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17 Abstract

18 Information communication in the brain must balance efficient func-
19 tional integration with the metabolic and physical costs of long-range
20 connectivity. How this cost—efficiency balance is implemented in large-
21 scale communication networks, and how it adapts across cognitive states
2 and pathology, remains poorly understood. In this study, by systemati-
23 cally tuning the strength of distance constraints in a dynamical model,
2% we revealed a continuum of effective connectivity (EC) architectures,
25 ranging from localized low-cost architectures to globally integrated high-
2 efficiency configurations. We show that large-scale brain communication
27 is organized along a continuous cost—efficiency trade-off spectrum, which
28 serves as a latent scaffold for flexible network reconfiguration across cog-
29 nitive states. Empirical resting EC occupies a balanced region on this
30 spectrum, near a knee point where cost is already substantially reduced
31 without a comparably large loss of efficiency. Cognitive task engagement
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32 dynamically shifts the brain’s operating point along the same spec-
33 trum, toward higher-cost, higher-efficiency regimes through enhanced
34 between-network interactions. In major depressive disorder, this state-
35 dependent reorganization is blunted, revealing an impaired access to
36 higher-efficiency regimes. Together, these findings suggest that cognitive
37 flexibility and dysfunction are governed not merely by discrete network
38 states, but by constrained navigation along a continuous cost—efficiency
39 spectrum, providing a unifying framework for interpreting brain-wide
40 communication and its reconfiguration.

« 1 Introduction

2 Flexible cognition requires the human brain to coordinate communications
.3 across widely distributed regions. However, such brain-wide communication is
« constrained by energetic and physical limitations [1]. Long-range communica-
s tions facilitate global integration but require substantial metabolic and wiring
s resources, while local interactions are more economical but limited in func-
« tional reach [2—4]. This tension gives rise to the fundamental cost—efficiency
s trade-off that shapes large-scale brain network organization. Importantly, it
w0 remains unclear whether this trade-off reflects a fixed operating point or a
so dynamically reconfigurable property of brain networks. Given the need to
s adapt to varying cognitive states, task demands, and levels of internal engage-
s> ment, we hypothesize that the brain may flexibly reposition itself within a
53 constrained space of communication networks, transiently prioritizing global
s« integration or local efficiency while remaining embedded within a stable
s anatomical scaffold [5-11]. Exploring such reconfiguration requires moving
ss  beyond static descriptions of observed connectivity to characterize the range of
57 interaction architectures accessible to the brain under biophysical constraints.
58 Existing methods for brain network analysis, including structural connec-
s tivity (SC) and functional connectivity (FC), offer valuable insights but remain
6 incomplete in characterizing the full space of brain communication architec-
st tures [12]. SC maps the anatomical wiring of the brain and reveals how physical
e distance and wiring economy constrain network organization [13, 14]. How-
63 ever, it is inherently static and cannot capture how communication patterns
6 adapt across cognitive states. FC, on the other hand, identifies state-dependent
e statistical dependencies between brain regions, uncovering properties like mod-
s ularity, hierarchy, and small-world organization [15-20]. While FC provides
e valuable descriptions of observed patterns in specific states, it does not offer a
68 continuous space of possible communication networks or reveal how the brain
o transitions between them [5, 21, 22]. Consequently, they primarily describe
7 only “what is” in terms of observed brain connectivity; both SC and FC are
n  limited in answering “what if” questions—how brain communication could
7 reorganize under different constraints. To fully understand the brain’s flexible
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73 communication, we need an approach that can explore intermediate regimes
7 and counterfactual network states across different conditions [14, 23].

7 Answering such “what if” questions require moving beyond static network
% descriptions to an interpretable dynamical modeling framework [24]. Such
77 framework should do more than summarize the connectivity pattern expressed
s in a given state; it should be able to identify alternative network configurations
7 that remain consistent with empirical data and reveals the dynamical rules
s governing large-scale communication. This allows for counterfactual “what if”
a1 exploration, enabling us to assess how changes in spatial embedding or cou-
&2 pling structure would reshape network organization and its cost—efficiency
s trade-off. However, no systematic framework has yet been developed to map
s these data-consistent communication networks. In this study, we introduce
s a distance-constrained linear dynamical model that captures brain dynamics
s and infers brain-wide effective connectivity (EC) from data (Fig. la—c) [25-
s 28]. By embedding a tunable spatial distance constraint into the model, we
s uncover a continuum of plausible brain network configurations (Fig. 1d) and
s facilitates counterfactual mapping of how brain network organization shifts
w along a continuous cost—efficiency trade-off spectrum (Fig. le).

o1 On the spectrum, we identify the position of empirical brain network by
o comparing model-derived EC with an independent whole-brain EC bench-
3 mark [25]. We found that the human brain operates at an intermediate point
o along the cost-efficiency spectrum, balancing low communication cost with
oo high efficiency (Fig. le). When comparing the empirical network with the
o Pareto front, we observed that it lies close to, but does not strictly coincide
o with, Pareto-optimal solutions (Fig. 1f). This suggests that brain networks are
s not purely optimal for cost—efficiency trade-off. Instead, we show that brain
9 also retains additional properties such as robustness and modularity, which
w0 may support reliable and flexible computation (Fig. 1g). Furthermore, across
w1 cognitive states, task engagement shifts the brain’s operating point within the
102 same cost—efficiency landscape, moving towards higher-cost, higher-efficiency
03 regimes, suggesting a dynamic reallocation of communication resources in
e response to cognitive demands (Fig. 1h). Together, these results support a
s view of cost—efficiency not as a single optimal solution, but as a constrained
ws landscape that the brain dynamically navigates to support flexible cognition.

o 2 Results

w 2.1 A distance-constrained linear dynamical model
109 captures brain dynamics and EC

1m0 To characterize how spatial constraints shape large-scale brain communication
m and contribute to the cost—efficiency trade-off, we introduce a distance-
2 constrained linear dynamical model that estimates whole-brain EC while
us  explicitly accounting for physical distance. This model predicts regional blood
us oxygenation level dependent (BOLD) activity at each timepoint via a weighted



Langtaosha (LTS) Preprint doi: https://doi.org/10.65215/LTSpreprints.2026.02.02.000118. This version posted
February 2, 2026. The copyright holder for this preprint (which was not certified by peer review) is the author/funder.
Creative Commons license: CC Attribution-NonCommercial 4.0 https://creativecommons.org/licenses/by-nc/4.0

~— 0 © O T

low cost high cost

®

. Increasing

constraint

Efficiency

Increasing spatial distance constraint Cost

=

f ]

Pareto front /_

Efficiency

o Brain connectivity
Cost-matched
Efficiency-matched

Efficiency (—)

 Resting-state
Task state

Cost (<) Cost

Fig. 1 Framework for examining cost—efficiency trade-off in large-scale brain
networks. a, Regional BOLD signals extracted from resting-state fMRI data. b, Linear
autoregressive model estimating the effective connectivity matrix W, capturing directional
interactions between brain regions. ¢, Brain regions embedded in 3D anatomical space,
with connections constrained by spatial distance. d, Connectivity patterns under increasing
spatial distance constraint. Stronger constraint yields more localized connectivity. e, Trade-
off curve between communication cost and efficiency across different constraint levels. f,
Cost—efficiency Pareto front with human brain networks compared to Pareto-front synthetic
networks matched to human cost or efficiency. g, Additional graph-theoretical metrics for
comparing human brain networks with Pareto-front networks. h, Cost—efficiency trade-off
across resting and task states with task-related rebalancing of communication cost and
efficiency.

us connectivity matrix W, with a single parameter A governing the strength of
us spatial distance regularization (Fig. la—d; Methods).

17 We validated the model on resting-state fMRI data from 100 Human Con-
us  nectome Project (HCP) participants (Fig. 2). At the individual level, the
uo  predicted BOLD signals closely tracked the empirical data (Fig. 2a), confirm-
120 ing that the model captures much of the large-scale temporal dynamics. We
121 benchmarked the performance of ridge regularization by comparing it to sparse
122 lasso regression across a range of A values. While lasso showed comparable
123 performance at low A, its prediction accuracy dropped sharply as the spatial
s constraint increased (e.g., at A = 0.7, mean R? = 0.510 for lasso vs. 0.744 for
s ridge). In contrast, ridge regression maintained stable performance across a
s wide range of A values (mean R? > 0.660 for ridge across A € [0.1,0.9]; Fig. 2b).
127 Moreover, our distance-constrained model offered superior prediction perfor-
s mance compared to standard ridge regression (Supplementary Fig. 1). We thus
129 used ridge regression with a spatial distance prior in subsequent analyses.
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Fig. 2 A distance-constrained linear dynamical model captures brain dynam-
ics and inter-regional relationships. a, Predicted and empirical BOLD signals at the
individual level. Representative panels in a, ¢, and e—g are shown for distance-constrained
ridge regression at A = 0.7. b, Prediction performance across A (5-fold cross-validation;
mean =+ s.d. across 100 participants). Ridge maintained stable prediction accuracy across A.
c, Estimated EC matrix W and SC at the group level (r = 0.385). d, Correlation between
estimated W and SC across A. Ridge showed consistently higher correlation with SC than
lasso. e, Continuous generation of synthetic BOLD signals from estimated W. f, Synthetic
BOLD signals at the individual level. g, Model FC and empirical FC matrices at the indi-
vidual level (r = 0.957). h, Model-empirical FC correlation across A (mean + s.d. across
100 participants). Ridge achieved high FC reconstruction accuracy across A. i, Estimated
EC matrix W and NPI-EC at the group level (A = 0.7). j, Correlation between estimated
EC matrix W at A = 0.7 and NPI-EC for the V1—+V2 connection at the individual level
(r = 0.800). k, Correlation between estimated EC matrix W and NPI-EC across A, peaking
at A = 0.7. Corr, correlation.

130 Next, we examined whether the estimated EC matrix W captures mean-
m  ingful inter-regional organization rather than serving purely as a forecasting
12 tool. Structurally, W exhibited a distance-dependent organization, with
13 increased correspondence to SC as the spatial constraint strengthened (for
1 ridge, from r = 0.288 at A = 0.1 to r = 0.416 at A = 0.9; Fig. 2¢-d). Func-
135 tionally, synthetic BOLD signals generated from the estimated W closely
us  reproduced temporal fluctuations observed in the data (Fig. 2e—f), and the
137 FC derived from these synthetic signals matched empirical FC at the indi-
138 vidual level (mean model-empirical FC correlation r > 0.798 for ridge across
w A € [0.1,0.9]; Fig. 2g-h). This high degree of FC reconstruction was not
1o observed in control analyses based on simulated dynamics (Supplementary
w Fig. 2) or a matched null model (Supplementary Fig. 3). The concurrent
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12 increase in SC correspondence (Fig. 2c—d) and consistently high FC recon-
w3 struction across A (Fig. 2g-h) suggest that strengthening the spatial prior
ua  redistributes directed interactions under distance constraints while preserving
us  the large-scale statistical scaffold of brain activity.

146 To identify the operating point of the empirical brain network within this
w7 spectrum, we compared the EC estimated from our model at various A values
us  against an independent EC benchmark (NPI-EC) (Fig. 2i). At the individual
1o level, we identified that the estimated EC matrix captured variation in connec-
150 tion strength similar to NPI-EC (e.g., » = 0.800 for the V1—V2 connection;
151 Fig. 2j). Similar correspondence was observed across additional connections
12 (Supplementary Fig. 4). At the group level, the correlation peaked at A = 0.7
153 (r = 0.817; Fig. 2k), and this peak was reproducible across fMRI datasets
15« (Supplementary Fig. 5). These results indicate that this value of A provided the
155 best approximation of human brain EC. We thus used the EC obtained from
156 the distance-constrained linear dynamical model at A = 0.7 as the empirical
157 EC for subsequent analyses.

s 2.2 Cost—efficiency trade-off spectrum of brain
150 communication networks

1o We next examined how EC patterns reorganize as the spatial constraint
11 parameter A increases (Fig. 3a—b). As A increased, the estimated connectiv-
12 ity shifted from a more distributed to a more localized structure. At smaller
163 values of A, strong connections spanned long distances, while larger values
1« weakened these long-range links and formed denser local clusters (Fig. 3b;
s Supplementary Fig. 6). Interestingly, despite this attenuation of long-range
166 links, some, such as the connection from the posterior cingulate cortex (PCC)
17 to the anterior cingulate cortex (ACC), were preserved even under stronger
s spatial constraints (Fig. 3a).

169 We then assessed the impact of these reorganizations on network commu-
wo nication by evaluating communication cost and functional efficiency across A
wm  (Methods). Increasing A consistently reduced communication cost (Fig. 3c),
2 but also decreased functional efficiency (Fig. 3d), revealing a cost—efficiency
ws  trade-off spectrum (Fig. 3e). This relationship was notably altered in a spa-
we  tially shuffled null model that disrupts anatomical embedding (Supplementary
ws  Fig. 7), confirming that the trade-off is intrinsic to human brain EC, not
we merely an artifactual result of stronger regularization. To test the robustness
177 of these findings, we replicated the analysis in an independent Chinese Human
s Connectome Project (CHCP) cohort, obtaining similar results (Fig. 3f-h). We
9 also observed an increase in small-worldness and modularity with higher A
1o (Supplementary Fig. 8), consistent with the denser local clustering at larger
w1 values of A.

182 As ) increased, the cost—efficiency spectrum bent toward the upper-
13 left, forming a knee region in the curve (Fig. 3e). The empirically observed
1a A = 0.7 lies near this knee, where communication cost has been significantly
155 reduced without a large loss in functional efficiency compared to more extreme
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Fig. 3 Changes in communication cost and functional efficiency with increas-
ing spatial distance constraint. a, Example of seed-based EC from PCC to other brain
regions under different A values. With increasing A, the seed-based EC becomes more spa-
tially localized while preserving selective long-range links. b, Example of whole-brain EC
matrices and their corresponding binarized adjacency matrices (thresholded at the top 15%)
under different A values. With increasing A, the estimated connectivity becomes more mod-
ular. c—e, Communication cost (c), functional efficiency (d), and cost—efficiency spectrum
(e) as a function of A in 100 HCP participants. Empirical EC (A = 0.7) lies near a knee of
the spectrum, consistent with a balanced cost—efficiency organization. f—h, Replication of
c—e in an independent sample of 100 CHCP participants. Gray lines show individual par-
ticipants, and the black curve shows the group mean.

186 constraint regimes. Consistent with this pattern, derivatives of communica-
17 tion cost and functional efficiency with respect to A further highlight that
188 beyond this point, cost reductions exhibit diminishing returns while efficiency
180 decreases sharply (Supplementary Fig. 9). These findings confirm that human
1o brain EC is organized along a cost—efficiency trade-off spectrum, with the
11 empirical brain network residing near the knee of the trade-off curve.



Langtaosha (LTS) Preprint doi: https://doi.org/10.65215/LTSpreprints.2026.02.02.000118. This version posted
February 2, 2026. The copyright holder for this preprint (which was not certified by peer review) is the author/funder.
Creative Commons license: CC Attribution-NonCommercial 4.0 https://creativecommons.org/licenses/by-nc/4.0

w2 2.3 Brain networks exhibit higher within-network
103 efficiency and robustness than Pareto-optimal
104 networks

15 To investigate whether the empirical brain network operates near an attainable
16 boundary in the cost—efficiency space, we compared the estimated EC to the
w7 Pareto-front solutions derived using a multi-objective genetic algorithm (GA)
s (Fig. 4a; Methods). The Pareto front is the upper-left boundary of attain-
109 able solutions in the cost—efficiency space, where no network can improve one
20 objective (cost or efficiency) without worsening the other. Our results show
s that the potential brain networks derived from our distance-constrained linear
22 dynamical model lie close to this GA-derived Pareto front (Fig. 4b), indicat-
203 ing that the empirical EC (A = 0.7) operates near the attainable frontier of
2 joint cost reduction and efficiency preservation. Although visual inspection
20 suggests that the empirical EC is near the Pareto front, it does not quantify
206 where the network lies within the attainable landscape, nor does it distinguish
207 between balanced compromises and solutions that prioritize one objective over
2 the other. To address this, we introduced the “Optimization Degree”, a quan-
200 titative measure of proximity to the Pareto front (Methods). Brain networks
a0 show consistently high Optimization Degree values across a broad range of
an A (mean Optimization Degree optdeg > 0.847 across A € [0.1,0.9]; Fig. 4c),
22 demonstrating that the estimated EC remains close to the attainable bound-
a3 ary. The Optimization Degree peaked at A = 0.72 (optdeg = 0.887; Fig. 4c),
au closely aligning with the empirically selected A = 0.7, which corresponds to
a5 maximal agreement with the NPI-EC. A highly consistent pattern was shown
26 in an independent CHCP cohort, with the peak occurring at A = 0.78 (Supple-
2z mentary Fig. 10). These findings suggest that the brain network operates in a
x2s balanced region of the trade-off spectrum, optimizing both cost and efficiency
20 at an intermediate A.

20 Despite the empirical EC being close to the Pareto front, it does not
o coincide exactly with it. To explore potential network properties that could
2 account for this offset, we selected three representative Pareto-front networks
23 for comparison: a cost-matched Pareto network, an efficiency-matched Pareto
24 network, and an optimal Pareto network with the highest Optimization Degree
»s  (Fig. 4d). Empirical EC showed substantial overlap with these Pareto net-
26 works at the level of overall connectivity pattern (Fig. 4e), suggesting that
27 they provide a meaningful basis for further functional comparison. On this
28 basis, we assessed how these networks compare in terms of communication
29 efficiency within and between functional modules. Relative to the Pareto
a0 references, empirical EC achieved higher within-network efficiency (+10.4%,
am +8.8%, +9.1% relative to the cost-matched, efficiency-matched, and optimal
2»  Pareto networks, respectively), with only a modest reduction in between-
a3 network efficiency (—4.0%, —1.7%, —0.5% relative to the same networks;
a4 Fig. 4f-g). Notably, the within-network efficiency advantage of empirical EC
235 extends across the Pareto front, surpassing the efficiency-matched and optimal
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Fig. 4 Comparison between human EC and Pareto-front solutions from a
genetic algorithm. a, One genetic evolution step in the genetic algorithm, where a child is
produced by inheriting a subset of connections from each parent and introducing additional
randomly mutated connections. b, Trade-off locations of estimated EC and Pareto-front solu-
tions in cost—efficiency space. Estimated EC lies close to the Pareto front. ¢, Optimization
degree across A\, with the mean peaking at A = 0.72, close to the empirically selected A = 0.7.
Gray lines show individual participants, and the black curve shows the group mean. d,
Visualization of the cost-matched, efficiency-matched, and optimal Pareto networks. e, Dice
coefficient between empirical EC and three representative Pareto-front networks. Empiri-
cal EC showed the highest overlap with the optimal Pareto network (all three comparisons:
Py =1.2x 10~17). f, Higher within-network efficiency in empirical EC than in three rep-
resentative Pareto-front networks (all three comparisons: P,q; = 1.2 x 10717). g, Slightly
lower between-network efficiency in empirical EC than in three representative Pareto-front
networks (comparisons with cost-matched and efficiency-matched: Pog; = 1.2 x 10~17; com-
parison with optimal: Paq; = 6.5 X 10*10), h, Greater robustness of empirical EC to targeted
edge removal than the efficiency-matched and optimal Pareto networks. i—1, Replication of
e—h in the same participants using the Schaefer200 atlas (empirically selected A = 0.56).
Unless otherwise stated, box plots show the median (center line) and interquartile range
(box), with whiskers extending from the quartiles to the most extreme data points within
1.5xIQR and fliers denote data points beyond the whiskers; bar plots and line plots show
mean values and error bars indicate s.d. P,qj values were obtained using two-sided Wilcoxon
signed-rank test with Bonferroni correction, n = 100. ***, P,4; < 0.001.
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26 Pareto networks, which are located near the upper part of within-network effi-
27 ciency on the front (Supplementary Fig. 11). These results imply that, beyond
28 a two-objective cost—efficiency criterion, human EC preferentially supports effi-
239 cient within-network communication while retaining substantial cross-network
a0 coupling.

201 We further assessed robustness to edge removal by progressively remov-
22 ing edges ranked by importance and tracking the resulting global efficiency
23 (Methods). Empirical EC demonstrated higher robustness than both the
a4 efficiency-matched and optimal Pareto networks, maintaining higher relative
25 global efficiency after removing 10% of edges (i.e., 0.946 for empirical EC vs.
26 0.852 for efficiency-matched and 0.835 for optimal Pareto networks; Fig. 4h).
27 Interestingly, the differences relative to the cost-matched Pareto network were
2s  modest. These findings indicate that Pareto solutions emphasizing cost and
2o efficiency may be less robust, whereas empirical EC combines near-frontier
0 cost—efficiency with greater resilience to targeted edge loss. These results were
251 reproduced using the Schaefer200 atlas (Fig. 4i-1), confirming that these obser-
2 vations are not specific to a single spatial resolution. Overall, the empirical
3 brain network does not merely optimize a single objective but occupies a bal-
4 anced region of the trade-off space, where efficiency, cost, and robustness are
5 jointly constrained.

x 2.4 Cognitive tasks drive the brain operating point
257 toward higher efficiency

s Cognitive demands are known to modulate brain effective connectivity [29],
9 but whether this modulation systematically shifts brain networks along the
w0 cost—efliciency spectrum remains unclear. To address this, we tested whether
s cognitive tasks reposition whole-brain EC toward a regime of higher efficiency
»% and higher cost compared to resting state. Using the HCP motor task, we
%3 first verified that the distance-constrained linear dynamical model remains
xe  predictive in task data (Fig. 5a), indicating that task-evoked BOLD dynamics
x5 can be captured within the same modeling framework. Additionally, task-state
w6 EC showed strong correspondence with SC across A (Fig. 5b), confirming an
27 anatomical scaffold for the task-state EC.

268 At A = 0.7, we observed clear state-dependent reconfigurations in whole-
%0 brain EC, with shifts from resting state to motor-task state (Fig. 5c—d).
a0 Seed-to-whole-brain maps revealed strengthened couplings from a somatomo-
o tor seed to distributed targets during motor execution (Fig. 5¢c—d, upper right),
a2 and a dorsal-attention seed also showed enhanced coupling to motor cortex in
a3 motor-task state (Fig. 5c—d, lower right). Overall, motor execution involved a
s more distributed coupling profile, with stronger interactions extending beyond
a5 the local somatomotor areas to include cross-system connections.

276 Next, we quantified how these connection-level changes translate into shifts
o7 in the cost—efficiency landscape. Across participants, motor-task states shifted
as toward higher functional efficiency together with higher communication cost
2o compared to rest (P = 3.9 x 10718 for efficiency and P = 8.2 x 10717 for

10
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Validation of distance-constrained ridge regression in HCP motor task

a b
P A=07 N
L R E 04 :
— i 08 038
— !
§ i : +
5 T h o
s H
g o5 H \ 8 o
3 H 07 030
3 H :
& i B
-
I ® Motor
0.0 H
- 06 00 025
00 02 04 06 08 10 Rest  Motor 00 02 04 06 08 10 Rest  Motor
A A=07 A A=07

Task-induced shift in the cost-efficiency trade-off

c W (A= 0.7, rest) d W (A= 0.7, motor)

Seed: L_4 (somatomotor) g Seed: L_4 (somatomotor)

E ) % Tn N

Seed: L_AIP (dorsal attention) 5 Seed: L_AIP (dorsal attention)
- L~ : ; 4
» f& N ; 4/“
. N S
> - T

Source Source

Target
Target

0.12
057

Cost

Efficiency
-
]

0.10

Between-network cost
°
8
Between-network efficiency

" Motor

0.06

Rest  Motor Rest  Motor
r=07 r=07

= Rest(A=0.7)

0575 0575 0575

0570 0570 0570

Efficiency
Efficiency
Efficiency

0.565 0565 0.565

® Rest(1=07)
= Language (A=0.7)

® Rest(1=0.7)

® Motor (2=0.7) = Working memory (A = 0.7)

0.560 0.560 0.560

= Trade-off spectrum = Trade-off spectrum = Trade-off spectrum

0.095 0.100 0.105 0.110 0.095 0.100 0.105 0.110 0.095 0.100 0.105 0.110
Cost Cost Cost

Fig. 5 Shifts of cost—efficiency trade-off points in cognitive task states. a, Compa-
rable next-step prediction performance across A in resting and motor task states, capturing
short-term temporal evolution in both states. b, Comparable EC-SC correspondence across
A in resting and motor task states. c—d, Estimated EC at A = 0.7 in resting state (c)
and motor task state (d): left, mean whole-brain EC matrix; right, seed-to-whole-brain EC
maps (white dot: seed) shown for a somatomotor seed (upper right) and a dorsal atten-
tion seed (lower right), illustrating state-dependent differences in connectivity patterns. e,
Higher communication cost in motor task state than resting state across A (P = 3.9 x 10718
at A = 0.7). f, Higher functional efficiency in motor task state than resting state across A
(P =82x10"17 at A = 0.7). g, Higher between-network cost (P = 3.9 x 10718, left) and
efficiency (P = 5.4 x 10718; right) in motor task state than resting state at A = 0.7. h—j,
Task-evoked repositioning along the cost—efficiency trade-off spectrum, shifting brain net-
works toward a regime with higher efficiency and higher cost during motor (h), language
(i) and working-memory (j) task states. P values were obtained using two-sided Wilcoxon
signed-rank test, n = 100. *** P < 0.001.

20 cost at A = 0.7, two-sided Wilcoxon signed-rank test; Fig. 5e—f). Decomposing
2s these shifts, we found that motor tasks increased between-network efficiency
22 and cost, with a slight decrease in within-network efficiency and cost (Fig. 5g;
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25 Supplementary Fig. 12). This pattern suggests a task-induced move in the
4 tradeoff spectrum toward more integrative between-network communications.
285 An additional observation is that the motor-task operating point lies
6 largely on, but slightly below, the cost—efficiency trade-off spectrum from
27 the resting state (Fig. bh), indicating that task states draw on an intrin-
s sic cost—efficiency framework already present at rest, rather than forming a
9 separate configuration. This pattern held across tasks: both language and
20 working-memory tasks exhibited similar shifts along the cost—efficiency spec-
21 trum toward higher efficiency and higher cost relative to rest (Fig. 5ij).
22 Complementary graph metrics revealed reduced modular segregation and local
203 efficiency during tasks, consistent with a shift toward more globally integrative
24 communication (Supplementary Fig. 12). Together, these results demonstrate
25 that cognitive tasks consistently reposition the brain’s operating point along
26 the cost—efficiency spectrum, toward a regime of higher functional efficiency
27 accompanied by higher communication cost.

»s 2.5 Task-evoked alterations in cost—efficiency trade-off of
209 the depressive brain

s Having established that task engagement repositions whole-brain networks
sn  along the cost—efficiency spectrum in healthy participants (Fig. 5), we next
s examined whether psychiatric disorders disrupt this task-evoked reconfigura-
a3 tion. Specifically, we hypothesized that if disease-related constraints primarily
su  affect the ability to reconfigure brain networks under cognitive demands,
s group differences would be modest at rest but more pronounced during task
ws  engagement [30, 31].

307 To test this hypothesis, we compared resting state EC with EC during a
w8 cognitively demanding task (i.e., promismatch task state) in major depressive
w0 disorder (MDD) (Fig. 6a). At A = 0.7, group-averaged EC showed little sep-
s aration between healthy controls (HCs) and MDDs at rest. Both the mean
au whole-brain EC matrices and the seed-to-whole-brain views anchored in the
s frontoparietal network (FPN) appeared broadly comparable across groups
s (Fig. 6b). However, during the promismatch task, group differences became
su more evident in the same FPN-seeded view (Fig. 6¢). HCs showed clearer
as  task-related enhancements in specific couplings, while MDDs displayed EC
a6 patterns more similar to their resting-state configuration. Example edges that
s diverged between groups (solid and dashed circles) illustrate this difference,
aus  suggesting reduced task-related EC reconfiguration in MDD.

319 To explore whether these connection-level differences reflect broader func-
20 tional changes, we assessed global, within-network, and between-network
a1 efficiency at rest and during the task in both HC and MDD groups. At
s rest, there were no significant group differences (P = 0.452, 0.510, and 0.382
a3 for global, within-network and between-network efficiency, two-sided Mann—
20 Whitney U test; Fig. 6d). Remarkably, during the task, significant group
ws  differences emerged (P = 0.040, 0.722, and 0.040 for global, within-network
26 and between-network efficiency, two-sided Mann-Whitney U test; Fig. 6e).

12
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Fig. 6 Task-evoked alterations in cost—efficiency trade-off of the depressive
brain. a, Schematic of state-dependent group separation in the cost—efficiency space: con-
trol and MDD overlap at rest but diverge during task. b—c, Group-averaged EC at A = 0.7
in resting state (b) and promismatch task state (c): left, mean whole-brain EC matrix;
right, seed-to-whole-brain EC maps from an FPN seed (upper right, control; lower right,
MDD). Circles highlight connections stronger in control but weaker in MDD (solid) and
weaker in control but stronger in MDD (dashed). d—e, Group differences (control vs.
MDD) in global efficiency, within-network efficiency, and between-network efficiency dur-
ing resting state (P = 0.452, 0.510, 0.382, respectively; d) and promismatch task state
(P = 0.040, 0.722, 0.040, respectively; e). f—g, Network-to-network efficiency change ratios
(MDD relative to control) during resting state (f) and promismatch task state (g). No
network-pair differences survived BH-FDR correction in resting state, whereas in promis-
match task state, three network-to-network pairs showed BH-FDR-adjusted significance
(DMN—SOM, DMN—DAN, and DMN—VAN; P,4; = 0.048). h, ROC curves for classifying
control vs. MDD using network-to-network efficiency features, with higher classification per-
formance in the promismatch task state than resting state. P values in d—g were obtained
using two-sided Mann—Whitney U test. P,q; values in f—g were adjusted using Benjamini-
Hochberg false discovery rate (BH-FDR) procedure across all network-pair comparisons
within each panel. Sample sizes: resting state, n = 16 (control) and n = 21 (MDD); promis-
match task state, n = 15 (control) and n = 22 (MDD). n.s., not significant; *, P < 0.05 in
d—e and P,q; < 0.05 in f—g. VIS, visual network; SOM, somatomotor network; DAN, dorsal
attention network; VAN, ventral attention network; LIM, limbic network; FPN, frontopari-
etal network; DMN, default mode network. ROC, receiver operating characteristic; AUC,
area under the ROC curve.

These results confirm our hypothesis that task engagement facilitated dif-
ferences in large-scale communication capacity between HCs and MDDs.
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39 These findings were corroborated by a cross-dataset comparison with a larger
a0 resting-state autism dataset (ABIDE, TR = 2s subset, n = 242 controls and
s n = 193 autism), which also showed limited separation in the cost—efficiency
s landscape between autism participants and healthy controls (Supplementary
a3 Fig. 13). These results suggest that resting-state cost—efficiency profiles may
s be insufficient for distinguishing clinical groups, highlighting the importance
35 of task-state networks for detecting disorder-related deviations.

336 At the network-to-network level, efficiency change ratios showed no robust
s differences at rest (Fig. 6f), but during the task, several network-level commu-
s nications were significantly weakened in MDDs compared to HCs (Phqgj < 0.05
a9 for DMN—SOM, DMN—DAN, and DMN—VAN; Fig. 6g), indicating task-
uo  evoked deficits in inter-network interactions in MDD under cognitive demand.
s Finally, we tested whether task-evoked alterations could improve the clas-
e  sification of MDDs from HCs. Using network-to-network efficiency features,
s classification performance was higher during the promismatch task than at
us rest (AUC = 0.714 for the task state vs. AUC = 0.648 for resting state;
us  Fig. 6h), suggesting that cognitive engagement provides more sensitive fea-
us  tures for distinguishing clinical alterations than resting-state alone. Together,
a7 these results demonstrate that MDD is associated with disrupted task-evoked
us reconfiguration along the cost—efficiency spectrum, with task states offering a
ue  more sensitive window for detecting psychiatric disease-related changes.

s J Discussion

1 Human cognitive function relies on coordinated communication among dis-
32 tributed brain networks, yet such communication is constrained by physical
353 distance and energetic limits, requiring a balance between economical wiring
s and the strategic placement of long-range connections for global integra-
s tion [32-35]. Our central insight is that the cost—efficiency trade-off should
s be viewed not as discrete empirical configurations, but as a structured spec-
37 trum. This spectrum provides a latent scaffold, enabling navigation across
s brain states, and allows for comparisons between cognitive states and psychi-
30 atric conditions, both in terms of their position on the spectrum and their
30 shifts under cognitive demand. To uncover the latent spectrum, we introduced
1 an explainable linear dynamical model with a tunable spatial distance prior.
w2 Previous cost—efficiency studies treat a single observed connectome as a post
53 hoc object for summarizing the brain network properties [23, 36-38]; however,
s they offer limited insight into how communication architectures might change
35 as constraints vary. Instead, by using spatial embedding as an explicit control
w6 parameter, we expose a continuous spectrum of possible interaction architec-
37 tures anchored to observed brain dynamics, allowing us to make counterfactual
s comparisons of state shifts and group differences.

360 The choice of inter-regional distance as the regularizing prior, rather than
s SC, is crucial for our aims. While SC-informed priors have been used to
sn improve or regularize EC estimation [39-41], it is likely that SC itself is the
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sz product of developmental and multi-objective selection [42, 43]. Using SC
33 as the regularizing prior risks blurring the distinction between the physical
s constraint we impose and the empirical outcome shaped by that constraint.
a5 Consistent with this view, our results show that stronger distance regulariza-
ws  tion aligns EC more closely with SC (Fig. 2c—d), reinforcing the idea that SC
sn - reflects organization shaped by a spatial distance prior.

378 Within this spectrum, resting-state and task engagement can be inter-
;9 preted as a baseline operating point with low cost and a demand-evoked shift to
0 a higher-efficiency, higher-cost regime (Fig. 5) [44-46]. In our results, resting-
s state EC shows lower efficiency at lower cost, consistent with an economical
s default regime that preserves energy for future cognitive integration [14]. In
33 contrast, task engagement recruits additional integrative interactions at higher
s cost (Fig. be—f), reflecting a functional shift in the brain’s operating point.
s This dynamic rest-to-task reconfiguration allows the brain to flexibly increase
s integration when needed. Importantly, task-state operating points remain
s largely on the resting-state-derived spectrum (Fig. 5h—j), suggesting that tasks
s selectively reweight interactions that are already feasible at rest, rather than
30 forming completely new architectures outside the intrinsic scaffold [47].

300 This trade-off spectrum is particularly relevant for psychiatry, where group
s differences are most pronounced under conditions of cognitive demand [48, 49].
s2  Task states act as functional probes of brain dynamics under cognitive pres-
33 sure [50, 51], which is in line with our evidence from MDD that cognitive
s challenges under task elicit clinically significant network-level abnormalities,
35 indicating impaired task-evoked reconfiguration (Fig. 6). Specifically, MDD
306 1S characterized by impaired long-range integrative coupling, as evidenced by
so7  attenuated task-evoked shifts in between-network efficiency (Fig. 6e). This
38 contrasts with the healthy brain, where task engagement promotes a strate-
30 gic shift toward a higher-efficiency, higher-cost regime (Fig. 5h—j). Within
w0 this framework, psychiatric disorders can be characterized by two key fea-
w1 tures: their operating points and their ability to navigate the cost—efficiency
w2 landscape. Our framework moves beyond static measures, offering a dual-
w3 dimensional quantification of brain network function that encompasses both
w4 baseline operation and reconfigurability. This approach shows promise for link-
w5 ing network dynamics to clinical symptoms and assessing interventions aimed
w6 at restoring cognitive flexibility.

a07 We highlight two extensions to broaden this framework. First, although
ws the GA-derived Pareto front provides a useful reference boundary, the gap
w  between empirical EC and the front suggest the potential for additional opti-
a0 Iization objectives beyond cost and efficiency. Future work could expand the
a1 set of objectives (such as robustness, flexibility, and topological complexity)
a2 and benchmark EC against these fronts to explore the principles governing
a3 real brain organization [52—-54]. Second, while task-state operating points align
as  with the resting-state-derived spectrum, we observe task-specific deviations
a5 that may reflect transient, context-dependent interactions not consolidated
a6 at rest. These may be associated with skill acquisition, automaticity, or task
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ar  performance [55, 56]. Future studies linking these deviations to behavioral
as  measures would test whether both spectrum position and off-spectrum dis-
a9 placement can provide insight into cognitive efficiency and learning-related
w0 reconfiguration.

= 4 Methods

= 4.1 Data processing

w23 We analyzed fMRI data from HCP [57], CHCP [58], and an OpenNeuro major
w2 depressive disorder dataset (ds006731, v1.0.0) [59]. Analyses used a subset of
ws 100 healthy adults per cohort for HCP and CHCP. For HCP, we analyzed
w6 resting-state IMRI and three task paradigms (motor, language, working mem-
w7 ory); the repetition time was 0.72s. For CHCP, we analyzed resting-state
w2 fMRI; the repetition time was 0.71s. For ds006731, we included all available
w29 data from the rest and Promismatch conditions, comprising rest scans from
a0 16 healthy controls and 21 participants with MDD, and Promismatch scans
a1 from 15 healthy controls and 22 participants with MDD; the repetition time
a2 was 3.00s.

433 For HCP and CHCP, images were processed with the HCP Minimal Pre-
s¢  processing Pipeline [60] to produce standardized volumes and cortical surfaces
s in a common space. Briefly, preprocessing included motion correction, EPI
s distortion correction, coregistration of fMRI to each participant’s T1-weighted
w7 anatomy, and normalization to the MNI152 standard space. For ds006731,
18 we preprocessed the data with fMRIPrep [61], normalized the outputs to the
s MNI152 standard space, and discarded the first 10 TRs of each run before
w0 subsequent analyses.

aa1 Parcel-wise BOLD signals were extracted using Nilearn with the MMP1.0
w2 cortical parcellation (360 parcels; 180 per hemisphere) [62]. For each run, we
w3 linearly detrended the BOLD signals, applied a 0.01-0.10 Hz band-pass filter
was to focus on low-frequency fluctuations commonly analyzed in fMRI connectiv-
ws ity, and z-scored each parcel. Following Luo et al. [25], parcels were assigned to
us  seven networks defined by Yeo et al. [63], comprising visual (VIS), somatomo-
wr tor (SOM), dorsal attention (DAN), ventral attention (VAN), limbic (LIM),
ws  frontoparietal control (FPN), and default mode (DMN).

a9 When studying the relationship between EC and SC, we used the group-
0 average SC provided by Demirtag et al. [64], derived from diffusion MRI using
s FSL’s bedpostx and probtrackx2 probabilistic tractography workflows. The SC
2 matrix was scaled to [0,1], and log-transformed. For an external EC reference,
3 we used the publicly available group-average NPI-EC [25]. To assess whether
s our EC estimates capture plausible inter-individual differences, we additionally
s ran NPI for each participant to obtain individual-level NPI-EC matrices and
w6 compared the resulting NPI-EC with our EC.
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s 4.2 Distance-constrained linear dynamical model
ss 4.2.1 Model specification

w  Let x; € RY denote the parcel-wise BOLD vector at time ¢, where N is
w0 the number of cortical parcels (N = 360 for MMP1.0). We model single-step
w1 dynamics with a linear map

T =Wa, +e, & ~N(0,0°T). (1)

w2 Here e, denotes i.i.d. additive Gaussian noise with covariance ¢2I. The EC
w3 matrix W € RVN is directed and signed: entry W;; quantifies the influence
ws  Of source parcel j at time ¢ on target parcel ¢ at time ¢+ 1. Thus, row ¢ collects
w5 inputs into region ¢, and column j collects outputs from region j. Parcel BOLD
ws signals are z-scored, so we do not include an intercept term in the model.

w 4.2.2 Spatial distance regularization

s To encode a spatial prior, we estimate W by minimizing a one-step prediction
w0 error augmented with a distance-weighted regularizer. The distance weights
a0 are given by a standardized parcel-wise Euclidean distance matrix D. Let d;;
an be the Euclidean distance between the MMP1.0 parcel centroids. We rescale
a2 off-diagonal distances so their mean equals 1 and set the diagonal to 1 so that
a3 self-couplings W;; receive the same baseline regularization:

7 1 dz '/Joff 1 7& j
dof = ——— dii, Dij = J ’ ’ 2
NN 1) Z A {1, i=j. @)
i#]
474 Using D, we estimate W by minimizing the sum of a one-step prediction

a5 error and a distance-weighted penalty:
T
1 2
LW)=Q10-N7 Dol = Wall; + A2 (Wi D), Ae0,1],  (3)
t=1

as  where T denotes the number of available one-step training samples and A
a7 balances the prediction error and the distance-weighted regularization.

78 We considered two choices for §2:
2
Quiage (W D) = | D' oW || =3~ DyW2, ()
i,
479
Qasso (W3 D) = [[DoW||; = ZDijWVijlv (5)
2,7

a0  where o denotes the Hadamard product and D'/? is the element-wise square
a1 TOoOt. Because D;; increases with inter-parcel distance, long-range interactions
w2 are penalized more strongly, encoding a spatial prior.
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ws 4.2.3 Parameter estimation

w2 We optimized equation (3) by gradient descent. Updates used all avail-
ws  able training samples in a full-batch manner, formed from consecutive pairs
wo (@, @i1). We used 80% of the data for training and 20% for evaluation. The
w7 held-out evaluation block was contiguous in time to avoid temporal leakage.
ss  The implementation was performed in PyTorch on an NVIDIA GeForce RTX
w0 4080 GPU.

490 For resting state in HCP and CHCP datasets, for each participant and
w  each A € {0.02,0.04,...,0.98}, we fitted an individual W using the training
w2 data. We used a learning rate of 0.01 and trained for 500 epochs. Given the
w3 length of the resting-state runs, we did not observe overfitting on the held-out
w¢ evaluation data (Supplementary Fig. 14, Supplementary Fig. 15).

495 For task state in HCP dataset, per-participant data are shorter, so we used
ws & two-stage procedure for each task and each A\ € {0.02,0.04,...,0.98}. First,
w7 we performed population initialization by pooling the data across participants
ws  within the same task, and trained with a learning rate of 0.01 for 1000 epochs
a9 to obtain W;I;;tk - Second, we conducted subject-specific fine-tuning: for each
s0  task and X, we selected the number of fine-tuning epochs k£ € {5,10,...,50}
s that maximized the participant-averaged held-out R? on the evaluatlon data
s2  when fine-tuning at a learning rate of 0.001. Each participant’s task EC was
ss then obtained by initializing at th;;tk » and fine-tuning for k epochs at a
soa learning rate of 0.001.

505 For the ds006731 dataset, data length is also short for both rest and task
so6 conditions. We therefore adopted the same two-stage procedure as for task
sor data: for each A\, we first obtained a global initialization Wi)\Ilit by pooling data
sos  across all conditions and diagnostic groups. We then performed subject-specific
so0  fine-tuning, selecting the number of fine-tuning epochs k € {5,10,...,50}
s0 based on held-out R2; for computational efficiency, the k selection was per-
su  formed by randomly subsampling 100 runs for fine-tuning when evaluating
sz candidate k values. Each participant’s EC for each condition was then obtained
si3 by initializing at W;mt and fine-tuning for k epochs.

e 4.3 Model evaluation

s 4.3.1 Predictive accuracy on held-out data

s Lo quantify one—step predictive performance, we computed the coefficient of
sz determination R? on held-out data, parcel by parcel, and then averaged across
sis parcels. For parcel ¢ with empirical signal {y;.}ics and model prediction
sio {Jit}tes on the evaluation split S,

Z (yl t yz t _
RI=1- tes y Yi = Yit- (6)
Ztes (Yit — yl) |S| teZS
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s0 The overall metric is the mean over parcels. We used five-fold blocked cross-
s validation: in each fold, a contiguous 20% segment in time served as the
s» evaluation block and the remaining 80% as training, ensuring no temporal
s leakage. Reported performance is the average of the overall metric across the
s20  five folds.

05 4.3.2 Alignment of EC with SC

s26  For each A, we first averaged the estimated EC matrices across participants to
s»  obtain a group EC matrix. To assess anatomical alignment, we then computed
22 the Pearson correlation between the off-diagonal entries of the group EC and
s20  those of the log-transformed SC.

s0 4.3.3 Model-empirical FC correspondence

sn  Given an estimated EC, we generated a long synthetic BOLD signal (length
522 Tsim = 10000 in our analyses) by driving the linear dynamics with i.i.d.
533 Gaussian noise 7,

T = Wa+n,, n,~N(0,5°T), (7)

su  where W is the estimated EC, 0 = 0.1 in our analyses, and the initial condition
s was g = 0 € RY. From the simulated series we computed the model FC as
s the parcel-parcel Pearson correlation matrix. The empirical FC was computed
57 from the data used to estimate W. Correspondence was quantified as the
s Pearson correlation between vectorized off-diagonal entries of the model FC
s and those of the empirical FC.

s0o 4.3.4 Alignment with NPI-EC

sa For each A\, we first averaged the estimated EC matrices across participants
sz to obtain a group EC matrix. Alignment with NPI-EC was quantified as
se3 the Pearson correlation between the off-diagonal entries of the estimated EC
s« and those of the publicly available group-average NPI-EC. In Luo et al. [25],
ss  NPI-EC;; represents a directed connection from region 7 to region j, whereas
s in our convention W;; encodes the influence from region j to region 4; thus we
sz transposed NPI-EC before computing the correlation.

s« 4.4 Graph-theoretic metrics

se0  Graph metrics were computed on a binary directed adjacency matrix derived
sso  from EC. For each participant and each A, we ranked the off-diagonal entries
ssi of |[W| and set the top 15% to 1, with all other off-diagonal entries and the
s diagonal set to 0. Denote the resulting adjacency matrix by A € {0, 1}V*N,
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3 4.4.1 Global communication cost

sss Let D € Rf *N he the parcel-wise distance matrix defined in equation (2).
sss  Global cost normalizes the distance-weighted edge load to [0, 1]:

Loz AisDii €[0,1]. (8)
Ziyﬁj Dy

sss ' LThus, a graph with no inter-areal edges has C' (A) = 0, while a complete
s directed graph has C' (A) = 1.

C(W):=C(A) =

s 4.4.2 Global functional efficiency

ss0  On the binary directed graph A we computed shortest paths between all
seo ordered node pairs. Let £;; be the minimal number of directed steps from node
s to node 4; if ¢ is unreachable from j then ¢;; = +o0. ¢;; was computed on
s2 A using the Brain Connectivity Toolbox [65]. Global efficiency is the mean
ss3  reciprocal path length over ordered pairs,

1 1 1
EW)=FA) = ——— —, — :=0. 9
i#]
s Global efficiency lies in [0, 1]: it equals 0 for an empty graph and 1 for a
ss  complete directed graph.

s 4.4.3 Within- and between-network cost

ssv  Let g(i) € {1,...,7} denote the Yeo7 network assignment of parcel i. Define
s the within-network and between-network masks as

. 1 . . N .
Mi\;{1th1n — 9 ? #]’ g('L) g(])v (10)
0, otherwise,
569
1 . .
M’L}gjetween _ ’ g(l) # g(])? (11)

0, otherwise.
s Within- and between-network costs quantify the distance-weighted loads
sn restricted to the corresponding masks. Intuitively, C(W)yithin captures the
s communication burden carried by connections confined within the same Yeo7
si3 - network, whereas C(W)petween Captures the burden carried by cross-network
sw  links. Both costs are normalized to [0, 1]:

Z ” AijDij Mz vithin
C(W)within = C(A)Within - e wijhin ) (12)
Zi;éj DijMij ¢
575 E bet
oy Ai 'D; Ml etween
C(W)between = C(A)between = 7 ! ) J (13)

. between
Zi;&j DZJ Mij
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so  4.4.4 Within- and between-network efficiency

sz Define the index sets Pyithin = {(¢,7) : 1 # J, Mi"jv-ithi’ﬂ = 1} and Phetween =
ss {(4,7) 14 # J, M}'}etwee“ = 1}. Within- and between-network efficiency average

s9  the reciprocals of shortest-path lengths over the corresponding index sets:

1

1
. - 14
|Pwithin| 1] ( )

(4,7) € Pwithin

— E(4)

within —

580

E (W)bctwccn =F (A)bctwccn = ﬁ Z i (15)
between (1,7) € Protween ij

s Intuitively, E(W )ywithin 18 high when nodes sharing the same Yeo7 label can

s reach each other through relatively few steps, while E(W )petween 18 high when

sss nodes from different labels are connected through short routes.

s 4.4.5 Network-to-network cost

ss Let g(i) € {1,...,7} denote the Yeo7 network assignment of parcel i. For any
s ordered pair of networks (p, ¢) (allowing p = ¢), define the directed mask

(16)

e 4L i# 0 96) =p, 9() =4,
* 0, otherwise.

ss7 ' The directed network-to-network cost from p to ¢ summarizes the distance-
s weighted load specifically carried by edges from network p to network ¢, and
s is normalized to [0, 1]:

Dizy AijDig M
2 iz Dig MG

C(W)pg = C(A)psg = (17)

s0 4.4.6 Network-to-network efficiency

sn  Define the index set P = {(4,4) : 7 # j, M{; ? = 1}. The directed network-
s to-network efficiency from p to ¢ summarizes how efficiently information can
s3  travel from network p to network ¢ by averaging the reciprocals of shortest-
sa  path lengths:

1 1

EW)pog=E(A)psq = il
p—q

. (18)
)Py (10

ss 4.4.7 Robustness to edge removal

so  We quantified robustness by targeted removal of high—betweenness edges on
s the binary directed graph A. For a present edge e, its edge betweenness
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ses  centrality is

Oun(€)

be(e) MZ#) P (19)
s0  where 0, denotes the number of directed shortest paths from node v to node
oo u in A, and oy,(e) counts those paths that traverse e; ordered pairs with
601 Oy = 0 are omitted from the sum.
602 For each participant and each A, we ranked present edges by bc(e) and
s removed the top fraction f € {0.05,0.10,...,0.60}. Let 74 be the largest
sos threshold such that at least a fraction f of edges in A satisfy bc(e) > 7y,
s and let Ry = {e:bc(e) > 74} be the removed set. The post-attack adjacency
s0s matrix is

(Ap)ij = A1 [(G = 1) & Ryl (20)
607 Global efficiency was computed using equation (9). Robustness was
es summarized by the relative efficiency,

(21)

o0 with smaller p(f) indicating greater vulnerability under targeted edge removal.

o0 4.5 Pareto-front construction and related metrics
s 4.5.1 Multi-objective genetic algorithm for the Pareto front P

sz We searched over binary directed adjacencies at fixed density (15% of off-
a3 diagonal entries set to 1) using a multi-objective genetic algorithm [66]. Each
s candidate was encoded as a length-N (N — 1) bit string (diagonal fixed at 0);
eis  crossover and mutation were followed by a repair step to maintain the density
e1s constraint. The two objectives were to minimize the global communication cost
sr  C(A) defined in equation (8) and to maximize the global functional efficiency
as  E(A) defined in equation (9). Non-dominated solutions obtained during evo-
619 lution formed an empirical Pareto set P that approximates the cost—efficiency
e20 trade-off front.

o 4.5.2 Optimization degree

o2 Let ¢pin = mingep C(B) and epax = maxpgep F(B) denote, respectively,
63 the smallest cost and largest efficiency observed on the Pareto front. For nor-
e malization we also defined cpax and enin as the maximal cost and minimal
e efficiency attainable within the feasible set under the same density constraint.
e For any adjacency matrix A derived from W, the optimization degree is

optdeg (A) = L[ E(A) = emin  Cmax T c(4) €10,1], (22)

2 €max — €min Cmax — Cmin

e which treats cost and efficiency as equally important (Supplementary Fig. 16);
es higher values indicate better cost—efficiency balance.
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o0 4.5.3 Matched comparators

a0 Let AP denote the binarized EC adjacency of participant p. Define C' and
o1 I as the across-participant means of global communication cost C’(A(p ))
62 and functional efficiency F (A(P )) respectively. We then selected three Pareto
633 comparators from P:

Bost = arg gli% |C(B) — C| (cost-matched Pareto), (23)
€

634 o

By = arg gli% |E(B) — E| (efficiency-matched Pareto), (24)
€
635
B, = arg max optdeg(B) (optimal Pareto). (25)
€

o 4.5.4 Similarity between EC and Pareto solutions

e For each participant and each A of interest, let A be the binarized EC adja-
e cency matrix and let P € {Bgost, Best; Bopt } be a selected Pareto comparator.
s Denote the sets of present directed edges by £(A) = {(4,7) : 1 # j, Ai; = 1}
a0 and E(P). We quantified similarity with the Dice coefficient:

: _ 21E(A)nEP)|
Dice(A, P) = A - EP) € [0,1], (26)

e1  which is insensitive to the large number of absent edges in sparse graphs.

« 4.6 Disease classification using network-to-network
643 efficiency features

es  Binary classification was used to distinguish healthy controls from participants
ss  with MDD based on large-scale communication features derived from EC. For
s each participant and each state (rest and promismatch), a feature vector was
s constructed from directed network-to-network efficiency values between Yeo7
ws  networks computed from the binarized EC matrix at A = 0.7. All directed
s0 inter-network pairs were included while excluding within-network entries,
oo yielding a fixed-dimensional feature vector per participant. No additional
es1  feature scaling or transformation was applied.

652 A Gaussian Naive Bayes classifier was evaluated using stratified 10-fold
63 cross-validation repeated 500 times with fold shuffling to obtain stable perfor-
e Inance estimates in this modest-sample setting. In each repetition, out-of-fold
es  predicted probabilities were obtained for every participant. For visualization
e and summary, out-of-fold predicted probabilities were averaged across the
ez 500 repetitions to obtain a single predicted probability per participant. ROC
ess curves were computed by sweeping a threshold over these averaged predicted
es0 probabilities and comparing the resulting labels to the ground-truth group
so labels. AUC was computed from the same ROC curves.

23



Langtaosha (LTS) Preprint doi: https://doi.org/10.65215/LTSpreprints.2026.02.02.000118. This version posted
February 2, 2026. The copyright holder for this preprint (which was not certified by peer review) is the author/funder.
Creative Commons license: CC Attribution-NonCommercial 4.0 https://creativecommons.org/licenses/by-nc/4.0

« Declarations

62 All the authors declare no conflict of interest.

« Data availability

es Datasets used in this study are accessible via their respective
s Trepositories: HCP dataset (https://www.humanconnectome.org/
oo study/hep-young-adult /document /1200-subjects-data-release), CHCP
sr  dataset (https://cstr.cn/31253.11.sciencedb.01374), MDD dataset
s (https://openneuro.org/datasets/ds006731/versions/1.0.0). The brain
wo atlases used in this study are also publicly available: MMP atlas (https:
s //github.com/mbedini/The-HCP-MMP1.0-atlas-in-FSL), Schaefer atlases
e (https://github.com/ThomasYeoLab/CBIG/tree/master/stable_projects/

2 brain_parcellation/Schaefer2018 LocalGlobal /Parcellations/MNTI).

« Code availability

s« The code supporting this study is available on GitHub at https://github.com/
s ncclab-sustech/Dynamic-Cost-Efficiency-Tradeoff, under the Apache License,
o6 v.2.0 (Apache-2.0).

« Acknowledgements

es  The authors would like to thank Dr. Ziwei Dai and Dr. Zhichao Liang
e from the Southern University of Science and Technology for their valuable
e suggestions. This work was supported by the National Natural Science Foun-
s dation of China (62472206, 325B2044), National Key R&D Program of China
2 (2025YF(C3410000), Shenzhen Science and Technology Innovation Committee
s (RCYX20231211090405003, JCYJ20220818100213029), Guangdong Provin-
¢ cial Key Laboratory of Advanced Biomaterials (2022B1212010003), and the
es open research fund of the Guangdong Provincial Key Laboratory of Mathe-
e matical and Neural Dynamical Systems, the Center for Computational Science
ez and Engineering at Southern University of Science and Technology.

24


https://www.humanconnectome.org/study/hcp-young-adult/document/1200-subjects-data-release
https://www.humanconnectome.org/study/hcp-young-adult/document/1200-subjects-data-release
https://www.humanconnectome.org/study/hcp-young-adult/document/1200-subjects-data-release
https://cstr.cn/31253.11.sciencedb.01374
https://openneuro.org/datasets/ds006731/versions/1.0.0
https://github.com/mbedini/The-HCP-MMP1.0-atlas-in-FSL
https://github.com/mbedini/The-HCP-MMP1.0-atlas-in-FSL
https://github.com/mbedini/The-HCP-MMP1.0-atlas-in-FSL
https://github.com/ThomasYeoLab/CBIG/tree/master/stable_projects/brain_parcellation/Schaefer2018_LocalGlobal/Parcellations/MNI
https://github.com/ThomasYeoLab/CBIG/tree/master/stable_projects/brain_parcellation/Schaefer2018_LocalGlobal/Parcellations/MNI
https://github.com/ThomasYeoLab/CBIG/tree/master/stable_projects/brain_parcellation/Schaefer2018_LocalGlobal/Parcellations/MNI
https://github.com/ncclab-sustech/Dynamic-Cost-Efficiency-Tradeoff
https://github.com/ncclab-sustech/Dynamic-Cost-Efficiency-Tradeoff
https://github.com/ncclab-sustech/Dynamic-Cost-Efficiency-Tradeoff

Langtaosha (LTS) Preprint doi: https://doi.org/10.65215/LTSpreprints.2026.02.02.000118. This version posted
February 2, 2026. The copyright holder for this preprint (which was not certified by peer review) is the author/funder.
Creative Commons license: CC Attribution-NonCommercial 4.0 https://creativecommons.org/licenses/by-nc/4.0

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

References

[1]

[10]

[11]

Avena-Koenigsberger, A., Misic, B. & Sporns, O. Communication dynam-
ics in complex brain networks. Nature reviews meuroscience 19, 17-33
(2018).

Seguin, C., Sporns, O. & Zalesky, A. Brain network communication:
concepts, models and applications. Nature reviews neuroscience 24, 557—
574 (2023).

Akarca, D., Vértes, P. E., Bullmore, E. T. & Astle, D. E. A genera-
tive network model of neurodevelopmental diversity in structural brain
organization. Nature communications 12, 4216 (2021).

Achterberg, J., Akarca, D., Strouse, D., Duncan, J. & Astle, D. E.
Spatially embedded recurrent neural networks reveal widespread links
between structural and functional neuroscience findings. Nature Machine
Intelligence 5, 1369-1381 (2023).

Bressler, S. L. & Menon, V. Large-scale brain networks in cognition:
emerging methods and principles. Trends in cognitive sciences 14, 277—
290 (2010).

Bassett, D. S. & Sporns, O. Network neuroscience. Nature neuroscience
20, 353-364 (2017).

Gustafsson, J., Robinson, J. L., Zetterberg, H. & Nielsen, J. Brain
energy metabolism is optimized to minimize the cost of enzyme synthe-
sis and transport. Proceedings of the National Academy of Sciences 121,
€2305035121 (2024).

Deng, S., Li, J., Thomas Yeo, B. & Gu, S. Control theory illus-
trates the energy efficiency in the dynamic reconfiguration of functional
connectivity. Communications biology 5, 295 (2022).

Liang, X. et al. Dissecting human cortical similarity networks across the
lifespan. Neuron 113, 3275-3295 (2025).

Finc, K. et al. Dynamic reconfiguration of functional brain networks
during working memory training. Nature communications 11, 2435
(2020).

Luppi, A. L. et al. Contributions of network structure, chemoarchitecture

and diagnostic categories to transitions between cognitive topographies.
Nature Biomedical Engineering 8, 1142-1161 (2024).

25



Langtaosha (LTS) Preprint doi: https://doi.org/10.65215/LTSpreprints.2026.02.02.000118. This version posted
February 2, 2026. The copyright holder for this preprint (which was not certified by peer review) is the author/funder.
Creative Commons license: CC Attribution-NonCommercial 4.0 https://creativecommons.org/licenses/by-nc/4.0

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

[12]

[13]

[14]

[15]

Goulas, A., Betzel, R. F. & Hilgetag, C. C. Spatiotemporal ontogeny of
brain wiring. Science advances 5, eaav9694 (2019).

Park, H.-J. & Friston, K. Structural and functional brain networks: from
connections to cognition. Science 342, 1238411 (2013).

Bullmore, E. & Sporns, O. The economy of brain network organization.
Nature reviews neuroscience 13, 336-349 (2012).

Friston, K. J. Functional and effective connectivity in neuroimaging: a
synthesis. Human brain mapping 2, 56-78 (1994).

Salvador, R. et al. Neurophysiological architecture of functional magnetic
resonance images of human brain. Cerebral corter 15, 1332-1342 (2005).

Meunier, D., Lambiotte, R., Fornito, A., Ersche, K. & Bullmore, E. T.
Hierarchical modularity in human brain functional networks. Frontiers
in neuroinformatics 3, 571 (2009).

Bullmore, E. & Sporns, O. Complex brain networks: graph theoretical
analysis of structural and functional systems. Nature reviews neuroscience
10, 186-198 (2009).

Rubinov, M. & Sporns, O. Complex network measures of brain connec-
tivity: uses and interpretations. Neuroimage 52, 1059-1069 (2010).

Sun, L. et al. Human lifespan changes in the brain’s functional
connectome. Nature neuroscience 1-11 (2025).

Li, J. et al. A thresholding method based on society modularity and
role division for functional connectivity analysis. Journal of Neural
Engineering 19, 056030 (2022).

Luppi, A. 1., Rosas, F. E., Mediano, P. A., Menon, D. K. & Stamatakis,
E. A. Information decomposition and the informational architecture of
the brain. Trends in Cognitive Sciences 28, 352-368 (2024).

Bassett, D. S. et al. Cognitive fitness of cost-efficient brain functional
networks. Proceedings of the National Academy of Sciences 106, 11747—
11752 (2009).

Nozari, E. et al. Macroscopic resting-state brain dynamics are best

described by linear models. Nature biomedical engineering 8, 68-84
(2024).

Luo, Z. et al. Mapping effective connectivity by virtually perturbing a
surrogate brain. Nature Methods 1-10 (2025).

26



Langtaosha (LTS) Preprint doi: https://doi.org/10.65215/LTSpreprints.2026.02.02.000118. This version posted
February 2, 2026. The copyright holder for this preprint (which was not certified by peer review) is the author/funder.
Creative Commons license: CC Attribution-NonCommercial 4.0 https://creativecommons.org/licenses/by-nc/4.0

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

77

778

779

780

781

782

783

784

785

786

787

788

789

790

[26]

[27]

[31]

32]

Perich, M. G. et al. Inferring brain-wide interactions using data-
constrained recurrent neural network models. BioRziv 2020-12 (2020).

Chen, Y., Rosen, B. Q. & Sejnowski, T. J. Dynamical differential
covariance recovers directional network structure in multiscale neural sys-
tems. Proceedings of the National Academy of Sciences 119, €2117234119
(2022).

Patow, G., Martin, 1., Sanz Perl, Y., Kringelbach, M. L. & Deco,
G. Whole-brain modelling: an essential tool for understanding brain
dynamics. Nature Reviews Methods Primers 4, 53 (2024).

Ma, L. et al. Working memory load modulation of parieto-frontal connec-
tions: Evidence from dynamic causal modeling. Human brain mapping
33, 18501867 (2012).

Braun, U. et al. Dynamic reconfiguration of frontal brain networks during
executive cognition in humans. Proceedings of the National Academy of
Sciences 112, 11678-11683 (2015).

Kaiser, R. H. et al. Dynamic resting-state functional connectivity in major
depression. Neuropsychopharmacology 41, 1822-1830 (2016).

Attwell, D. & Laughlin, S. B. An energy budget for signaling in the grey
matter of the brain. Journal of Cerebral Blood Flow & Metabolism 21,
1133-1145 (2001).

Chklovskii, D. B., Schikorski, T. & Stevens, C. F. Wiring optimization
in cortical circuits. Neuron 34, 341-347 (2002).

Van Den Heuvel, M. P. & Sporns, O. Rich-club organization of the human
connectome. Journal of Neuroscience 31, 1577515786 (2011).

Deco, G. et al. Rare long-range cortical connections enhance human
information processing. Current Biology 31, 4436-4448 (2021).

Achard, S. & Bullmore, E. Efficiency and cost of economical brain
functional networks. PLoS computational biology 3, €17 (2007).

Chen, Y., Wang, S., Hilgetag, C. C. & Zhou, C. Features of spatial and
functional segregation and integration of the primate connectome revealed
by trade-off between wiring cost and efficiency. PLoS computational
biology 13, €1005776 (2017).

Ma, J., Zhang, J., Lin, Y. & Dai, Z. Cost-efficiency trade-offs of
the human brain network revealed by a multiobjective evolutionary
algorithm. NeuroImage 236, 118040 (2021).

27



Langtaosha (LTS) Preprint doi: https://doi.org/10.65215/LTSpreprints.2026.02.02.000118. This version posted
February 2, 2026. The copyright holder for this preprint (which was not certified by peer review) is the author/funder.
Creative Commons license: CC Attribution-NonCommercial 4.0 https://creativecommons.org/licenses/by-nc/4.0

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

[39]

Greaves, M. D., Novelli, L., Mansour L, S., Zalesky, A. & Razi, A. Struc-
turally informed models of directed brain connectivity. Nature Reviews
Neuroscience 26, 23-41 (2025).

Stephan, K. E., Tittgemeyer, M., Knosche, T. R., Moran, R. J. & Friston,
K. J. Tractography-based priors for dynamic causal models. Neuroimage
47, 1628-1638 (2009).

Crimi, A., Dodero, L., Sambataro, F., Murino, V. & Sona, D. Structurally
constrained effective brain connectivity. NeuroImage 239, 118288 (2021).

Ma, J. et al. Trade-offs among cost, integration, and segregation in the
human connectome. Network Neuroscience 7, 604-631 (2023).

Zhuo, Z. et al. Charting brain morphology in international healthy and
neurological populations. Nature Neuroscience 1-15 (2025).

Cohen, J. R. & D’Esposito, M. The segregation and integration of dis-
tinct brain networks and their relationship to cognition. Journal of
Neuroscience 36, 12083-12094 (2016).

Shine, J. M. et al. The dynamics of functional brain networks: integrated
network states during cognitive task performance. Neuron 92, 544-554
(2016).

Luppi, A. I. et al. A synergistic core for human brain evolution and
cognition. Nature neuroscience 25, 771-782 (2022).

Cole, M. W., Bassett, D. S., Power, J. D., Braver, T. S. & Petersen,
S. E. Intrinsic and task-evoked network architectures of the human brain.
Neuron 83, 238-251 (2014).

Fang, Z., Lynn, E., Knott, V. J. & Jaworska, N. Functional connectivity
profiles in remitted depression and their relation to ruminative thinking.
NeuroImage: Clinical 45, 103716 (2025).

Williams, L. M. et al. Amygdala reactivity to emotional faces in the
prediction of general and medication-specific responses to antidepressant
treatment in the randomized ispot-d trial. Neuropsychopharmacology 40,
2398-2408 (2015).

Finn, E. S. Is it time to put rest to rest? Trends in cognitive sciences 25,
1021-1032 (2021).

Zhao, W. et al. Task fmri paradigms may capture more behaviorally rele-

vant information than resting-state functional connectivity. Neurolmage

270, 119946 (2023).

28



Langtaosha (LTS) Preprint doi: https://doi.org/10.65215/LTSpreprints.2026.02.02.000118. This version posted
February 2, 2026. The copyright holder for this preprint (which was not certified by peer review) is the author/funder.
Creative Commons license: CC Attribution-NonCommercial 4.0 https://creativecommons.org/licenses/by-nc/4.0

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

[52]

[57]

[58]

[59]

[62]

[63]

[64]

Avena-Koenigsberger, A. et al. Using pareto optimality to explore
the topology and dynamics of the human connectome. Philosophical
Transactions of the Royal Society B: Biological Sciences 369, 20130530
(2014).

Pallasdies, F., Norton, P., Schleimer, J.-H. & Schreiber, S. Neural opti-
mization: Understanding trade-offs with pareto theory. Current opinion
in neurobiology 71, 84-91 (2021).

Jedlicka, P., Bird, A. D. & Cuntz, H. Pareto optimality, economy—
effectiveness trade-offs and ion channel degeneracy: improving population
modelling for single neurons. Open biology 12, 220073 (2022).

Bassett, D. S. et al. Dynamic reconfiguration of human brain networks
during learning. Proceedings of the National Academy of Sciences 108,
7641-7646 (2011).

Hearne, L. J., Cocchi, L., Zalesky, A. & Mattingley, J. B. Reconfiguration
of brain network architectures between resting-state and complexity-
dependent cognitive reasoning. Journal of Neuroscience 37, 8399-8411
(2017).

Van Essen, D. C. et al. The wu-minn human connectome project: an
overview. Neuroimage 80, 62-79 (2013).

Yang, G., Ge, J. & Gao, J.-H. Chinese Human Connectome Project
(2024). URL https://doi.org/10.11922/sciencedb.01374.

Ekpo, E. et al. Resting-state and task-based functional connectivity reveal
distinct mpfc and hippocampal network alterations in major depressive
disorder. Brain Sciences 15, 1133 (2025).

Glasser, M. F. et al. The minimal preprocessing pipelines for the human
connectome project. Neuroimage 80, 105124 (2013).

Esteban, O. et al. fmriprep: a robust preprocessing pipeline for functional
mri. Nature methods 16, 111-116 (2019).

Glasser, M. F. et al. A multi-modal parcellation of human cerebral cortex.
Nature 536, 171-178 (2016).

Yeo, B. T. et al. The organization of the human cerebral cortex estimated
by intrinsic functional connectivity. Journal of neurophysiology (2011).

Demirtag, M. et al. Hierarchical heterogeneity across human cortex shapes
large-scale neural dynamics. Neuron 101, 1181-1194 (2019).

29


https://doi.org/10.11922/sciencedb.01374

Langtaosha (LTS) Preprint doi: https://doi.org/10.65215/LTSpreprints.2026.02.02.000118. This version posted
February 2, 2026. The copyright holder for this preprint (which was not certified by peer review) is the author/funder.
Creative Commons license: CC Attribution-NonCommercial 4.0 https://creativecommons.org/licenses/by-nc/4.0

wo [65] Rubinov, M., Kotter, R., Hagmann, P. & Sporns, O. Brain connectiv-

861 ity toolbox: a collection of complex network measurements and brain
a2 connectivity datasets. Neurolmage 47, S169 (2009).

w3 [66] Qu, Y. et al. A genetic algorithms for optimizing structural brain network
864 across cognitive tasks. 2024 China Automation Congress (CAC) 5210-
865 5215 (2024).

30



