilution were spotted onto a single non-selective LB agar plate 532 
(containing 100 µg/mL ampicillin and 25 µg/mL chloramphenicol). To enumerate the TMP-resistant 533 
population (𝑁𝑁1), 300 µL aliquots of undiluted culture were spread onto three selective LB agar plates 534 
containing 20 µg/mL TMP (supplemented with the same antibiotics). Plating for 𝑁𝑁1 was performed 535 
in triplicate. Colony counts were extrapolated to the full 10 mL culture volume to derive the total 536 
viable cells (𝑁𝑁0, scaled from the 10 µL spot and dilution factors) and total TMP-resistant revertants 537 
(𝑁𝑁1, scaled from the 300 µL spread). The frequency 𝑓𝑓 was calculated as the ratio 𝑁𝑁1 ∕ 𝑁𝑁0. 538 
 539 
Mutation-rate calculation.  540 
For cross-study comparison to prior eMutaT7 reports, endpoint TMP-reversion frequencies were 541 
converted to per-base, per-generation mutation rates using the Luria–Delbrück rare-mutation 542 
approximation, where the expected mutant frequency satisfies 𝐸𝐸[𝑓𝑓] ≈ 𝜇𝜇ln (𝑅𝑅eff) . Although 543 
induction was maintained for 16 h, the calculation was normalized to the effective population 544 
expansion of the final outgrowth step, as mutation fixation is replication-dependent. This single 4 h 545 
propagation propagation round used a 1:100 reinoculation followed by regrowth to saturation, 546 
corresponding to ∼ 6.6  generations ( 𝐺𝐺 ). Assuming binary fission ( 𝑅𝑅eff = 2𝐺𝐺  ), ln (𝑅𝑅eff) =547 
𝐺𝐺ln 2 ≈ 4.57 . Because TMP-resistance restoration of the R67 reporter requires a single-base 548 
reversion, the effective target size was set to 𝑆𝑆 = 1 and rates were reported as site-specific values 549 
(not normalized by the 192-bp reporter length):  550 

𝜇𝜇𝑠𝑠.𝑝𝑝.𝑏𝑏. =
𝑓𝑓

𝐺𝐺 𝑙𝑙𝑙𝑙 2
≈

𝑓𝑓
4.57 

 (𝑝𝑝𝑝𝑝𝑝𝑝 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝑝𝑝𝑝𝑝𝑝𝑝 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔) 551 

 552 
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Verification of R67 Gene Reversion 553 
To confirm that TMP resistance resulted from the targeted A•T-to-G•C edit in the R67 gene, colony 554 
PCR was performed. For a representative subset of TadA variants tested, five independent TMP-555 
resistant colonies were randomly picked from the selective agar plates for each selected variant. The 556 
R67 gene locus was PCR-amplified from these colonies. The resulting amplicons were purified and 557 
subjected to Sanger sequencing (GENEWIZ, Suzhou, China). The obtained sequences were aligned 558 
with the reference R67W23* sequence and the wild-type R67 gene sequence to identify the specific 559 
A-to-G reversion at codon 23 and any other potential off-target mutations within the amplified 560 
region. 561 
 562 

CcdA library generation, selection, and validation 563 

The Plasmids Construction 564 
The pUC57-Kan-ccdA/B plasmid was constructed to co-express the CcdA36–72 domain and ccdB in 565 
E. coli. In this generation, the forward strand carries the J23119 promoter–driven CcdA36–72 cassette, 566 
and the reverse strand carries the AmpR promoter–driven ccdB gene. A 21-bp spacer was inserted 567 
between the two stop codons to facilitate PCR amplification. Both ccdA36–72 and ccdB were codon-568 
optimized for E. coli, synthesized by General Biosystems, and subcloned into pUC57-Kan using 569 
PciI and NdeI restriction sites. For construction of the ccdA mutant library, we generated pUC57-570 
Kan-2BspQI-ccdB by inserting two BspQI sites using primers BspQI-FP and BspQI-RP 571 
(Supplementary Table S4); this cloning step was performed in DB3.1 competent cells, which are 572 
resistant to ccdB toxicity. All plasmids were verified by Sanger sequencing, and complete vector 573 
and primer sequences are provided in Supplementary Table S4. 574 
 575 

Library Construction, Selection and High-Throughput Sequencing 576 

The SPIN-dvEvo-evolved ccdA36-72 variants, codon-optimized for E. coli, were synthesized as an 577 
oligo pool containing the BspQI site by GenScript (China). The oligo pool was first amplified using 578 
PrimerSTAR HS DNA polymerase (Takara) and subsequently digested with BspQI. The digested 579 
fragments were then ligated into the BspQI-linearized pUC57-Kan-2BspQI-ccdB vector using T4 580 
DNA ligase (Takara). Finally, the ligation products were purified and eluted in nuclease-free water, 581 
ready for electroporation. 582 
 583 
The ligation products were electroporated into electrocompetent DB3.1 cells using a Bio-Rad 584 
Micropulser according to the manufacturer's protocol. Transformants were recovered in 10 mL of 585 
LB medium at 37°C for 1 hour. To estimate the library size, a portion of the culture was serially 586 
diluted, plated on LB agar containing kanamycin, and incubated for colony counting. Meanwhile, 587 
kanamycin was added to the main culture to a final concentration of 50 µg/mL, followed by 588 
incubation at 37°C for 10 hours. Subsequently, 100 µL of this culture was inoculated into 10 mL of 589 
fresh LB medium for amplification and subsequent plasmid extraction. The remainder of the 590 
overnight culture was harvested, resuspended in LB medium with 15% glycerol, and stored at -80°C. 591 
The initial, unselected ccdA library consisted of plasmids extracted from the CcdB-resistant DB3.1 592 
strain. To perform functional selection, this library was electroporated into the CcdB-sensitive DH5α 593 
strain. Plasmids successfully recovered from DH5α transformants then represented the selected 594 
ccdA library. The CcdA36-72 gene was PCR-amplified from both libraries using INDEX-containing 595 
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primers. The amplicons were gel-purified and sequenced by Salus Pro platform (ShenZhen Salus 596 
Biomed Ltd).. 597 
 598 
In vivo functional analysis of the SPIN-dvEvo-evolved CcdA variants 599 
Selected CcdA variants (see Supplementary Table S7), encompassing a range of fitness scores, 600 
were cloned into a pUC57-Kan-ccdA/B expression vector. All gene sequences were synthesized and 601 
subsequently confirmed by DNA sequencing (General Biol). To evaluate in vivo function, 80 ng of 602 
each plasmid construct was transformed into the ccdB-sensitive Escherichia coli strain DH5α. 603 
Transformants were selected on LB agar plates supplemented with kanamycin. A ten-fold serial 604 
dilution series of each transformation was plated to enable quantitative assessment. After incubation 605 
(37 °C, 20 h), colony-forming units (CFUs) were counted at matched dilution factors and reported 606 
as relative survival/growth under co-expression of ccdB, where functional CcdA variants rescue 607 
colony formation (Supplementary Fig. 6). 608 
 609 
Sequencing data processing 610 
Raw reads were demultiplexed, adapter-trimmed, and quality-filtered. Reads were assigned to 611 
SPIN-dvEvo-evolved variants by matching the variable region to the SPIN-dvEvo-evolved 612 
dictionary (allowing ≤1 mismatch to tolerate sequencing error; ambiguous matches were discarded). 613 
For each variant 𝑖𝑖 counts 𝑐𝑐𝑖𝑖

pre and 𝑐𝑐𝑖𝑖
post were tabulated. Samples with <106 total mapped reads 614 

were excluded. Unless noted, a small pseudocount (α=0.5) was used only for descriptive 615 
normalization of very low counts; final fitness estimates and uncertainty were obtained from 616 
DiMSum.39 617 
 618 
Fitness estimation and statistical analysis 619 
After read mapping and quality filtering, 2,363 SPIN-dvEvo-evolved variants were retained for 620 
downstream analysis. For each variant 𝑠𝑠, we denote the pre-selection and post-selection read counts 621 
as 𝑐𝑐pre(𝑠𝑠)and 𝑐𝑐post(𝑠𝑠), with total library depths 622 

𝑁𝑁pre = �𝑐𝑐pre
𝑠𝑠

(𝑠𝑠),𝑁𝑁post = �𝑐𝑐post
𝑠𝑠

(𝑠𝑠). 624 

 623 
Counts were library-size normalized, and per-variant enrichment was defined as 625 

𝐸𝐸𝐸𝐸(𝑠𝑠) =
𝑐𝑐post(𝑠𝑠)/𝑁𝑁post
𝑐𝑐pre(𝑠𝑠)/𝑁𝑁pre

. 627 

 626 
Variant fitness was then defined as the log2 enrichment without any wild-type normalization: 628 

𝐹𝐹(𝑠𝑠) = log 2 𝐸𝐸𝐸𝐸(𝑠𝑠) = log 2  �
𝑐𝑐post(𝑠𝑠)
𝑐𝑐pre(𝑠𝑠)

� − log 2 �
𝑁𝑁post
𝑁𝑁pre

� . 630 

 629 
Fitness (log2 enrichment) and associated uncertainty were estimated with DiMSum (Poisson–Delta 631 
model with overdispersion correction), consistent with the definition above. 632 
 633 
To identify significantly enriched variants, we applied an FDR-controlled significance filter based 634 
on DiMSum-reported 𝑞𝑞-values: 635 

𝑞𝑞_value < 10−3, 636 
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 637 
For effect-size stratification, we labeled variants with log2 enrichment F(s) > 3.0 as functional and 638 
those with F(s) > 5.0 as wild-type-like  639 
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Code availability 640 

The SPIN-dvEvo source code and the LoRA model weights for TadA and CcdA will be soon publicly 641 
available  642 

Data availability 643 

All data generated or analyzed in this study are included in the main text and Supplementary 644 
Information. Input and output sequence files (including training seeds, natural homolog sets, and 645 
evolved sequence libraries), as well as analysis-ready intermediate results, are publicly available at 646 
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774 
Figure 1. Schematic overview of the framework for directed virtual evolution: SPIN-dvEvo. A 775 
LoRA-adapted ESM-2 model is fine-tuned utilizing only a few curated positive and randomly 776 
generated negative (binary) samples. The model is then integrated into a genetic algorithm as a 777 
scorer to iteratively evolve sequences toward desired functionality but away from the original 778 
sequence cluster. 779 
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Figure 2.   Validation of virtually evolved enzyme TadA from sequence motifs, predicted structures 782 
and experiments. (A) Schematic of the experimental reporter system employed for quantifying A•T-783 
to-G•C editing activity. TadA-mediated reversion of a premature TAG stop codon to a TGG codon 784 
in the R67 gene confers resistance to trimethoprim (TMP), enabling selection of active variants. (B) 785 
Newly emerged clusters from directed virtual evolution by SPIN-dvEvo according to the t-SNE 786 
projections of the base ESM-2 embeddings of the 10 starting TadA sequences to 1000 evolved 787 
sequences in Round 1 and Round 2. (C) Similar conserved functional and structural core motifs 788 
between virtual evolved sequences and natural homologs (top). (D) The accuracy for the predicted 789 
structures (according to TMscore) for 1000 TadA variants generated by four models (sequence generators 790 
Pinal and structure-based designs ProteinMPNN) compared to those given by SPIN-dvEvo in two rounds. 791 
(E) Scatter plot of the predicted confidence score pLDDT versus sequence identity to the wild type 792 
(E. coli TadA) for 1000 evolved sequences by SPIN-dvEvo in Round 1 and Round 2. The 60 793 
experimentally tested sequences selected from Round 1 and the 60 from Round 2 are highlighted as 794 
filled points. (F) Boxplots comparing experimental activities of validated first- and second-round 795 
evolved TadA sequences, showing an upward-shifted distribution after including the first-round 796 
result in training. (G) Illustrative examples of the plates from the R67 DHFR–based E. coli reporter 797 
assay on TMP-selective medium. Shown are the negative control (ΔTadA cells only expressing Xten 798 
linker–T7RNAP), a positive-control TadA variant (E. coli TadA), and cells expressing SPIN-dvEvo-799 
evolved TadA variants dvTadA-55, dvTadA-56 and dvTadA-2-02. 800 
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 802 
Figure 3. Experimental validation of evolved variant library of intrinsically disordered protein 803 
CcdA. 804 
(A) Schematic diagram for high-throughput validation of evolved CcdA according to the ability of 805 
a CcdA variant that can neutralize CcdB toxin in E. coli growth, measured by sequence counts pre 806 
and post selections. (B) Emergence of new clusters in SPIN-dvEvo sequences evolved from the 807 
starting 22 natural CcdA input sequences according to the t-SNE projections of the base ESM-2 808 
embeddings. (C) Sequence motifs from SPIN-dvEvo sequences are highly similar to those obtained 809 
from natural homologs according to key conserved residues highlighted in blue boxes. (D) The 810 
distribution in number of variants as measured fitness scores (Log₂ fitness distributions normalized 811 
by the library size). (E) Activity confirmation of selected variants according to their fitness. Serial 812 
10-fold dilution spot assay showing CcdA WT from E. coli and five CcdA variants (1654 (Log₂ 813 
fitness = 3.0), 924 (Log₂ fitness = 3.2), 903 (Log₂ fitness = 3.3), 854 (Log₂ fitness = 3.3), and 878 814 
(Log₂ fitness = 5.3) along with the wild type (Log₂ fitness = 8.5)) for rescuing toxin CcdB at a 815 
dilution factor of 10²–104. Higher colony counts indicate stronger neutralization activity.  816 
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Figure 4. Phylogenetic novelty of SPIN-dvEvo TadA and CcdA variants in joint natural–819 
evolved trees. 820 
Maximum-likelihood phylogenies inferred from multiple sequence alignments containing natural 821 
homologs and experimentally validated SPIN-dvEvo evolved variants (sequences combined prior 822 
to alignment and tree building). Triangles denote nodes with bootstrap support in the 70–100 823 
range. (A) TadA: alignment includes 1000 natural TadA homologs and 54 dvTadA variants. 824 
Highlighted sectors mark major, evolve-enriched dvTadA branches separated from dominant 825 
natural clades, supporting phylogenetically distinct lineages beyond the initial natural 826 
neighborhood. (B) CcdA: alignment includes 100 natural CcdA homologs and 62 dvCcdA 827 
variants. Light-blue and red sectors highlight two major evolved dvCcdA branches, indicating 828 
phylogenetically distinct lineages relative to the bulk of natural homologs. 829 
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