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20 Abstract

21 Protein evolution in nature and in the laboratory proceeds through incremental, largely

22  undirected mutational steps, restricting exploration to local regions of sequence space and
23  limiting access to remote yet potentially functional proteins. We present EvoGUD, a

24  single-sequence—conditioned diffusion framework for large-step exploration of protein

25  sequence space under learned evolutionary constraints. EvoGUD-generated sequences

26  preserve natural-like co-evolutionary structure in representation space despite large

27  sequence divergence. When assembled as virtual multiple sequence alignments, these

28  sequences substantially improve AlphaFold3 single-sequence inference, restoring much
29  of the backbone accuracy and atomic-level side-chain realism for recent deposited protein
30 monomers as well as protein—nucleic-acid complexes, without evolutionary database

31  search. Moreover, EvoGUD enables functional discovery in remote sequence space,

32  yielding active variants of the adenine base-editing enzyme TadA in targeted validation
33  experiments (80% success rate) and large numbers of functional variants of the

34  intrinsically disordered antitoxin CcdA in high-throughput selection assays (19% success
35 rate). Together, these results establish EvoGUD as a single-sequence, evolution-aware

36  generative framework for large-step navigation of protein sequence space, with direct

37  implications for structure modeling and functional protein discovery in previously

38 unexplored sequence space.
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Introduction

Protein evolution has generated an extraordinary diversity of molecular structures and
biochemical functions, yet the mechanisms by which evolution explores protein sequence
space are intrinsically constrained. Natural evolution proceeds through incremental,
largely undirected mutations accumulated over long timescales, while laboratory directed
evolution accelerates selection but still relies on random, local mutational steps’2.
Consequently, both processes tend to explore narrow neighborhoods around existing
solutions, leading to uneven sampling of protein fitness landscapes and limited access to
distant yet potentially functional regions of sequence space®. A central challenge in
protein science is therefore to enable large-step exploration of protein sequence space—
jumping to remote regions—while preserving the functional and structural constraints
characteristic of a target protein family.

Computational approaches to this challenge broadly fall into structure-based and
sequence-based strategies. Structure-centric methods have achieved remarkable success
in de novo protein design, but their reliance on explicit backbone templates or structural
hypotheses limits their applicability when reliable structures are unavailable, particularly
for intrinsically disordered proteins*®. Sequence-based protein language models provide
an alternative by leveraging large-scale evolutionary data to generate functional
sequences®; however, most operate in an unconditional or weakly conditioned regime and
are not designed for targeted exploration of homolog families. Conditional sequence
models and evolutionary augmentation approaches can expand sequence diversity but

typically depend on pre-training with family-level labels, fine-tuning on known
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homologs, or autoregressive sampling schemes that bias generation toward the statistical
center of the training distribution’®.

Recent diffusion-based generative models offer a complementary paradigm by generating
all residues simultaneously through iterative denoising, enabling more effective capture
of global context and long-range dependencies than token-by-token autoregressive
models’®"". In protein modeling, however, most conditional diffusion frameworks
function primarily as evolutionary inpainting methods: they rely on a multiple sequence
alignment (MSA) as input and recover missing information for the masked query
sequence by interpolating within evolutionary boundaries defined by known
homologs'>'3. This inward generation regime benefits from dense evolutionary
coordinates supplied by the MSA but inherently limits the novelty of generated
sequences. By contrast, single-sequence exploration requires outward extrapolation—
inferring latent co-evolutionary constraints from a solitary query sequence to generate a
coherent, diverged homolog family de novo, without access to an existing alignment.
Existing methods lack an explicit mechanism for this type of controlled, query-centric
expansion.

Here we introduce EvoGUD (Evolution-guided Diffusion), a single-sequence—
conditioned diffusion framework for large-step exploration of protein sequence space.
EvoGUD learns the statistical structure of natural homolog families by training on MSAs
while conditioning exclusively on a single query sequence, enabling inference without
homolog retrieval. A tunable conditioning strength (y) controls the balance between
exploratory breadth and adherence to learned evolutionary constraints, allowing direct

generation of substantially diverged yet evolutionarily consistent homolog families
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within a single generative process. As a result, EvoGUD-generated sequences preserve
natural-like co-evolutionary structure in representation space despite large sequence
divergence, closely tracking natural homologs and substantially exceeding identity-
matched random controls.

When assembled as virtual MSAs (VMSAs), EvoGUD-generated sequences substantially
improve AlphaFold3™ single-sequence inference, restoring both backbone accuracy and
atomic-level side-chain realism for most monomers and protein-nucleic acid complexes,
without evolutionary database search. More importantly, EvoGUD enables functional
discovery in remote sequence space, yielding active TadA variants (an adenine base-
editing enzyme)'® and large numbers of functional CcdA antitoxin variants (an
intrinsically disordered protein interacted with the toxic protein CcdB)'® under purely
sequence-level conditioning. Together, these results establish EvoGUD as a single-
sequence—based, evolution-aware generative framework for large-step exploration of
protein sequence space under evolutionary constraints, enabling downstream structure

modeling and functional discovery.
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Results

Generating remote homologs from single protein sequences

EvoGUD was designed to bridge the gap between raw sequence space and the higher-
order evolutionary manifold captured by protein language models'’. Conceptually (Fig.
1a), both natural evolution and conventional laboratory directed evolution rely on small,
largely undirected mutational steps, and therefore explore only a limited local
neighborhood around a starting sequence’. EvoGUD instead enables direct generation of
remote homologs by operating in a feature space defined by ESM-2, conditioning
sequence generation on the query’s per-residue embeddings and pairwise attention
patterns’’.

Concretely, EvoGUD was trained as a denoising diffusion model'®"® to reconstruct
natural MSAs (nMSAs) from noise while observing only query-derived ESM-2 features
(Fig. 1b). During sampling, the model starts from a random amino-acid probability
distribution and iteratively denoises it under conditioning of single query sequence (Fig.
Ic). A probability absorption step blends the evolving distribution with the model-
predicted denoised distribution, and a single scalar parameter, the conditioning strength v,
modulates the extent to which sampling remains anchored to the conditioning query
sequence. As a result, y provides an explicit and continuous control over the distance of
generated sequences from the query sequence in sequence space.

We first quantified how the conditioning strength y controls sampling distance by
measuring the sequence identity between generated sequences and their corresponding

query sequences using an independent test set of 159 proteins. This dataset was
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constructed from recently released PDB monomers' and filtered to be non-redundant
with respect to both the training data and within the set itself, applying a 40% sequence-
identity cutoff, denoted as RecentPDB-monomer. (see Methods). Across a wide range of
vy values, EvoGUD produces smoothly tunable identity distributions, with increasing y
leading to progressively higher similarity to the query sequence (Fig. 1d), along with
improved attention similarity (Supplementary Fig. S1b), increased foldability according
to pTM from ESMfold (Supplementary Fig. S1c), reduction of diversity according to
intra-set sequence identity (Supplementary Fig. S1d) and decreased novelty according to
the maximum sequence identity to nMSA sequences (Supplementary Fig. S1f). This
demonstrates that EvoGUD does not rely on a fixed exploration regime, but instead
enables controlled interpolation between aggressive exploration and conservative
refinement.

To further assess whether EvoGUD preserves evolutionary features beyond simple
sequence identity shown in Fig. 1d, we compared nMSA sequences, EvoGUD-generated
sequences, and random sequences to the query sequence in the representation space of
ESM-2, according to cosine similarity between ESM-2 attention maps by using the
RecentPDB-monomer set. As shown in Fig. le, cosine similarity of ESM-2 attention of
EvoGUD-generated sequences to the query sequence closely tracks the similarity
trajectory of natural homologs (natural MSAs) and remain substantially higher than the
similarity of random controls across all identity regimes. Notably, even at low sequence
identity (< 0.3), EvoGUD maintains a median attention-space similarity of 0.874,
compared to 0.578 for random sequences, indicating that EvoGUD samples realistic

regions of the evolutionary manifold rather than merely matching identity statistics.
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145  Comparable trends were observed using ESM-2 embedding similarity instead of attention
146  (Supplementary Fig. S2). Together, these results show that EvoGUD enables controllable
147  generation of structurally plausible remote homologs while preserving higher-order

148  evolutionary constraints, with y acting as an explicit knob to balance exploration and

149  constraint.

150

151  Monomeric structure prediction with vMSA from EvoGUD

152  We next asked whether vMSAs generated by EvoGUD can replace nMSAs for

153  monomeric protein structure prediction with AlphaFold3' under single-sequence

154  conditions. We employed EvoGUD to generate vMSAs across a range of conditioning
155  strengths y and vMSA depths, and the resulting structures were predicted using

156  AlphaFold3 in single-sequence mode (AF3-SS) using an ensemble of 10 EvoGUD

157  parameter settings (See Methods).

158 EvoGUD + AF3-SS substantially outperformed AF3-SS on the RecentPDB-monomer
159  test set (Fig. 2a). The mean TM-score® increased from 0.476 for AF3-SS to 0.795 for
160 EvoGUD + AF3-SS, approaching the performance of ESMFold (0.827) and AF3 with
161  nMSAs and PDB templates (0.884). The fraction of targets with TM-score > 0.5—a

162  commonly used criterion for correct fold assignment—increased from 40.9% for AF3-SS
163  to 89.3% for EvoGUD + AF3-SS, comparable to ESMFold (92.4%) and approaching
164  AF3 with nMSAs and templates (96.2%). These results indicate that most monomers can
165  be modeled at near-native resolution from a single input sequence using EvoGUD.

166  To assess generalization beyond RecentPDB-monomer, we evaluated EvoGUD on the

167  CASP15% monomer benchmark (N = 71), which was not used during parameter

8



Langtaosha (LTS) Preprint doi: https://doi.org/10.65215/LTSpreprints.2026.01.29.000104. This version posted January 30, 2026. The copyright holder for this preprint

(which was not certified by peer review) is the author/funder. Creative Commons license: CC Attribution-NonCommercial 4.0

https://creativecommons.org/licenses/by-nc/4.0

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

selection. EvoGUD + AF3-SS again markedly improved backbone accuracy relative to
AF3-SS and yielded TM-score distributions comparable to those observed on
RecentPDB-monomer (Fig. 2b), demonstrating that the selected vMSA settings
generalize to an independent community benchmark without re-tuning. On CASP15, the
mean TM-score increased from 0.403 for AF3-SS to 0.593 for EvoGUD + AF3-SS,
approaching the performance of ESMFold (0.640) and AF3 with nMSAs and PDB
templates (0.740). The fraction of targets with TM-score > 0.5 increased from 25.4% for
AF3-SS to 64.8% for EvoGUD + AF3-SS, comparable to ESMFold (66.2%) and
approaching AF3 with nMSAs and PDB structure templates (77.5%). A representative
example is shown in Fig. 2¢, where EvoGUD + AF3-SS recovers the correct overall fold
and domain arrangement that is missed by AF3-SS.

Because AlphaFold3 is an all-atom diffusion model, we further evaluated the physical
plausibility of the predicted structures by quantifying steric clashes between heavy atoms.
ESMFold, despite its strong backbone accuracy, exhibited substantially higher clash
counts, with a broad tail of severely mispacked models on both RecentPDB-monomer
and CASP15 (Fig. 2d and 2e). In contrast, EvoGUD + AF3-SS markedly reduced steric
clashes relative to ESMFold, producing distributions much closer to those of AF3. A
representative local side-chain environment is shown in Fig. 2f, where EvoGUD + AF3-
SS yields well-packed, stereochemically reasonable side chains, whereas ESMFold
displays strained rotamers and steric overlaps®.

Together, these results show that EvoGUD enables single-sequence AlphaFold3 to
recover both high backbone accuracy and AF3-like all-atom realism for monomeric
proteins, without requiring time-consuming searches for natural homologs. We next

9
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191  asked whether similar gains extend beyond monomers to multimeric and protein—nucleic-
192  acid complexes.

193
194  Protein-NA complex prediction with vMSA from EvoGUD

195  We next evaluated whether EvoGUD can extend single-sequence prediction beyond
196  monomeric proteins to multi-chain assemblies, focusing on protein—nucleic-acid

197  (protein—-NA) complexes (Fig. 3). We curated a benchmark of 165 experimentally

198  determined protein—-DNA/RNA complexes and generated vMSAs for the protein chains
199  only, while keeping the nucleic-acid sequences fixed. These sequences were assembled
200 into 10 sets of VMSA and supplied, together with the original NA sequence, to AF3-SS.
201  For each target we selected the final EvoGUD + AF3-SS model by the highest ipTM
202  confidence score. As shown in Fig. 3a, EvoGUD + AF3-SS substantially improved the
203  accuracy of the protein subunits within the protein-NA complexes (median TM-score =
204  0.872) relative to AF3-SS (median TM-score = 0.436), close to the distribution of AF3
205 (median TM-score = 0.928), as in the case of monomeric proteins.

206  For complex structures evaluated by interface local distance difference test (iILDDT?®) (as
207  in AF3™), AF3-SS frequently produced mis-docked subunits and distorted protein—
208 nucleic-acid contacts, with most targets exhibiting low iLDDT values below 0.4 (Fig.
209  3b). In contrast, EvoGUD + AF3-SS markedly shifted the distribution toward higher
210 iLDDT values, correctly recovering 55 well-docked complexes out of 90 that are

211 correctly predicted by AF3 using nMSAs for both protein and nucleic acid sequences
212  together with PDB templates—substantially exceeding the 14 complexes recovered by

213  AF3-SS. These results indicate that vMSAs generated from single sequences can

10
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effectively guide accurate docking of protein chains onto DNA and RNA for most cases
studied.

To visualize these trends on a per-complex basis, we compared the change in TM-score
and iLDDT relative to AF3-SS for each method (Fig. 3c). Most EvoGUD + AF3-SS
predictions fall in the quadrant corresponding to simultaneous gains in subunit accuracy
and interface quality, demonstrating that vVMSAs derived from single sequences can
improve both global folding and interfacial organization within the same model.

One structural example illustrates these effects at the level of individual assemblies (Fig.
3d). In the shown protein—NA complex (PDB: 7U7C)*, AF3-SS fails to correctly
position protein subunits relative to the nucleic acid and produces poorly resolved
interfaces. In contrast, EvoGUD + AF3-SS accurately recovers the overall architecture
and correctly docks the protein chains onto the nucleic-acid scaffold, yielding an
interface geometry that closely matches the experimental structure and approaches the
AF3 baseline. Thus, vMSAs from EvoGUD can capture the evolution signals not only in

monomeric structures but also in interfacial structures for docking.

Locating remote functional enzymes by EvoGUD

To test whether EvoGUD can recover functional enzymes from remote regions of
sequence space, we selected TadA, a bacterial tRNA adenosine deaminase that has been
repurposed through extensive directed evolution into the catalytic core of adenine base
editors (ABEs), enabling programmable A*T—G+C DNA conversion's. Although highly
effective, previously reported TadA variants remain closely related to their ancestral

sequences, motivating exploration of more distant sequence solutions?-2°,

11
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Based on the joint behavior of sequence identity, foldability, diversity, and novelty
(Supplementary Fig. S3), we selected a conditioning strength of y = 2 and generated
1,024 sequences conditioned on the wild type TadA from Staphylococcus aureus®. Ten
representative TadA variants were selected for experimental evaluation (see Methods).
Structural evaluation using AlphaFold3 (AF3) showed that providing EvoGUD-generated
sequences as VMSAs substantially improved structure prediction compared with single-
sequence input, yielding well-folded TadA-like architectures with markedly higher pTM
confidence score and TM-score (shown in Fig. 4a).

The ten EvoGUD-generated variants were then evaluated with a trimethoprim (TMP)
resistance reversion assay in E. coli, in which TadA-mediated A—G editing restores a
functional R67 dihydrofolate reductase (DHFR) reporter gene and as a result, a stronger
active TadA variant will grow more colonies (Fig. 4b). Some examples are shown in Fig.
4c. Eight of the ten variants restored TMP resistance, demonstrating robust A*T—G+C
DNA-editing activity despite low sequence identity to both the query sequence (0.38—
0.40) and any known TadA homologs (0.57-0.62). Quantification of editing activity was
made according to the number of colonies before and after TMP selection (see Methods).
It revealed a reproducible range of activities across variants, with the activity of the wild
type TadA falling within the distribution of EvoGUD-generated sequences as shown in
Fig. 4d. Thus, EvoGUD can recover functional TadA DNA-editing enzymes from

previously unexplored, remote regions of sequence space.
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Application to the intrinsically disordered antitoxin CcdA

To further test the limits of EvoGUD, we examined whether it could generate functional
variants of the intrinsically disordered antitoxin CcdA. CcdA lacks a stable structure in
isolation and acquires its functional conformation only upon binding its cognate toxin
CcdB, posing a stringent challenge for protein design'®22.

Monomeric CcdA and CcdB sequences were derived from the E. coli CcdA—CcdB
complex (PDB: 3HPW)'¢. These sequences were then assembled into a symmetrized
CcdB—-Gso—CcdA—Gso—CcdB fusion construct. The long flexible link was specifically
designed as the query for EvoGUD-based CcdA generation under CcdB conditioning.
Based on the joint behavior of identity, foldability, diversity, and novelty (Supplementary
Fig. S4), we selected a conditioning strength of y = 2 for downstream experiments and
generated a pooled library of 5,623 unique CcdA variants for experimental screening (see
Methods).

For structural verification, only a vMSA constructed from EvoGUD-generated CcdA
sequences was inputted into AlphaFold3, without using any nMSAs or vMSA for CcdB.
A representative subset of eight CcdA variants generated at y = 2 was selected to form the
VMSA, as prediction accuracy decreased when larger numbers of low-y sequences (> 64)
were included (Supplementary Fig. S5). As shown in Fig. 5a, AF3 predictions using this
CcdA-only vMSA recover a coherent CcdA—CcdB complex. Relative to the
experimentally determined E. coli Ccd A—CcdB structure, the predicted model shows high
agreement at both the subunit and interface levels, as reflected by elevated pTM, ipTM,
TM-score, and iLDDT values. Notably, despite containing sequences for CcdA only, the

VMSA improves the predicted structures of both the CcdA antitoxin and the flanking

13
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CcdB toxin subunits, as well as their binding interface. In contrast, AF3 single-sequence
inference fails to recover the CcdA structure or its docked configuration within CcdB,
indicating that EvoGUD-generated CcdA sequence ensembles provide sufficient context
for accurate prediction of the full toxin—antitoxin complex, without natural or virtual
MSA for CcdB.

The variant library was subjected to an experimental CcdB toxin selection assay, and
variant counts were obtained by high-throughput sequencing before and after selection in
two independent biological replicates (Fig. 5b). Fitness was inferred from before/after
enrichment using early-stop variants as internal negative controls, followed by
Benjamini—Hochberg false discovery rate (BH-FDR)* filtering (q < 0.01) and
normalization (see Methods). Across the two replicates, 1,110 and 1,153 variants passed
the survival test, respectively. Requiring consistent enrichment in both experiments
identified 1,072 functional variants, corresponding to an overall success rate of 19%
(1,072 of 5,623 variants). Both replicates show a substantial population of variants with
normalized log: fitness exceeding that of wild-type CcdA (E. coli CcdA, or EcCcdA, Fig.
5¢), and inferred fitness values for the same variants are highly correlated between
replicates (Fig. 5d), enabling robust ranking of functional variants.

To experimentally validate the statistical classification, we evaluated a subset of nine
individual variants spanning the fitness range using spot survival assays (Supplementary
Fig. S6 and S7). These variants (EvoGUD generated CcdA, denoted as egCcdA) were
chosen according to their rank based on average normalized log: fitness across replicates
between 3 and 18. (egCcdA-1 denotes the highest-ranked variant). Across both plate

experiments, all nine tested variants exhibited detectable protection from CcdB toxicity.

14
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No growth was observed in the CcdB-only control, demonstrating that the enrichment in
the high-throughput pooled assay reflects genuine antitoxin function. As illustrative
examples, a representative subset of five variants is shown in the main text (Fig. 5S¢ and
5e), chosen to illustrate the correspondence between inferred fitness and phenotypic
strength across a wide dynamic range. High-ranked variants such as egCcdA-1 and
egCcdA-14 displayed activity comparable to or exceeding that of wild-type CcdA at
different dilutions (y-axis), whereas egCcdA-78 showed moderately reduced activity,
consistent with its lower inferred fitness. As a variant positioned near the statistical
decision boundary, egCcdA-933 still exhibited weak but detectable rescue relative to the
negative control (Fig. 5f), validating the sensitivity of the fitness-based classification.
Thus, EvoGUD can generate large numbers of functional CcdA variants under purely
sequence-level conditioning, despite the absence of a stable ground-state fold. Unedited
plate images for all tested variants are provided in Supplementary Figs. S6 and S7,

ensuring full transparency of the experimental results.
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Discussion

EvoGUD was designed to enable large-step exploration of protein sequence space while
preserving the higher-order evolutionary constraints that characterize natural protein
families. A central finding of this work is that EvoGUD-generated sequences remain
embedded within realistic evolutionary manifolds despite substantial sequence
divergence. In ESM-2 embedding and attention spaces, generated sequences closely track
natural homologs and remain far more consistent with the query in representation space
than identity-matched random controls, indicating that EvoGUD captures co-evolutionary
structure beyond residue-level conservation. The conditioning strength y provides
continuous control over the balance between exploratory breadth and evolutionary
constraint.

These properties translate directly into improved structure prediction. By assembling
EvoGUD-generated sequences as vVMSAs, AlphaFold3 single-sequence inference
recovers much of the accuracy and atomic detail typically associated with natural
homolog searches. Across monomer benchmarks, EvoGUD-assisted predictions are near
standard AlphaFold3 performance. For protein—-DNA and protein—RNA complexes,
EvoGUD-derived vMSA s further improve interface geometry, demonstrating that the
generated sequence families encode actionable co-evolutionary signals for multimeric
recognition.

Besides structure modeling, EvoGUD provides a general framework for functional
protein discovery in remote sequence space. For the TadA enzyme, EvoGUD identified
highly divergent yet functional DN A-editing variants, revealing functional solutions

inaccessible to stepwise directed evolution. Notably, these active variants reside at
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342  approximately 40% sequence identity to the query, corresponding—in natural

343  evolutionary terms—to divergence accumulated over on the order of ~10° years

344  (Supplementary Table S4)%. Similarly, in the Ccd A—CcdB toxin—antitoxin system,

345  EvoGUD enabled large-scale discovery of functional antitoxin variants spanning 54—73%
346  sequence identity, even among low-ranked candidates, indicating robust preservation of
347  context-dependent functional constraints without explicit structural or biophysical

348  scoring.

349 A key requirement for sequence generative models is generalizability across protein
350 families and evolutionary distances. EvoGUD exhibits robust generalization across

351  multiple validation regimes, including stringent non-redundant subsets, with generated
352  sequences consistently following the same representation-space trajectories as natural
353  homologs irrespective of training-set proximity (Supplementary Fig. S8). Controlled
354  experiments on TadA further show that excluding or retaining close homologs during
355  training produces only minor shifts in generative behavior without evidence of collapse
356  (Supplementary Fig. S9). Notably, the CcdA system provides complementary insight:
357  although CcdA homologs were present in the training data, CcdA-only conditioning
358 yielded low identity and reduced foldability, whereas introducing an unseen fusion

359  context with its cognate binding partner systematically shifted generation toward

360 functionally coherent sequence space (Supplementary Fig. S10). Together, these results
361 indicate that EvoGUD does not rely on memorization of training sequences but is

362  primarily shaped by the evolutionary constraints supplied at inference time.

363  EvoGUD adopts a modular alternative to end-to-end single-sequence structure prediction

364  pipelines. By decoupling protein sequence feature extraction from structure inference

17



Langtaosha (LTS) Preprint doi: https://doi.org/10.65215/LTSpreprints.2026.01.29.000104. This version posted January 30, 2026. The copyright holder for this preprint

(which was not certified by peer review) is the author/funder. Creative Commons license: CC Attribution-NonCommercial 4.0

https://creativecommons.org/licenses/by-nc/4.0

365

366

367

368

369

370

371

372

373

374

375

376

with intermediate sequence generation, improvements in protein language models or
structure predictors can be incorporated by retraining only a lightweight generative
adapter, requiring on the order of a single GPU-day. This contrasts sharply with the
hundreds of GPU-weeks typically required to train or adapt full-scale structure prediction
models', enabling rapid iteration and reuse of advances in representation learning.
Although EvoGUD’s performance is bounded by the fidelity of underlying sequence
representations, its modular design provides a scalable and extensible framework for
integrating advances in representation learning, enabling large-scale evolutionary
exploration that can be naturally combined with local refinement strategies such as
directed evolution. In this way, EvoGUD bridges global sequence-space exploration and

functional protein engineering while remaining grounded in evolutionary realism.

18



Langtaosha (LTS) Preprint doi: https://doi.org/10.65215/LTSpreprints.2026.01.29.000104. This version posted January 30, 2026. The copyright holder for this preprint

(which was not certified by peer review) is the author/funder. Creative Commons license: CC Attribution-NonCommercial 4.0

https://creativecommons.org/licenses/by-nc/4.0

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

Methods

Training Dataset and Data Preprocessing

EvoGUD was trained on OpenProteinSet-PDB?', a curated reconstruction of the
AlphaFold2 training dataset as implemented in OpenFold®?, comprising 131,487 protein
chains with precomputed MSAs. To ensure sequence integrity and computational
consistency, chains containing unknown amino acids (“X”’) were excluded. Sequences
were further filtered by length, retaining chains with 30 <L <1000 amino acids. After
filtering, the final dataset comprised 117,556 entries, which were partitioned into a

training set of 116,756 entries and a validation set of 800 entries.

Model architecture and conditioning

EvoGUD is built on a Diffusion Transformer (DiT) backbone®* with a modified adaLN-
Zero conditioning mechanism (Supplementary Fig. S11). Whereas the original DiT
conditions on global features, EvoGUD incorporates sequence-specific evolutionary
context derived from a protein language model.

During both training and inference, EvoGUD conditions the denoising process on
representations extracted from the ESM-2 3B model, including per-residue embeddings
(2,560 dimensions), and pairwise attention maps (36 layers x 40 heads; 1,440
dimensions)'’. These features are linearly projected into a 128-dimensional latent space.
In each DiT block, ESM-2 embeddings are injected via cross-attention as key—value
pairs, while projected attention maps are added to the attention logits as a pairwise bias.

The resulting representations generate the six modulation parameters (shift, scale, and
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gate for attention and feed-forward sublayers) used in the adalLN-Zero operation,
enabling position-wise, evolution-aware modulation of the network.

The model comprises 6 DiT blocks with a hidden dimension of 128 (3.06 M parameters
total). A global dropout rate of 0.1 was applied. To stabilize early training, the linear
layers producing adaLN modulation parameters were zero-initialized, such that each DiT
block initially behaves as an identity mapping. Model outputs are projected to a

categorical distribution over a 21-token alphabet (20 amino acids plus a gap token).

Diffusion formulation

EvoGUD adopts a continuous-time Gaussian diffusion framework with a cosine noise
schedule®4. The forward process gradually perturbs one-hot encoded amino-acid
sequences with Gaussian noise according to a cumulative signal retention coefficient &,

defined over normalized time u € [0,1] as:

+1
1+s

wle

_ _fW ) = cos?

s
2

where s is a small offset to prevent the noise level from becoming too small at t = 0. The
schedule was discretized into T = 100 steps for training. The model is trained to predict
the original categorical distribution of clean sequences from noisy inputs, conditioned on

ESM-2 features.

Model Training
EvoGUD was trained to reconstruct natural homolog sequences drawn from MSAs using

a query-centric batching strategy. For each optimization step, a single query sequence
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was paired with 64 target sequences sampled from its associated MSA. For shallow
MSAs, target sequences were oversampled; for deep MSAs, 64 members were randomly
subsampled. The query sequence was always included in the batch to anchor
reconstruction.

Each target sequence was one-hot encoded and independently corrupted by Gaussian
noise at a randomly sampled timestep t; € [1, T]. The model predicted the denoised
categorical distribution p(x0| Xt i Cond) over the 21-token alphabet.

To emphasize evolutionary diversity rather than trivial sequence conservation, a per-
residue weighted cross-entropy loss was applied: positions differing from the query were
assigned weight = 1.0, whereas positions identical to the query or corresponding to gaps
were down-weighted (weight =0.1).

Training was performed for 100 epochs using the AdamW optimizer®* with a learning
rate of 1 X 1073 and automatic mixed precision. Each epoch comprised 10,000 unique
queries sampled from the whole training set, totaling ~10¢ optimization steps. Training
required approximately 25 h on a single NVIDIA A100 GPU and was implemented in

PyTorch 2.2,

Single-sequence conditional sampling via probability absorption

At inference time, EvoGUD generates homolog families from a single query sequence
using a probability absorption sampling scheme that bridges continuous diffusion
dynamics with discrete sequence space.

Sampling begins from isotropic Gaussian noise x; ~ N'(0, ) and proceeds over T = 100

discrete reverse-diffusion steps. At each step, the model predicts a position-wise amino-

21
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444  acid probability distribution conditioned on ESM-2 features of the query. A discrete

445  sequence is obtained by deterministic argmax decoding, excluding the gap token to

446  generate gap-free sequences.

447  The sampled sequence is projected back into latent space as a centered one-hot

448  representation, scaled by a conditioning strength parameter y:

449 %o =y - (one_hot(S°) — 0.5)

450  The latent state is then updated via the Gaussian reverse transition, blending the absorbed
451  identity signal with stochastic noise. The parameter y controls the trade-off between

452  evolutionary adherence and exploratory breadth: higher values promote conservative,
453  high-confidence homologs, whereas lower values allow broader exploration of remote
454  sequence space.

455

456  Benchmark test sets

457  RecentPDB-monomer. To evaluate structure prediction performance, an independent
458  test set was curated from PDB entries released between January 1 and July 1, 2024,

459  following AlphaFold3 benchmarking principles'. Only protein-only monomers solved by
460  X-ray crystallography at < 2.0 A resolution were retained. Chains were filtered to lengths
461  of 30-500 residues and subjected to 40% sequence-identity filtering both within the set
462  and against the training/validation data. The final set comprised 159 non-redundant

463  monomers.

464  RecentPDB-multimer. Protein—nucleic-acid complexes were derived from the

465  AlphaFold3 benchmark dataset'. After excluding entries lacking protein chains or
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containing non-canonical residues, the final set comprised 165 complexes. vVMSAs were

generated only for protein components, while nucleic-acid sequences were held fixed.

Ensemble settings for EvoGUD + AF3-SS

A grid search over conditioning strength y and vMSA depth on the RecentPDB-monomer
benchmark set revealed a broad operating regime in which EvoGUD-derived vMSAs
substantially improved structure prediction accuracy relative to AF3-SS (Supplementary
Fig. S5). Within this regime, increasing y and vMSA depth (# of generated vMSA
sequences) led to substantial gains in both predicted confidence (pTM') and backbone
accuracy (TM-score), indicating that vVMSAs capture much of the evolutionary
information normally supplied by natural homologs. Based on this analysis, we selected a
small ensemble of 10 EvoGUD parameter settings spanning this robust regime (y = 1
with #MSA € {2,4,8,16} and y = 2 with #MSA € {2,4,8,16,32,64}) and fixed these

settings for all subsequent analyses.

Generation and validation of TadA variants

Wild-type Staphylococcus aureus TadA (PDB: 2B3J)?” was used as the query for

EvoGUD sequence generation. Conditioning strength y was selected based on predicted
foldability, novelty, and diversity (y = 2; Supplementary Fig. S3). A total of 1,024 TadA

variants were generated under a co-generation identity constraint of = 35% relative to

wild-type TadA, subsequently clustered at 70% sequence identity, and ten representatives

from the largest clusters were selected for experimental validation.

23



Langtaosha (LTS) Preprint doi: https://doi.org/10.65215/LTSpreprints.2026.01.29.000104. This version posted January 30, 2026. The copyright holder for this preprint

(which was not certified by peer review) is the author/funder. Creative Commons license: CC Attribution-NonCommercial 4.0

https://creativecommons.org/licenses/by-nc/4.0

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

TadA activity was quantified using a trimethoprim resistance reversion assay in E. coli
based on a premature stop-codon reporter. Editing activity was defined as per-base
mutation rates estimated from the observed frequency of TMP-resistant colonies, using a

Luria—Delbriick approximation®’. Full experimental protocols are provided in the

Supplementary Information.

Generation and validation of CcdA variants

CcdA variants were generated using a conditional single-chain strategy in which the
antitoxin sequence was embedded within a symmetrized CcdB—Gso—CcdA—Gso—CcdB
fusion, with wild type CcdA and CcdB sequences from E. coli (PDB: 3HPW)'¢. Here, Gso
denotes a 50-amino-acid poly-glycine linker that spatially separates the CcdA and CcdB
domains while preserving sequence-level context®. Residues outside the CcdA region
were fixed during sampling. Conditioning strength y = 2 was selected according to
predicted foldability, novelty, and diversity (Supplementary Fig. S4).

A pooled library of 10,000 CcdA variants was generated under a co-generation identity

constraint of < 75% relative to wild-type CcdA and subsequently clustered at 90%

sequence identity, yielding 5,623 unique sequences. Functional selection was performed
using a toxin-rescue assay in E. coli, followed by deep sequencing.

Variant fitness was estimated using a Poisson-based log: enrichment model and false-
discovery-rate (FDR) correction®. Variants passing FDR < 0.01 in two independent
experiments were considered functional. Full experimental protocols are provided in the

Supplementary Information.
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Figure 1. EvoGUD enables controllable, large-step exploration of protein sequence space
from a single query.

a, Conceptual landscape illustrating the limitations of natural evolution and laboratory
directed evolution, and how EvoGUD enables large-step sampling toward remote
functional sequence regions.

b, Training of EvoGUD using nMSAs: the model is trained to denoise corrupted MSAs
conditioned on query-derived ESM-2 embeddings and pairwise attention maps.

¢, Sampling procedure: starting from a random probability distribution, EvoGUD
iteratively denoises sequence probabilities under query conditioning, with a scaling factor
v controlling the strength of probability absorption before collapsing to a discrete
sequence.

d, Distribution of sequence identity to the conditioning query as a function of v,
demonstrating tunable control over sampling distance in sequence space. Additional
validation metrics are shown in Supplementary Figures S1.

e, Evolutionary consistency beyond identity: cosine similarity of ESM-2 attention maps
versus sequence identity for EvoGUD-generated sequences, compared with identity-
matched random controls and natural MSA (nMSA) homologs, demonstrating
preservation of natural-like co-evolutionary geometry across divergent regimes. EvoGUD
data points correspond to 1,024 generated sequences per target across 159 RecentPDB-
monomer proteins and six conditioning strengths (y € {1, 2, 4, 8, 16, 32}), using the same
generated sequences as in Fig. 1d and Supplementary Fig. S1b. Natural MSA sequences

were included only when covering at least 80% of query positions to ensure comparable
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623  alignment context. Solid lines denote mean trends and shaded regions indicate 95%
624  confidence intervals.

625
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Figure 2. EvoGUD restores MSA-level monomer performance and improves all-atom

quality from a single sequence.
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629 a, TM-score distributions on the RecentPDB-monomer test set (N = 159), evaluated using
630 the selected EvoGUD ensemble settings (Supplementary Fig. S5). Predictions from AF3-
631  SS (single sequence), EvoGUD + AF3-SS, ESMFold, and AF3 with nMSAs are

632  compared. EvoGUD substantially improves backbone accuracy relative to AF3-SS and
633  approaches the performance of ESMFold and AF3.

634 b, TM-score distributions on the CASP15 monomer benchmark (N = 71), evaluated using
635 the same EvoGUD ensemble settings selected on RecentPDB-monomer. EvoGUD +

636  AF3-SS generalizes to this independent benchmark without retuning.

637 ¢, Representative monomer example (PDB: 80V5) illustrating global backbone accuracy.
638  The experimental structure (white) is compared with predictions from AF3-SS (gray),
639 ESMFold (green), EvoGUD + AF3-SS (pink), and AF3 (blue). EvoGUD + AF3-SS

640  recovers the correct overall topology and domain arrangement.

641 d, All-atom steric clash counts per 1,000 atoms on the RecentPDB-monomer benchmark.
642  Clash counts are computed as heavy-atom contacts closer than the sum of van der Waals
643  radii with a 0.6 A tolerance. EvoGUD + AF3-SS significantly reduces steric clashes

644  relative to ESMFold.

645 e, All-atom steric clash counts on the CASP15 monomer benchmark. EvoGUD + AF3-SS
646  maintains low clash rates comparable to AF3, indicating improved side-chain packing
647  without nMSAs search.

648 f, Local side-chain environment example (PDB: 8X0OX). ESMFold (green sticks, top)
649  shows strained rotamers and steric clashes despite a high-quality backbone, whereas

650 EvoGUD + AF3-SS (pink sticks, bottom) produces well-packed, stereochemically

651 reasonable side chains.
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653  Figure 3. EvoGUD enables single-sequence AlphaFold3 to model protein—nucleic-acid
654  complexes.

655 a, TM-score distributions of protein subunits extracted from predicted complexes for a
656  benchmark of 165 protein—-DNA/RNA assemblies, comparing AF3-SS (single sequence),
657 EvoGUD + AF3-SS (vMSAs generated from single sequences), and AF3 with nMSAs
658 and PDB template search (“AF3”). TM-scores are computed on protein subunits only,
659  quantifying the correctness of individual protein folds within the predicted complexes.
660 b, Interface LDDT (iLDDT) distributions for the same complexes, computed over

661  protein—protein and protein—nucleic-acid interfaces following the AlphaFold3 evaluation
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663

664

665

666

667

668

669

670

protocol. The horizontal dashed line at iLDDT = 0.5 is shown as a visual reference to
illustrate the separation between lower- and higher-quality interface predictions observed
in this benchmark. Numbers above and below the line report the counts of complexes on
either side of this reference.

¢, Per-complex changes in protein-subunit TM-score and interface iLDDT relative to
AF3-SS. Each point corresponds to one complex, with ATM-score on the x-axis and
AILDDT on the y-axis (positive values indicate improved interfaces).

d, Representative protein—nucleic-acid complex example (PDB:7U7C).
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Figure 4. EvoGUD generates remotely homologous yet functional TadA variants.

a, AlphaFold3 (AF3) structure predictions for wild type Staphylococcus aureus TadA
with EvoGUD-generated variants as vVMSA, compared with AF3 predictions obtained
from single-sequence input without MSA (AF3-SS). Aligned on reference PDB (2B3J)
structure (gray).

b, Schematic of the trimethoprim (TMP) resistance reversion assay used to evaluate
TadA DNA-editing activity in E. coli. TadA-mediated A*T—G+C editing reverts a
premature TAG stop codon in an R67 dihydrofolate reductase (DHFR) reporter gene,

restoring the functional TGG codon and conferring TMP resistance.
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¢, Representative agar plate images showing TMP-resistant colony growth. A reporter-
only strain lacking TadA expression serves as the negative control, wild type (WT) TadA
is shown as a positive control, and two EvoGUD-generated variants (egTadA-1 and
egTadA-2) illustrate functional recovery.

d, Quantification of DNA-editing activity for EvoGUD-generated TadA variants
measured by TMP-resistance reversion. Each point represents one variant; WT is shown

in black and EvoGUD-generated variants in pink.
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690  Figure 5. Sequence-only conditional generation of the intrinsically disordered antitoxin
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a, AlphaFold3 (AF3) predictions of the CcdA—CcdB complex for EvoGUD-generated
CcdA variants. Left: AF3 single-sequence inference (AF3-SS) using the wild-type CcdA
sequence. Right: AF3-SS using EvoGUD-generated CcdA sequences provided as vMSA
(y=2,#MSA = 8). CcdA is shown in cyan (AF3-SS) or pink (AF3-SS + EvoGUD), and
CcdB is shown in green (AF3-SS) or blue (AF3-SS + EvoGUD). Below, predicted
structures of the CcdA and CcdB subunits are shown separately using the same color
scheme. Reported ipTM, iLDDT, pTM, and TM-score values are indicated beneath each
model.

b, Pooled selection workflow. A pooled oligo library of CcdA variants was constructed
by cloning into a ccdB expression vector, pUC57-Kan-2BspQI-ccdB. The library was
first propagated in the CcdB-resistant strain DB3.1 (Before selection), then subjected to
selection in the CcdB-sensitive strain DH5a (After selection; two biological replicates).
Plasmids were extracted and deep-sequenced to infer variant fitness.

¢, Distributions of normalized log: fitness for two biological replicates. Fitness is
computed from before/after sequencing using early-stop variants as negative controls to
estimate a baseline distribution (median and MAD), followed by BH-FDR filtering (q <
0.01) and normalization to obtain normalized log: fitness. Dotted lines mark WT; arrows
indicate variants chosen for plate assays.

d, Cross-validation of normalized log: fitness between replicates (N = 1072), with y = x
reference, fitted trend, and WT reference lines.

e, Plate-based validation of selected variants. Serial dilution spot assays for WT, selected
variants, and a CcdB-only negative control; numbers under each label denote normalized

log. fitness used for selection.
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715  f, Zoomed comparison highlighting egCcdA-933 versus the CcdB-only negative control.

716
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Data availability
The source code, sampling script, and model weight are soon publicly available at

https://github.com/EricZhangSCUT/EvoGUD.
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