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Abstract 20 

Protein evolution in nature and in the laboratory proceeds through incremental, largely 21 

undirected mutational steps, restricting exploration to local regions of sequence space and 22 

limiting access to remote yet potentially functional proteins. We present EvoGUD, a 23 

single-sequence–conditioned diffusion framework for large-step exploration of protein 24 

sequence space under learned evolutionary constraints. EvoGUD-generated sequences 25 

preserve natural-like co-evolutionary structure in representation space despite large 26 

sequence divergence. When assembled as virtual multiple sequence alignments, these 27 

sequences substantially improve AlphaFold3 single-sequence inference, restoring much 28 

of the backbone accuracy and atomic-level side-chain realism for recent deposited protein 29 

monomers as well as protein–nucleic-acid complexes, without evolutionary database 30 

search. Moreover, EvoGUD enables functional discovery in remote sequence space, 31 

yielding active variants of the adenine base-editing enzyme TadA in targeted validation 32 

experiments (80% success rate) and large numbers of functional variants of the 33 

intrinsically disordered antitoxin CcdA in high-throughput selection assays (19% success 34 

rate). Together, these results establish EvoGUD as a single-sequence, evolution-aware 35 

generative framework for large-step navigation of protein sequence space, with direct 36 

implications for structure modeling and functional protein discovery in previously 37 

unexplored sequence space.   38 
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Introduction 39 

Protein evolution has generated an extraordinary diversity of molecular structures and 40 

biochemical functions, yet the mechanisms by which evolution explores protein sequence 41 

space are intrinsically constrained. Natural evolution proceeds through incremental, 42 

largely undirected mutations accumulated over long timescales, while laboratory directed 43 

evolution accelerates selection but still relies on random, local mutational steps1,2. 44 

Consequently, both processes tend to explore narrow neighborhoods around existing 45 

solutions, leading to uneven sampling of protein fitness landscapes and limited access to 46 

distant yet potentially functional regions of sequence space3. A central challenge in 47 

protein science is therefore to enable large-step exploration of protein sequence space—48 

jumping to remote regions—while preserving the functional and structural constraints 49 

characteristic of a target protein family. 50 

Computational approaches to this challenge broadly fall into structure-based and 51 

sequence-based strategies. Structure-centric methods have achieved remarkable success 52 

in de novo protein design, but their reliance on explicit backbone templates or structural 53 

hypotheses limits their applicability when reliable structures are unavailable, particularly 54 

for intrinsically disordered proteins4,5. Sequence-based protein language models provide 55 

an alternative by leveraging large-scale evolutionary data to generate functional 56 

sequences6; however, most operate in an unconditional or weakly conditioned regime and 57 

are not designed for targeted exploration of homolog families. Conditional sequence 58 

models and evolutionary augmentation approaches can expand sequence diversity but 59 

typically depend on pre-training with family-level labels, fine-tuning on known 60 
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homologs, or autoregressive sampling schemes that bias generation toward the statistical 61 

center of the training distribution7–9. 62 

Recent diffusion-based generative models offer a complementary paradigm by generating 63 

all residues simultaneously through iterative denoising, enabling more effective capture 64 

of global context and long-range dependencies than token-by-token autoregressive 65 

models10,11. In protein modeling, however, most conditional diffusion frameworks 66 

function primarily as evolutionary inpainting methods: they rely on a multiple sequence 67 

alignment (MSA) as input and recover missing information for the masked query 68 

sequence by interpolating within evolutionary boundaries defined by known 69 

homologs12,13. This inward generation regime benefits from dense evolutionary 70 

coordinates supplied by the MSA but inherently limits the novelty of generated 71 

sequences. By contrast, single-sequence exploration requires outward extrapolation—72 

inferring latent co-evolutionary constraints from a solitary query sequence to generate a 73 

coherent, diverged homolog family de novo, without access to an existing alignment. 74 

Existing methods lack an explicit mechanism for this type of controlled, query-centric 75 

expansion. 76 

Here we introduce EvoGUD (Evolution-guided Diffusion), a single-sequence–77 

conditioned diffusion framework for large-step exploration of protein sequence space. 78 

EvoGUD learns the statistical structure of natural homolog families by training on MSAs 79 

while conditioning exclusively on a single query sequence, enabling inference without 80 

homolog retrieval. A tunable conditioning strength (γ) controls the balance between 81 

exploratory breadth and adherence to learned evolutionary constraints, allowing direct 82 

generation of substantially diverged yet evolutionarily consistent homolog families 83 
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within a single generative process. As a result, EvoGUD-generated sequences preserve 84 

natural-like co-evolutionary structure in representation space despite large sequence 85 

divergence, closely tracking natural homologs and substantially exceeding identity-86 

matched random controls.  87 

When assembled as virtual MSAs (vMSAs), EvoGUD-generated sequences substantially 88 

improve AlphaFold314 single-sequence inference, restoring both backbone accuracy and 89 

atomic-level side-chain realism for most monomers and protein-nucleic acid complexes, 90 

without evolutionary database search. More importantly, EvoGUD enables functional 91 

discovery in remote sequence space, yielding active TadA variants (an adenine base-92 

editing enzyme)15 and large numbers of functional CcdA antitoxin variants (an 93 

intrinsically disordered protein interacted with the toxic protein CcdB)16 under purely 94 

sequence-level conditioning. Together, these results establish EvoGUD as a single-95 

sequence–based, evolution-aware generative framework for large-step exploration of 96 

protein sequence space under evolutionary constraints, enabling downstream structure 97 

modeling and functional discovery. 98 

  99 
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Results 100 

Generating remote homologs from single protein sequences 101 

EvoGUD was designed to bridge the gap between raw sequence space and the higher-102 

order evolutionary manifold captured by protein language models17. Conceptually (Fig. 103 

1a), both natural evolution and conventional laboratory directed evolution rely on small, 104 

largely undirected mutational steps, and therefore explore only a limited local 105 

neighborhood around a starting sequence1. EvoGUD instead enables direct generation of 106 

remote homologs by operating in a feature space defined by ESM-2, conditioning 107 

sequence generation on the query’s per-residue embeddings and pairwise attention 108 

patterns17.  109 

Concretely, EvoGUD was trained as a denoising diffusion model10,18 to reconstruct 110 

natural MSAs (nMSAs) from noise while observing only query-derived ESM-2 features 111 

(Fig. 1b). During sampling, the model starts from a random amino-acid probability 112 

distribution and iteratively denoises it under conditioning of single query sequence (Fig. 113 

1c). A probability absorption step blends the evolving distribution with the model-114 

predicted denoised distribution, and a single scalar parameter, the conditioning strength γ, 115 

modulates the extent to which sampling remains anchored to the conditioning query 116 

sequence. As a result, γ provides an explicit and continuous control over the distance of 117 

generated sequences from the query sequence in sequence space. 118 

We first quantified how the conditioning strength γ controls sampling distance by 119 

measuring the sequence identity between generated sequences and their corresponding 120 

query sequences using an independent test set of 159 proteins. This dataset was 121 
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constructed from recently released PDB monomers19 and filtered to be non-redundant 122 

with respect to both the training data and within the set itself, applying a 40% sequence-123 

identity cutoff, denoted as RecentPDB-monomer. (see Methods). Across a wide range of 124 

γ values, EvoGUD produces smoothly tunable identity distributions, with increasing γ 125 

leading to progressively higher similarity to the query sequence (Fig. 1d), along with 126 

improved attention similarity (Supplementary Fig. S1b), increased foldability according 127 

to pTM from ESMfold (Supplementary Fig. S1c), reduction of diversity according to 128 

intra-set sequence identity (Supplementary Fig. S1d) and decreased novelty according to 129 

the maximum sequence identity to nMSA sequences (Supplementary Fig. S1f). This 130 

demonstrates that EvoGUD does not rely on a fixed exploration regime, but instead 131 

enables controlled interpolation between aggressive exploration and conservative 132 

refinement. 133 

To further assess whether EvoGUD preserves evolutionary features beyond simple 134 

sequence identity shown in Fig. 1d, we compared nMSA sequences, EvoGUD-generated 135 

sequences, and random sequences to the query sequence in the representation space of 136 

ESM-2, according to cosine similarity between ESM-2 attention maps by using the 137 

RecentPDB-monomer set. As shown in Fig. 1e, cosine similarity of ESM-2 attention of 138 

EvoGUD-generated sequences to the query sequence closely tracks the similarity 139 

trajectory of natural homologs (natural MSAs) and remain substantially higher than the 140 

similarity of random controls across all identity regimes. Notably, even at low sequence 141 

identity (< 0.3), EvoGUD maintains a median attention-space similarity of 0.874, 142 

compared to 0.578 for random sequences, indicating that EvoGUD samples realistic 143 

regions of the evolutionary manifold rather than merely matching identity statistics. 144 
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Comparable trends were observed using ESM-2 embedding similarity instead of attention 145 

(Supplementary Fig. S2). Together, these results show that EvoGUD enables controllable 146 

generation of structurally plausible remote homologs while preserving higher-order 147 

evolutionary constraints, with γ acting as an explicit knob to balance exploration and 148 

constraint. 149 

 150 

Monomeric structure prediction with vMSA from EvoGUD 151 

We next asked whether vMSAs generated by EvoGUD can replace nMSAs for 152 

monomeric protein structure prediction with AlphaFold314 under single-sequence 153 

conditions. We employed EvoGUD to generate vMSAs across a range of conditioning 154 

strengths γ and vMSA depths, and the resulting structures were predicted using 155 

AlphaFold3 in single-sequence mode (AF3-SS) using an ensemble of 10 EvoGUD 156 

parameter settings (See Methods). 157 

EvoGUD + AF3-SS substantially outperformed AF3-SS on the RecentPDB-monomer 158 

test set (Fig. 2a). The mean TM-score20 increased from 0.476 for AF3-SS to 0.795 for 159 

EvoGUD + AF3-SS, approaching the performance of ESMFold (0.827) and AF3 with 160 

nMSAs and PDB templates (0.884). The fraction of targets with TM-score ≥ 0.5—a 161 

commonly used criterion for correct fold assignment—increased from 40.9% for AF3-SS 162 

to 89.3% for EvoGUD + AF3-SS, comparable to ESMFold (92.4%) and approaching 163 

AF3 with nMSAs and templates (96.2%). These results indicate that most monomers can 164 

be modeled at near-native resolution from a single input sequence using EvoGUD. 165 

To assess generalization beyond RecentPDB-monomer, we evaluated EvoGUD on the 166 

CASP1521 monomer benchmark (N = 71), which was not used during parameter 167 
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selection. EvoGUD + AF3-SS again markedly improved backbone accuracy relative to 168 

AF3-SS and yielded TM-score distributions comparable to those observed on 169 

RecentPDB-monomer (Fig. 2b), demonstrating that the selected vMSA settings 170 

generalize to an independent community benchmark without re-tuning. On CASP15, the 171 

mean TM-score increased from 0.403 for AF3-SS to 0.593 for EvoGUD + AF3-SS, 172 

approaching the performance of ESMFold (0.640) and AF3 with nMSAs and PDB 173 

templates (0.740). The fraction of targets with TM-score ≥ 0.5 increased from 25.4% for 174 

AF3-SS to 64.8% for EvoGUD + AF3-SS, comparable to ESMFold (66.2%) and 175 

approaching AF3 with nMSAs and PDB structure templates (77.5%). A representative 176 

example is shown in Fig. 2c, where EvoGUD + AF3-SS recovers the correct overall fold 177 

and domain arrangement that is missed by AF3-SS. 178 

Because AlphaFold3 is an all-atom diffusion model, we further evaluated the physical 179 

plausibility of the predicted structures by quantifying steric clashes between heavy atoms. 180 

ESMFold, despite its strong backbone accuracy, exhibited substantially higher clash 181 

counts, with a broad tail of severely mispacked models on both RecentPDB-monomer 182 

and CASP15 (Fig. 2d and 2e). In contrast, EvoGUD + AF3-SS markedly reduced steric 183 

clashes relative to ESMFold, producing distributions much closer to those of AF3. A 184 

representative local side-chain environment is shown in Fig. 2f, where EvoGUD + AF3-185 

SS yields well-packed, stereochemically reasonable side chains, whereas ESMFold 186 

displays strained rotamers and steric overlaps22. 187 

Together, these results show that EvoGUD enables single-sequence AlphaFold3 to 188 

recover both high backbone accuracy and AF3-like all-atom realism for monomeric 189 

proteins, without requiring time-consuming searches for natural homologs. We next 190 

Langtaosha (LTS) Preprint doi: https://doi.org/10.65215/LTSpreprints.2026.01.29.000104. This version posted January 30, 2026. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder. Creative Commons license: CC Attribution-NonCommercial 4.0

https://creativecommons.org/licenses/by-nc/4.0



10 

 

asked whether similar gains extend beyond monomers to multimeric and protein–nucleic-191 

acid complexes. 192 

 193 

Protein-NA complex prediction with vMSA from EvoGUD  194 

We next evaluated whether EvoGUD can extend single-sequence prediction beyond 195 

monomeric proteins to multi-chain assemblies, focusing on protein–nucleic-acid 196 

(protein–NA) complexes (Fig. 3). We curated a benchmark of 165 experimentally 197 

determined protein–DNA/RNA complexes and generated vMSAs for the protein chains 198 

only, while keeping the nucleic-acid sequences fixed. These sequences were assembled 199 

into 10 sets of vMSA and supplied, together with the original NA sequence, to AF3-SS. 200 

For each target we selected the final EvoGUD + AF3-SS model by the highest ipTM 201 

confidence score. As shown in Fig. 3a, EvoGUD + AF3-SS substantially improved the 202 

accuracy of the protein subunits within the protein–NA complexes (median TM-score = 203 

0.872) relative to AF3-SS (median TM-score = 0.436), close to the distribution of AF3 204 

(median TM-score = 0.928), as in the case of monomeric proteins. 205 

For complex structures evaluated by interface local distance difference test (iLDDT23) (as 206 

in AF314), AF3-SS frequently produced mis-docked subunits and distorted protein–207 

nucleic-acid contacts, with most targets exhibiting low iLDDT values below 0.4 (Fig. 208 

3b). In contrast, EvoGUD + AF3-SS markedly shifted the distribution toward higher 209 

iLDDT values, correctly recovering 55 well-docked complexes out of 90 that are 210 

correctly predicted by AF3 using nMSAs for both protein and nucleic acid sequences 211 

together with PDB templates—substantially exceeding the 14 complexes recovered by 212 

AF3-SS. These results indicate that vMSAs generated from single sequences can 213 

Langtaosha (LTS) Preprint doi: https://doi.org/10.65215/LTSpreprints.2026.01.29.000104. This version posted January 30, 2026. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder. Creative Commons license: CC Attribution-NonCommercial 4.0

https://creativecommons.org/licenses/by-nc/4.0



11 

 

effectively guide accurate docking of protein chains onto DNA and RNA for most cases 214 

studied. 215 

To visualize these trends on a per-complex basis, we compared the change in TM-score 216 

and iLDDT relative to AF3-SS for each method (Fig. 3c). Most EvoGUD + AF3-SS 217 

predictions fall in the quadrant corresponding to simultaneous gains in subunit accuracy 218 

and interface quality, demonstrating that vMSAs derived from single sequences can 219 

improve both global folding and interfacial organization within the same model.  220 

One structural example illustrates these effects at the level of individual assemblies (Fig. 221 

3d). In the shown protein–NA complex (PDB: 7U7C)24, AF3-SS fails to correctly 222 

position protein subunits relative to the nucleic acid and produces poorly resolved 223 

interfaces. In contrast, EvoGUD + AF3-SS accurately recovers the overall architecture 224 

and correctly docks the protein chains onto the nucleic-acid scaffold, yielding an 225 

interface geometry that closely matches the experimental structure and approaches the 226 

AF3 baseline. Thus, vMSAs from EvoGUD can capture the evolution signals not only in 227 

monomeric structures but also in interfacial structures for docking.  228 

 229 

Locating remote functional enzymes by EvoGUD  230 

To test whether EvoGUD can recover functional enzymes from remote regions of 231 

sequence space, we selected TadA, a bacterial tRNA adenosine deaminase that has been 232 

repurposed through extensive directed evolution into the catalytic core of adenine base 233 

editors (ABEs), enabling programmable A•T→G•C DNA conversion15. Although highly 234 

effective, previously reported TadA variants remain closely related to their ancestral 235 

sequences, motivating exploration of more distant sequence solutions25,26. 236 

Langtaosha (LTS) Preprint doi: https://doi.org/10.65215/LTSpreprints.2026.01.29.000104. This version posted January 30, 2026. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder. Creative Commons license: CC Attribution-NonCommercial 4.0

https://creativecommons.org/licenses/by-nc/4.0



12 

 

Based on the joint behavior of sequence identity, foldability, diversity, and novelty 237 

(Supplementary Fig. S3), we selected a conditioning strength of γ = 2 and generated 238 

1,024 sequences conditioned on the wild type TadA from Staphylococcus aureus27. Ten 239 

representative TadA variants were selected for experimental evaluation (see Methods). 240 

Structural evaluation using AlphaFold3 (AF3) showed that providing EvoGUD-generated 241 

sequences as vMSAs substantially improved structure prediction compared with single-242 

sequence input, yielding well-folded TadA-like architectures with markedly higher pTM 243 

confidence score and TM-score (shown in Fig. 4a). 244 

The ten EvoGUD-generated variants were then evaluated with a trimethoprim (TMP) 245 

resistance reversion assay in E. coli, in which TadA-mediated A→G editing restores a 246 

functional R67 dihydrofolate reductase (DHFR) reporter gene and as a result, a stronger 247 

active TadA variant will grow more colonies (Fig. 4b). Some examples are shown in Fig. 248 

4c. Eight of the ten variants restored TMP resistance, demonstrating robust A•T→G•C 249 

DNA-editing activity despite low sequence identity to both the query sequence (0.38–250 

0.40) and any known TadA homologs (0.57–0.62). Quantification of editing activity was 251 

made according to the number of colonies before and after TMP selection (see Methods).  252 

It revealed a reproducible range of activities across variants, with the activity of the wild 253 

type TadA falling within the distribution of EvoGUD-generated sequences as shown in 254 

Fig. 4d. Thus, EvoGUD can recover functional TadA DNA-editing enzymes from 255 

previously unexplored, remote regions of sequence space. 256 

 257 
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Application to the intrinsically disordered antitoxin CcdA 258 

To further test the limits of EvoGUD, we examined whether it could generate functional 259 

variants of the intrinsically disordered antitoxin CcdA. CcdA lacks a stable structure in 260 

isolation and acquires its functional conformation only upon binding its cognate toxin 261 

CcdB, posing a stringent challenge for protein design16,28. 262 

Monomeric CcdA and CcdB sequences were derived from the E. coli CcdA–CcdB 263 

complex (PDB: 3HPW)16. These sequences were then assembled into a symmetrized 264 

CcdB–G₅₀–CcdA–G₅₀–CcdB fusion construct. The long flexible link was specifically 265 

designed as the query for EvoGUD-based CcdA generation under CcdB conditioning. 266 

Based on the joint behavior of identity, foldability, diversity, and novelty (Supplementary 267 

Fig. S4), we selected a conditioning strength of γ = 2 for downstream experiments and 268 

generated a pooled library of 5,623 unique CcdA variants for experimental screening (see 269 

Methods). 270 

For structural verification, only a vMSA constructed from EvoGUD-generated CcdA 271 

sequences was inputted into AlphaFold3, without using any nMSAs or vMSA for CcdB. 272 

A representative subset of eight CcdA variants generated at γ = 2 was selected to form the 273 

vMSA, as prediction accuracy decreased when larger numbers of low-γ sequences (> 64) 274 

were included (Supplementary Fig. S5). As shown in Fig. 5a, AF3 predictions using this 275 

CcdA-only vMSA recover a coherent CcdA–CcdB complex. Relative to the 276 

experimentally determined E. coli CcdA–CcdB structure, the predicted model shows high 277 

agreement at both the subunit and interface levels, as reflected by elevated pTM, ipTM, 278 

TM-score, and iLDDT values. Notably, despite containing sequences for CcdA only, the 279 

vMSA improves the predicted structures of both the CcdA antitoxin and the flanking 280 
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CcdB toxin subunits, as well as their binding interface. In contrast, AF3 single-sequence 281 

inference fails to recover the CcdA structure or its docked configuration within CcdB, 282 

indicating that EvoGUD-generated CcdA sequence ensembles provide sufficient context 283 

for accurate prediction of the full toxin–antitoxin complex, without natural or virtual 284 

MSA for CcdB. 285 

The variant library was subjected to an experimental CcdB toxin selection assay, and 286 

variant counts were obtained by high-throughput sequencing before and after selection in 287 

two independent biological replicates (Fig. 5b). Fitness was inferred from before/after 288 

enrichment using early-stop variants as internal negative controls, followed by 289 

Benjamini–Hochberg false discovery rate (BH-FDR)29 filtering (q ≤ 0.01) and 290 

normalization (see Methods). Across the two replicates, 1,110 and 1,153 variants passed 291 

the survival test, respectively. Requiring consistent enrichment in both experiments 292 

identified 1,072 functional variants, corresponding to an overall success rate of 19% 293 

(1,072 of 5,623 variants). Both replicates show a substantial population of variants with 294 

normalized log₂ fitness exceeding that of wild-type CcdA (E. coli CcdA, or EcCcdA, Fig. 295 

5c), and inferred fitness values for the same variants are highly correlated between 296 

replicates (Fig. 5d), enabling robust ranking of functional variants. 297 

To experimentally validate the statistical classification, we evaluated a subset of nine 298 

individual variants spanning the fitness range using spot survival assays (Supplementary 299 

Fig. S6 and S7). These variants (EvoGUD generated CcdA, denoted as egCcdA) were 300 

chosen according to their rank based on average normalized log₂ fitness across replicates 301 

between 3 and 18. (egCcdA-1 denotes the highest-ranked variant). Across both plate 302 

experiments, all nine tested variants exhibited detectable protection from CcdB toxicity. 303 
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No growth was observed in the CcdB-only control, demonstrating that the enrichment in 304 

the high-throughput pooled assay reflects genuine antitoxin function. As illustrative 305 

examples, a representative subset of five variants is shown in the main text (Fig. 5c and 306 

5e), chosen to illustrate the correspondence between inferred fitness and phenotypic 307 

strength across a wide dynamic range. High-ranked variants such as egCcdA-1 and 308 

egCcdA-14 displayed activity comparable to or exceeding that of wild-type CcdA at 309 

different dilutions (y-axis), whereas egCcdA-78 showed moderately reduced activity, 310 

consistent with its lower inferred fitness. As a variant positioned near the statistical 311 

decision boundary, egCcdA-933 still exhibited weak but detectable rescue relative to the 312 

negative control (Fig. 5f), validating the sensitivity of the fitness-based classification. 313 

Thus, EvoGUD can generate large numbers of functional CcdA variants under purely 314 

sequence-level conditioning, despite the absence of a stable ground-state fold. Unedited 315 

plate images for all tested variants are provided in Supplementary Figs. S6 and S7, 316 

ensuring full transparency of the experimental results. 317 

  318 
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Discussion 319 

EvoGUD was designed to enable large-step exploration of protein sequence space while 320 

preserving the higher-order evolutionary constraints that characterize natural protein 321 

families. A central finding of this work is that EvoGUD-generated sequences remain 322 

embedded within realistic evolutionary manifolds despite substantial sequence 323 

divergence. In ESM-2 embedding and attention spaces, generated sequences closely track 324 

natural homologs and remain far more consistent with the query in representation space 325 

than identity-matched random controls, indicating that EvoGUD captures co-evolutionary 326 

structure beyond residue-level conservation. The conditioning strength γ provides 327 

continuous control over the balance between exploratory breadth and evolutionary 328 

constraint. 329 

These properties translate directly into improved structure prediction. By assembling 330 

EvoGUD-generated sequences as vMSAs, AlphaFold3 single-sequence inference 331 

recovers much of the accuracy and atomic detail typically associated with natural 332 

homolog searches. Across monomer benchmarks, EvoGUD-assisted predictions are near 333 

standard AlphaFold3 performance. For protein–DNA and protein–RNA complexes, 334 

EvoGUD-derived vMSAs further improve interface geometry, demonstrating that the 335 

generated sequence families encode actionable co-evolutionary signals for multimeric 336 

recognition. 337 

Besides structure modeling, EvoGUD provides a general framework for functional 338 

protein discovery in remote sequence space. For the TadA enzyme, EvoGUD identified 339 

highly divergent yet functional DNA-editing variants, revealing functional solutions 340 

inaccessible to stepwise directed evolution. Notably, these active variants reside at 341 
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approximately 40% sequence identity to the query, corresponding—in natural 342 

evolutionary terms—to divergence accumulated over on the order of ~10⁹ years 343 

(Supplementary Table S4)30. Similarly, in the CcdA–CcdB toxin–antitoxin system, 344 

EvoGUD enabled large-scale discovery of functional antitoxin variants spanning 54–73% 345 

sequence identity, even among low-ranked candidates, indicating robust preservation of 346 

context-dependent functional constraints without explicit structural or biophysical 347 

scoring.  348 

A key requirement for sequence generative models is generalizability across protein 349 

families and evolutionary distances. EvoGUD exhibits robust generalization across 350 

multiple validation regimes, including stringent non-redundant subsets, with generated 351 

sequences consistently following the same representation-space trajectories as natural 352 

homologs irrespective of training-set proximity (Supplementary Fig. S8). Controlled 353 

experiments on TadA further show that excluding or retaining close homologs during 354 

training produces only minor shifts in generative behavior without evidence of collapse 355 

(Supplementary Fig. S9). Notably, the CcdA system provides complementary insight: 356 

although CcdA homologs were present in the training data, CcdA-only conditioning 357 

yielded low identity and reduced foldability, whereas introducing an unseen fusion 358 

context with its cognate binding partner systematically shifted generation toward 359 

functionally coherent sequence space (Supplementary Fig. S10). Together, these results 360 

indicate that EvoGUD does not rely on memorization of training sequences but is 361 

primarily shaped by the evolutionary constraints supplied at inference time.  362 

EvoGUD adopts a modular alternative to end-to-end single-sequence structure prediction 363 

pipelines. By decoupling protein sequence feature extraction from structure inference 364 
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with intermediate sequence generation, improvements in protein language models or 365 

structure predictors can be incorporated by retraining only a lightweight generative 366 

adapter, requiring on the order of a single GPU-day. This contrasts sharply with the 367 

hundreds of GPU-weeks typically required to train or adapt full-scale structure prediction 368 

models17, enabling rapid iteration and reuse of advances in representation learning. 369 

Although EvoGUD’s performance is bounded by the fidelity of underlying sequence 370 

representations, its modular design provides a scalable and extensible framework for 371 

integrating advances in representation learning, enabling large-scale evolutionary 372 

exploration that can be naturally combined with local refinement strategies such as 373 

directed evolution. In this way, EvoGUD bridges global sequence-space exploration and 374 

functional protein engineering while remaining grounded in evolutionary realism.  375 

  376 
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Methods 377 

Training Dataset and Data Preprocessing 378 

EvoGUD was trained on OpenProteinSet-PDB31, a curated reconstruction of the 379 

AlphaFold2 training dataset as implemented in OpenFold32, comprising 131,487 protein 380 

chains with precomputed MSAs. To ensure sequence integrity and computational 381 

consistency, chains containing unknown amino acids (“X”) were excluded. Sequences 382 

were further filtered by length, retaining chains with 30 ≤ L ≤ 1000 amino acids. After 383 

filtering, the final dataset comprised 117,556 entries, which were partitioned into a 384 

training set of 116,756 entries and a validation set of 800 entries. 385 

 386 

Model architecture and conditioning 387 

EvoGUD is built on a Diffusion Transformer (DiT) backbone33 with a modified adaLN-388 

Zero conditioning mechanism (Supplementary Fig. S11). Whereas the original DiT 389 

conditions on global features, EvoGUD incorporates sequence-specific evolutionary 390 

context derived from a protein language model. 391 

During both training and inference, EvoGUD conditions the denoising process on 392 

representations extracted from the ESM-2 3B model, including per-residue embeddings 393 

(2,560 dimensions), and pairwise attention maps (36 layers × 40 heads; 1,440 394 

dimensions)17. These features are linearly projected into a 128-dimensional latent space. 395 

In each DiT block, ESM-2 embeddings are injected via cross-attention as key–value 396 

pairs, while projected attention maps are added to the attention logits as a pairwise bias. 397 

The resulting representations generate the six modulation parameters (shift, scale, and 398 
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gate for attention and feed-forward sublayers) used in the adaLN-Zero operation, 399 

enabling position-wise, evolution-aware modulation of the network. 400 

The model comprises 6 DiT blocks with a hidden dimension of 128 (3.06 M parameters 401 

total). A global dropout rate of 0.1 was applied. To stabilize early training, the linear 402 

layers producing adaLN modulation parameters were zero-initialized, such that each DiT 403 

block initially behaves as an identity mapping. Model outputs are projected to a 404 

categorical distribution over a 21-token alphabet (20 amino acids plus a gap token). 405 

 406 

Diffusion formulation 407 

EvoGUD adopts a continuous-time Gaussian diffusion framework with a cosine noise 408 

schedule34. The forward process gradually perturbs one-hot encoded amino-acid 409 

sequences with Gaussian noise according to a cumulative signal retention coefficient 𝛼ത௧, 410 

defined over normalized time 𝑢 ∈ [0,1] as: 411 

𝑎ത௨ =
𝑓(𝑢)

𝑓(0)
, 𝑓(𝑢) = cosଶ ቌ

𝑢
𝑠

+ 1

1 + 𝑠
⋅

𝜋

2
ቍ 412 

where 𝑠 is a small offset to prevent the noise level from becoming too small at 𝑡 = 0. The 413 

schedule was discretized into 𝑇 = 100 steps for training. The model is trained to predict 414 

the original categorical distribution of clean sequences from noisy inputs, conditioned on 415 

ESM-2 features. 416 

 417 

Model Training 418 

EvoGUD was trained to reconstruct natural homolog sequences drawn from MSAs using 419 

a query-centric batching strategy. For each optimization step, a single query sequence 420 
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was paired with 64 target sequences sampled from its associated MSA. For shallow 421 

MSAs, target sequences were oversampled; for deep MSAs, 64 members were randomly 422 

subsampled. The query sequence was always included in the batch to anchor 423 

reconstruction. 424 

Each target sequence was one-hot encoded and independently corrupted by Gaussian 425 

noise at a randomly sampled timestep 𝑡௜ ∈ [1, 𝑇]. The model predicted the denoised 426 

categorical distribution 𝑝൫𝑥଴| 𝑥௧,௜ , 𝑐𝑜𝑛𝑑൯ over the 21-token alphabet. 427 

To emphasize evolutionary diversity rather than trivial sequence conservation, a per-428 

residue weighted cross-entropy loss was applied: positions differing from the query were 429 

assigned weight = 1.0, whereas positions identical to the query or corresponding to gaps 430 

were down-weighted (weight = 0.1). 431 

Training was performed for 100 epochs using the AdamW optimizer35 with a learning 432 

rate of 1 × 10⁻³ and automatic mixed precision. Each epoch comprised 10,000 unique 433 

queries sampled from the whole training set, totaling ~10⁶ optimization steps. Training 434 

required approximately 25 h on a single NVIDIA A100 GPU and was implemented in 435 

PyTorch 2.236. 436 

 437 

Single-sequence conditional sampling via probability absorption 438 

At inference time, EvoGUD generates homolog families from a single query sequence 439 

using a probability absorption sampling scheme that bridges continuous diffusion 440 

dynamics with discrete sequence space. 441 

Sampling begins from isotropic Gaussian noise 𝑥் ∼ 𝒩(0, 𝐼) and proceeds over T = 100 442 

discrete reverse-diffusion steps. At each step, the model predicts a position-wise amino-443 
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acid probability distribution conditioned on ESM-2 features of the query. A discrete 444 

sequence is obtained by deterministic argmax decoding, excluding the gap token to 445 

generate gap-free sequences. 446 

The sampled sequence is projected back into latent space as a centered one-hot 447 

representation, scaled by a conditioning strength parameter 𝛾: 448 

𝑥ො଴ = 𝛾 ⋅ (one_hot(𝑆଴) − 0.5) 449 

The latent state is then updated via the Gaussian reverse transition, blending the absorbed 450 

identity signal with stochastic noise. The parameter 𝛾 controls the trade-off between 451 

evolutionary adherence and exploratory breadth: higher values promote conservative, 452 

high-confidence homologs, whereas lower values allow broader exploration of remote 453 

sequence space. 454 

 455 

Benchmark test sets 456 

RecentPDB-monomer. To evaluate structure prediction performance, an independent 457 

test set was curated from PDB entries released between January 1 and July 1, 2024, 458 

following AlphaFold3 benchmarking principles14. Only protein-only monomers solved by 459 

X-ray crystallography at ≤ 2.0 Å resolution were retained. Chains were filtered to lengths 460 

of 30–500 residues and subjected to 40% sequence-identity filtering both within the set 461 

and against the training/validation data. The final set comprised 159 non-redundant 462 

monomers. 463 

RecentPDB-multimer. Protein–nucleic-acid complexes were derived from the 464 

AlphaFold3 benchmark dataset14. After excluding entries lacking protein chains or 465 
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containing non-canonical residues, the final set comprised 165 complexes. vMSAs were 466 

generated only for protein components, while nucleic-acid sequences were held fixed. 467 

 468 

Ensemble settings for EvoGUD + AF3-SS 469 

A grid search over conditioning strength γ and vMSA depth on the RecentPDB-monomer 470 

benchmark set revealed a broad operating regime in which EvoGUD-derived vMSAs 471 

substantially improved structure prediction accuracy relative to AF3-SS (Supplementary 472 

Fig. S5). Within this regime, increasing γ and vMSA depth (# of generated vMSA 473 

sequences) led to substantial gains in both predicted confidence (pTM14) and backbone 474 

accuracy (TM-score), indicating that vMSAs capture much of the evolutionary 475 

information normally supplied by natural homologs. Based on this analysis, we selected a 476 

small ensemble of 10 EvoGUD parameter settings spanning this robust regime (γ = 1 477 

with #vMSA ∈ {2,4,8,16} and γ = 2 with #vMSA ∈ {2,4,8,16,32,64}) and fixed these 478 

settings for all subsequent analyses.  479 

 480 

Generation and validation of TadA variants 481 

Wild-type Staphylococcus aureus TadA (PDB: 2B3J)27 was used as the query for 482 

EvoGUD sequence generation. Conditioning strength γ was selected based on predicted 483 

foldability, novelty, and diversity (γ = 2; Supplementary Fig. S3). A total of 1,024 TadA 484 

variants were generated under a co-generation identity constraint of ≥ 35% relative to 485 

wild-type TadA, subsequently clustered at 70% sequence identity, and ten representatives 486 

from the largest clusters were selected for experimental validation. 487 
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TadA activity was quantified using a trimethoprim resistance reversion assay in E. coli 488 

based on a premature stop-codon reporter. Editing activity was defined as per-base 489 

mutation rates estimated from the observed frequency of TMP-resistant colonies, using a 490 

Luria–Delbrück approximation37. Full experimental protocols are provided in the 491 

Supplementary Information. 492 

 493 

Generation and validation of CcdA variants 494 

CcdA variants were generated using a conditional single-chain strategy in which the 495 

antitoxin sequence was embedded within a symmetrized CcdB–G₅₀–CcdA–G₅₀–CcdB 496 

fusion, with wild type CcdA and CcdB sequences from E. coli (PDB: 3HPW)16. Here, G₅₀ 497 

denotes a 50-amino-acid poly-glycine linker that spatially separates the CcdA and CcdB 498 

domains while preserving sequence-level context38. Residues outside the CcdA region 499 

were fixed during sampling. Conditioning strength γ = 2 was selected according to 500 

predicted foldability, novelty, and diversity (Supplementary Fig. S4). 501 

A pooled library of 10,000 CcdA variants was generated under a co-generation identity 502 

constraint of ≤ 75% relative to wild-type CcdA and subsequently clustered at 90% 503 

sequence identity, yielding 5,623 unique sequences. Functional selection was performed 504 

using a toxin-rescue assay in E. coli, followed by deep sequencing. 505 

Variant fitness was estimated using a Poisson-based log₂ enrichment model and false-506 

discovery-rate (FDR) correction29. Variants passing FDR ≤ 0.01 in two independent 507 

experiments were considered functional. Full experimental protocols are provided in the 508 

Supplementary Information. 509 

  510 
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Figure 1. EvoGUD enables controllable, large-step exploration of protein sequence space 601 

from a single query. 602 

a, Conceptual landscape illustrating the limitations of natural evolution and laboratory 603 

directed evolution, and how EvoGUD enables large-step sampling toward remote 604 

functional sequence regions. 605 

b, Training of EvoGUD using nMSAs: the model is trained to denoise corrupted MSAs 606 

conditioned on query-derived ESM-2 embeddings and pairwise attention maps. 607 

c, Sampling procedure: starting from a random probability distribution, EvoGUD 608 

iteratively denoises sequence probabilities under query conditioning, with a scaling factor 609 

γ controlling the strength of probability absorption before collapsing to a discrete 610 

sequence. 611 

d, Distribution of sequence identity to the conditioning query as a function of γ, 612 

demonstrating tunable control over sampling distance in sequence space. Additional 613 

validation metrics are shown in Supplementary Figures S1. 614 

e, Evolutionary consistency beyond identity: cosine similarity of ESM-2 attention maps 615 

versus sequence identity for EvoGUD-generated sequences, compared with identity-616 

matched random controls and natural MSA (nMSA) homologs, demonstrating 617 

preservation of natural-like co-evolutionary geometry across divergent regimes. EvoGUD 618 

data points correspond to 1,024 generated sequences per target across 159 RecentPDB-619 

monomer proteins and six conditioning strengths (γ ∈ {1, 2, 4, 8, 16, 32}), using the same 620 

generated sequences as in Fig. 1d and Supplementary Fig. S1b. Natural MSA sequences 621 

were included only when covering at least 80% of query positions to ensure comparable 622 
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alignment context. Solid lines denote mean trends and shaded regions indicate 95% 623 

confidence intervals. 624 

  625 
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 626 

Figure 2. EvoGUD restores MSA-level monomer performance and improves all-atom 627 

quality from a single sequence. 628 
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a, TM-score distributions on the RecentPDB-monomer test set (N = 159), evaluated using 629 

the selected EvoGUD ensemble settings (Supplementary Fig. S5). Predictions from AF3-630 

SS (single sequence), EvoGUD + AF3-SS, ESMFold, and AF3 with nMSAs are 631 

compared. EvoGUD substantially improves backbone accuracy relative to AF3-SS and 632 

approaches the performance of ESMFold and AF3. 633 

b, TM-score distributions on the CASP15 monomer benchmark (N = 71), evaluated using 634 

the same EvoGUD ensemble settings selected on RecentPDB-monomer. EvoGUD + 635 

AF3-SS generalizes to this independent benchmark without retuning. 636 

c, Representative monomer example (PDB: 8OV5) illustrating global backbone accuracy. 637 

The experimental structure (white) is compared with predictions from AF3-SS (gray), 638 

ESMFold (green), EvoGUD + AF3-SS (pink), and AF3 (blue). EvoGUD + AF3-SS 639 

recovers the correct overall topology and domain arrangement. 640 

d, All-atom steric clash counts per 1,000 atoms on the RecentPDB-monomer benchmark. 641 

Clash counts are computed as heavy-atom contacts closer than the sum of van der Waals 642 

radii with a 0.6 Å tolerance. EvoGUD + AF3-SS significantly reduces steric clashes 643 

relative to ESMFold. 644 

e, All-atom steric clash counts on the CASP15 monomer benchmark. EvoGUD + AF3-SS 645 

maintains low clash rates comparable to AF3, indicating improved side-chain packing 646 

without nMSAs search. 647 

f, Local side-chain environment example (PDB: 8XOX). ESMFold (green sticks, top) 648 

shows strained rotamers and steric clashes despite a high-quality backbone, whereas 649 

EvoGUD + AF3-SS (pink sticks, bottom) produces well-packed, stereochemically 650 

reasonable side chains. 651 
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 652 

Figure 3. EvoGUD enables single-sequence AlphaFold3 to model protein–nucleic-acid 653 

complexes. 654 

a, TM-score distributions of protein subunits extracted from predicted complexes for a 655 

benchmark of 165 protein–DNA/RNA assemblies, comparing AF3-SS (single sequence), 656 

EvoGUD + AF3-SS (vMSAs generated from single sequences), and AF3 with nMSAs 657 

and PDB template search (“AF3”). TM-scores are computed on protein subunits only, 658 

quantifying the correctness of individual protein folds within the predicted complexes. 659 

b, Interface LDDT (iLDDT) distributions for the same complexes, computed over 660 

protein–protein and protein–nucleic-acid interfaces following the AlphaFold3 evaluation 661 
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protocol. The horizontal dashed line at iLDDT = 0.5 is shown as a visual reference to 662 

illustrate the separation between lower- and higher-quality interface predictions observed 663 

in this benchmark. Numbers above and below the line report the counts of complexes on 664 

either side of this reference.  665 

c, Per-complex changes in protein-subunit TM-score and interface iLDDT relative to 666 

AF3-SS. Each point corresponds to one complex, with ΔTM-score on the x-axis and 667 

ΔiLDDT on the y-axis (positive values indicate improved interfaces).  668 

d, Representative protein–nucleic-acid complex example (PDB:7U7C).  669 

  670 
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 671 

Figure 4. EvoGUD generates remotely homologous yet functional TadA variants. 672 

a, AlphaFold3 (AF3) structure predictions for wild type Staphylococcus aureus TadA 673 

with EvoGUD-generated variants as vMSA, compared with AF3 predictions obtained 674 

from single-sequence input without MSA (AF3-SS). Aligned on reference PDB (2B3J) 675 

structure (gray). 676 

b, Schematic of the trimethoprim (TMP) resistance reversion assay used to evaluate 677 

TadA DNA-editing activity in E. coli. TadA-mediated A•T→G•C editing reverts a 678 

premature TAG stop codon in an R67 dihydrofolate reductase (DHFR) reporter gene, 679 

restoring the functional TGG codon and conferring TMP resistance. 680 
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c, Representative agar plate images showing TMP-resistant colony growth. A reporter-681 

only strain lacking TadA expression serves as the negative control, wild type (WT) TadA 682 

is shown as a positive control, and two EvoGUD-generated variants (egTadA-1 and 683 

egTadA-2) illustrate functional recovery. 684 

d, Quantification of DNA-editing activity for EvoGUD-generated TadA variants 685 

measured by TMP-resistance reversion. Each point represents one variant; WT is shown 686 

in black and EvoGUD-generated variants in pink. 687 

  688 
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 689 

Figure 5. Sequence-only conditional generation of the intrinsically disordered antitoxin 690 

CcdA and high-throughput functional screening. 691 
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a, AlphaFold3 (AF3) predictions of the CcdA–CcdB complex for EvoGUD-generated 692 

CcdA variants. Left: AF3 single-sequence inference (AF3-SS) using the wild-type CcdA 693 

sequence. Right: AF3-SS using EvoGUD-generated CcdA sequences provided as vMSA 694 

(γ = 2, #MSA = 8). CcdA is shown in cyan (AF3-SS) or pink (AF3-SS + EvoGUD), and 695 

CcdB is shown in green (AF3-SS) or blue (AF3-SS + EvoGUD). Below, predicted 696 

structures of the CcdA and CcdB subunits are shown separately using the same color 697 

scheme. Reported ipTM, iLDDT, pTM, and TM-score values are indicated beneath each 698 

model.  699 

b, Pooled selection workflow. A pooled oligo library of CcdA variants was constructed 700 

by cloning into a ccdB expression vector, pUC57-Kan-2BspQI-ccdB. The library was 701 

first propagated in the CcdB-resistant strain DB3.1 (Before selection), then subjected to 702 

selection in the CcdB-sensitive strain DH5α (After selection; two biological replicates).  703 

Plasmids were extracted and deep-sequenced to infer variant fitness. 704 

c, Distributions of normalized log₂ fitness for two biological replicates. Fitness is 705 

computed from before/after sequencing using early-stop variants as negative controls to 706 

estimate a baseline distribution (median and MAD), followed by BH-FDR filtering (q ≤ 707 

0.01) and normalization to obtain normalized log₂ fitness. Dotted lines mark WT; arrows 708 

indicate variants chosen for plate assays.  709 

d, Cross-validation of normalized log₂ fitness between replicates (N = 1072), with y = x 710 

reference, fitted trend, and WT reference lines. 711 

e, Plate-based validation of selected variants. Serial dilution spot assays for WT, selected 712 

variants, and a CcdB-only negative control; numbers under each label denote normalized 713 

log₂ fitness used for selection. 714 
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f, Zoomed comparison highlighting egCcdA-933 versus the CcdB-only negative control. 715 

  716 
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