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Abstract17

Information communication in the brain must balance efficient func-18

tional integration with the metabolic and physical costs of long-range19

connectivity. How this cost–efficiency balance is implemented in large-20

scale communication networks, and how it adapts across cognitive states21

and pathology, remains poorly understood. In this study, by systemati-22

cally tuning the strength of distance constraints in a dynamical model,23

we revealed a continuum of effective connectivity (EC) architectures,24

ranging from localized low-cost architectures to globally integrated high-25

efficiency configurations. We show that large-scale brain communication26

is organized along a continuous cost–efficiency trade-off spectrum, which27

serves as a latent scaffold for flexible network reconfiguration across cog-28

nitive states. Empirical resting EC occupies a balanced region on this29

spectrum, near a knee point where cost is already substantially reduced30

without a comparably large loss of efficiency. Cognitive task engagement31
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dynamically shifts the brain’s operating point along the same spec-32

trum, toward higher-cost, higher-efficiency regimes through enhanced33

between-network interactions. In major depressive disorder, this state-34

dependent reorganization is blunted, revealing an impaired access to35

higher-efficiency regimes. Together, these findings suggest that cognitive36

flexibility and dysfunction are governed not merely by discrete network37

states, but by constrained navigation along a continuous cost–efficiency38

spectrum, providing a unifying framework for interpreting brain-wide39

communication and its reconfiguration.40

1 Introduction41

Flexible cognition requires the human brain to coordinate communications42

across widely distributed regions. However, such brain-wide communication is43

constrained by energetic and physical limitations [1]. Long-range communica-44

tions facilitate global integration but require substantial metabolic and wiring45

resources, while local interactions are more economical but limited in func-46

tional reach [2–4]. This tension gives rise to the fundamental cost–efficiency47

trade-off that shapes large-scale brain network organization. Importantly, it48

remains unclear whether this trade-off reflects a fixed operating point or a49

dynamically reconfigurable property of brain networks. Given the need to50

adapt to varying cognitive states, task demands, and levels of internal engage-51

ment, we hypothesize that the brain may flexibly reposition itself within a52

constrained space of communication networks, transiently prioritizing global53

integration or local efficiency while remaining embedded within a stable54

anatomical scaffold [5–11]. Exploring such reconfiguration requires moving55

beyond static descriptions of observed connectivity to characterize the range of56

interaction architectures accessible to the brain under biophysical constraints.57

Existing methods for brain network analysis, including structural connec-58

tivity (SC) and functional connectivity (FC), offer valuable insights but remain59

incomplete in characterizing the full space of brain communication architec-60

tures [12]. SC maps the anatomical wiring of the brain and reveals how physical61

distance and wiring economy constrain network organization [13, 14]. How-62

ever, it is inherently static and cannot capture how communication patterns63

adapt across cognitive states. FC, on the other hand, identifies state-dependent64

statistical dependencies between brain regions, uncovering properties like mod-65

ularity, hierarchy, and small-world organization [15–20]. While FC provides66

valuable descriptions of observed patterns in specific states, it does not offer a67

continuous space of possible communication networks or reveal how the brain68

transitions between them [5, 21, 22]. Consequently, they primarily describe69

only “what is” in terms of observed brain connectivity; both SC and FC are70

limited in answering “what if” questions—how brain communication could71

reorganize under different constraints. To fully understand the brain’s flexible72
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communication, we need an approach that can explore intermediate regimes73

and counterfactual network states across different conditions [14, 23].74

Answering such “what if” questions require moving beyond static network75

descriptions to an interpretable dynamical modeling framework [24]. Such76

framework should do more than summarize the connectivity pattern expressed77

in a given state; it should be able to identify alternative network configurations78

that remain consistent with empirical data and reveals the dynamical rules79

governing large-scale communication. This allows for counterfactual “what if”80

exploration, enabling us to assess how changes in spatial embedding or cou-81

pling structure would reshape network organization and its cost–efficiency82

trade-off. However, no systematic framework has yet been developed to map83

these data-consistent communication networks. In this study, we introduce84

a distance-constrained linear dynamical model that captures brain dynamics85

and infers brain-wide effective connectivity (EC) from data (Fig. 1a–c) [25–86

28]. By embedding a tunable spatial distance constraint into the model, we87

uncover a continuum of plausible brain network configurations (Fig. 1d) and88

facilitates counterfactual mapping of how brain network organization shifts89

along a continuous cost–efficiency trade-off spectrum (Fig. 1e).90

On the spectrum, we identify the position of empirical brain network by91

comparing model-derived EC with an independent whole-brain EC bench-92

mark [25]. We found that the human brain operates at an intermediate point93

along the cost-efficiency spectrum, balancing low communication cost with94

high efficiency (Fig. 1e). When comparing the empirical network with the95

Pareto front, we observed that it lies close to, but does not strictly coincide96

with, Pareto-optimal solutions (Fig. 1f). This suggests that brain networks are97

not purely optimal for cost–efficiency trade-off. Instead, we show that brain98

also retains additional properties such as robustness and modularity, which99

may support reliable and flexible computation (Fig. 1g). Furthermore, across100

cognitive states, task engagement shifts the brain’s operating point within the101

same cost–efficiency landscape, moving towards higher-cost, higher-efficiency102

regimes, suggesting a dynamic reallocation of communication resources in103

response to cognitive demands (Fig. 1h). Together, these results support a104

view of cost–efficiency not as a single optimal solution, but as a constrained105

landscape that the brain dynamically navigates to support flexible cognition.106

2 Results107

2.1 A distance-constrained linear dynamical model108

captures brain dynamics and EC109

To characterize how spatial constraints shape large-scale brain communication110

and contribute to the cost–efficiency trade-off, we introduce a distance-111

constrained linear dynamical model that estimates whole-brain EC while112

explicitly accounting for physical distance. This model predicts regional blood113

oxygenation level dependent (BOLD) activity at each timepoint via a weighted114
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Fig. 1 Framework for examining cost–efficiency trade-off in large-scale brain
networks. a, Regional BOLD signals extracted from resting-state fMRI data. b, Linear
autoregressive model estimating the effective connectivity matrix W , capturing directional
interactions between brain regions. c, Brain regions embedded in 3D anatomical space,
with connections constrained by spatial distance. d, Connectivity patterns under increasing
spatial distance constraint. Stronger constraint yields more localized connectivity. e, Trade-
off curve between communication cost and efficiency across different constraint levels. f,
Cost–efficiency Pareto front with human brain networks compared to Pareto-front synthetic
networks matched to human cost or efficiency. g, Additional graph-theoretical metrics for
comparing human brain networks with Pareto-front networks. h, Cost–efficiency trade-off
across resting and task states with task-related rebalancing of communication cost and
efficiency.

connectivity matrix W , with a single parameter λ governing the strength of115

spatial distance regularization (Fig. 1a–d; Methods).116

We validated the model on resting-state fMRI data from 100 Human Con-117

nectome Project (HCP) participants (Fig. 2). At the individual level, the118

predicted BOLD signals closely tracked the empirical data (Fig. 2a), confirm-119

ing that the model captures much of the large-scale temporal dynamics. We120

benchmarked the performance of ridge regularization by comparing it to sparse121

lasso regression across a range of λ values. While lasso showed comparable122

performance at low λ, its prediction accuracy dropped sharply as the spatial123

constraint increased (e.g., at λ = 0.7, mean R2 = 0.510 for lasso vs. 0.744 for124

ridge). In contrast, ridge regression maintained stable performance across a125

wide range of λ values (mean R2 ≥ 0.660 for ridge across λ ∈ [0.1, 0.9]; Fig. 2b).126

Moreover, our distance-constrained model offered superior prediction perfor-127

mance compared to standard ridge regression (Supplementary Fig. 1). We thus128

used ridge regression with a spatial distance prior in subsequent analyses.129
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Fig. 2 A distance-constrained linear dynamical model captures brain dynam-
ics and inter-regional relationships. a, Predicted and empirical BOLD signals at the
individual level. Representative panels in a, c, and e–g are shown for distance-constrained
ridge regression at λ = 0.7. b, Prediction performance across λ (5-fold cross-validation;
mean ± s.d. across 100 participants). Ridge maintained stable prediction accuracy across λ.
c, Estimated EC matrix W and SC at the group level (r = 0.385). d, Correlation between
estimated W and SC across λ. Ridge showed consistently higher correlation with SC than
lasso. e, Continuous generation of synthetic BOLD signals from estimated W . f, Synthetic
BOLD signals at the individual level. g, Model FC and empirical FC matrices at the indi-
vidual level (r = 0.957). h, Model–empirical FC correlation across λ (mean ± s.d. across
100 participants). Ridge achieved high FC reconstruction accuracy across λ. i, Estimated
EC matrix W and NPI-EC at the group level (λ = 0.7). j, Correlation between estimated
EC matrix W at λ = 0.7 and NPI-EC for the V1→V2 connection at the individual level
(r = 0.800). k, Correlation between estimated EC matrix W and NPI-EC across λ, peaking
at λ = 0.7. Corr, correlation.

Next, we examined whether the estimated EC matrix W captures mean-130

ingful inter-regional organization rather than serving purely as a forecasting131

tool. Structurally, W exhibited a distance-dependent organization, with132

increased correspondence to SC as the spatial constraint strengthened (for133

ridge, from r = 0.288 at λ = 0.1 to r = 0.416 at λ = 0.9; Fig. 2c–d). Func-134

tionally, synthetic BOLD signals generated from the estimated W closely135

reproduced temporal fluctuations observed in the data (Fig. 2e–f), and the136

FC derived from these synthetic signals matched empirical FC at the indi-137

vidual level (mean model–empirical FC correlation r ≥ 0.798 for ridge across138

λ ∈ [0.1, 0.9]; Fig. 2g–h). This high degree of FC reconstruction was not139

observed in control analyses based on simulated dynamics (Supplementary140

Fig. 2) or a matched null model (Supplementary Fig. 3). The concurrent141
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increase in SC correspondence (Fig. 2c–d) and consistently high FC recon-142

struction across λ (Fig. 2g–h) suggest that strengthening the spatial prior143

redistributes directed interactions under distance constraints while preserving144

the large-scale statistical scaffold of brain activity.145

To identify the operating point of the empirical brain network within this146

spectrum, we compared the EC estimated from our model at various λ values147

against an independent EC benchmark (NPI-EC) (Fig. 2i). At the individual148

level, we identified that the estimated EC matrix captured variation in connec-149

tion strength similar to NPI-EC (e.g., r = 0.800 for the V1→V2 connection;150

Fig. 2j). Similar correspondence was observed across additional connections151

(Supplementary Fig. 4). At the group level, the correlation peaked at λ = 0.7152

(r = 0.817; Fig. 2k), and this peak was reproducible across fMRI datasets153

(Supplementary Fig. 5). These results indicate that this value of λ provided the154

best approximation of human brain EC. We thus used the EC obtained from155

the distance-constrained linear dynamical model at λ = 0.7 as the empirical156

EC for subsequent analyses.157

2.2 Cost–efficiency trade-off spectrum of brain158

communication networks159

We next examined how EC patterns reorganize as the spatial constraint160

parameter λ increases (Fig. 3a–b). As λ increased, the estimated connectiv-161

ity shifted from a more distributed to a more localized structure. At smaller162

values of λ, strong connections spanned long distances, while larger values163

weakened these long-range links and formed denser local clusters (Fig. 3b;164

Supplementary Fig. 6). Interestingly, despite this attenuation of long-range165

links, some, such as the connection from the posterior cingulate cortex (PCC)166

to the anterior cingulate cortex (ACC), were preserved even under stronger167

spatial constraints (Fig. 3a).168

We then assessed the impact of these reorganizations on network commu-169

nication by evaluating communication cost and functional efficiency across λ170

(Methods). Increasing λ consistently reduced communication cost (Fig. 3c),171

but also decreased functional efficiency (Fig. 3d), revealing a cost–efficiency172

trade-off spectrum (Fig. 3e). This relationship was notably altered in a spa-173

tially shuffled null model that disrupts anatomical embedding (Supplementary174

Fig. 7), confirming that the trade-off is intrinsic to human brain EC, not175

merely an artifactual result of stronger regularization. To test the robustness176

of these findings, we replicated the analysis in an independent Chinese Human177

Connectome Project (CHCP) cohort, obtaining similar results (Fig. 3f–h). We178

also observed an increase in small-worldness and modularity with higher λ179

(Supplementary Fig. 8), consistent with the denser local clustering at larger180

values of λ.181

As λ increased, the cost–efficiency spectrum bent toward the upper-182

left, forming a knee region in the curve (Fig. 3e). The empirically observed183

λ = 0.7 lies near this knee, where communication cost has been significantly184

reduced without a large loss in functional efficiency compared to more extreme185

6

Langtaosha (LTS) Preprint doi: https://doi.org/10.65215/LTSpreprints.2026.02.02.000118. This version posted
February 2, 2026. The copyright holder for this preprint (which was not certified by peer review) is the author/funder.
Creative Commons license: CC Attribution-NonCommercial 4.0 https://creativecommons.org/licenses/by-nc/4.0



W (λ = 0.1)
W (λ = 0.3)
W (λ = 0.5)
W (λ = 0.7)
W (λ = 0.9)

0.1 0.3 0.5 0.7 0.9

λ

0.09

0.11

0.10C
os

t (
C

H
C

P)

f

0.1 0.3 0.5 0.7 0.9

λ

0.55

0.57

0.56

Ef
fic

ie
nc

y 
(C

H
C

P)

g

0.11 0.12

Cost (CHCP)

0.57

0.55

Ef
fic

ie
nc

y 
(C

H
C

P)

0.56

h
0.12

0.100.09

W (λ = 0.1) W (λ = 0.3) W (λ = 0.5) W (λ = 0.7) W (λ = 0.9)a

b

Increasing λ

Efficiency optimal Cost optimal

0.1 0.3 0.5 0.7 0.9

λ

0.09

0.11

0.10C
os

t (
H

C
P)

c

0.1 0.3 0.5 0.7 0.9

λ

0.55

0.57

0.56

Ef
fic

ie
nc

y 
(H

C
P)

d

0.11 0.12

Cost (HCP)

0.57

0.55
Ef

fic
ie

nc
y 

(H
C

P)

0.56

e
0.12

0.100.09

W (λ = 0.1)
W (λ = 0.3)
W (λ = 0.5)
W (λ = 0.7)
W (λ = 0.9)

W (λ = 0.1) W (λ = 0.3) W (λ = 0.5) W (λ = 0.7) W (λ = 0.9)

W (λ = 0.1)
W (λ = 0.3)
W (λ = 0.5)
W (λ = 0.7)
W (λ = 0.9)

W (λ = 0.1)
W (λ = 0.3)
W (λ = 0.5)
W (λ = 0.7)
W (λ = 0.9)

Biological brain

Biological brain

Fig. 3 Changes in communication cost and functional efficiency with increas-
ing spatial distance constraint. a, Example of seed-based EC from PCC to other brain
regions under different λ values. With increasing λ, the seed-based EC becomes more spa-
tially localized while preserving selective long-range links. b, Example of whole-brain EC
matrices and their corresponding binarized adjacency matrices (thresholded at the top 15%)
under different λ values. With increasing λ, the estimated connectivity becomes more mod-
ular. c–e, Communication cost (c), functional efficiency (d), and cost–efficiency spectrum
(e) as a function of λ in 100 HCP participants. Empirical EC (λ = 0.7) lies near a knee of
the spectrum, consistent with a balanced cost–efficiency organization. f–h, Replication of
c–e in an independent sample of 100 CHCP participants. Gray lines show individual par-
ticipants, and the black curve shows the group mean.

constraint regimes. Consistent with this pattern, derivatives of communica-186

tion cost and functional efficiency with respect to λ further highlight that187

beyond this point, cost reductions exhibit diminishing returns while efficiency188

decreases sharply (Supplementary Fig. 9). These findings confirm that human189

brain EC is organized along a cost–efficiency trade-off spectrum, with the190

empirical brain network residing near the knee of the trade-off curve.191
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2.3 Brain networks exhibit higher within-network192

efficiency and robustness than Pareto-optimal193

networks194

To investigate whether the empirical brain network operates near an attainable195

boundary in the cost–efficiency space, we compared the estimated EC to the196

Pareto-front solutions derived using a multi-objective genetic algorithm (GA)197

(Fig. 4a; Methods). The Pareto front is the upper-left boundary of attain-198

able solutions in the cost–efficiency space, where no network can improve one199

objective (cost or efficiency) without worsening the other. Our results show200

that the potential brain networks derived from our distance-constrained linear201

dynamical model lie close to this GA-derived Pareto front (Fig. 4b), indicat-202

ing that the empirical EC (λ = 0.7) operates near the attainable frontier of203

joint cost reduction and efficiency preservation. Although visual inspection204

suggests that the empirical EC is near the Pareto front, it does not quantify205

where the network lies within the attainable landscape, nor does it distinguish206

between balanced compromises and solutions that prioritize one objective over207

the other. To address this, we introduced the “Optimization Degree”, a quan-208

titative measure of proximity to the Pareto front (Methods). Brain networks209

show consistently high Optimization Degree values across a broad range of210

λ (mean Optimization Degree optdeg ≥ 0.847 across λ ∈ [0.1, 0.9]; Fig. 4c),211

demonstrating that the estimated EC remains close to the attainable bound-212

ary. The Optimization Degree peaked at λ = 0.72 (optdeg = 0.887; Fig. 4c),213

closely aligning with the empirically selected λ = 0.7, which corresponds to214

maximal agreement with the NPI-EC. A highly consistent pattern was shown215

in an independent CHCP cohort, with the peak occurring at λ = 0.78 (Supple-216

mentary Fig. 10). These findings suggest that the brain network operates in a217

balanced region of the trade-off spectrum, optimizing both cost and efficiency218

at an intermediate λ.219

Despite the empirical EC being close to the Pareto front, it does not220

coincide exactly with it. To explore potential network properties that could221

account for this offset, we selected three representative Pareto-front networks222

for comparison: a cost-matched Pareto network, an efficiency-matched Pareto223

network, and an optimal Pareto network with the highest Optimization Degree224

(Fig. 4d). Empirical EC showed substantial overlap with these Pareto net-225

works at the level of overall connectivity pattern (Fig. 4e), suggesting that226

they provide a meaningful basis for further functional comparison. On this227

basis, we assessed how these networks compare in terms of communication228

efficiency within and between functional modules. Relative to the Pareto229

references, empirical EC achieved higher within-network efficiency (+10.4%,230

+8.8%, +9.1% relative to the cost-matched, efficiency-matched, and optimal231

Pareto networks, respectively), with only a modest reduction in between-232

network efficiency (−4.0%, −1.7%, −0.5% relative to the same networks;233

Fig. 4f–g). Notably, the within-network efficiency advantage of empirical EC234

extends across the Pareto front, surpassing the efficiency-matched and optimal235

8

Langtaosha (LTS) Preprint doi: https://doi.org/10.65215/LTSpreprints.2026.02.02.000118. This version posted
February 2, 2026. The copyright holder for this preprint (which was not certified by peer review) is the author/funder.
Creative Commons license: CC Attribution-NonCommercial 4.0 https://creativecommons.org/licenses/by-nc/4.0



b

0.10 0.12

Cost

Ef
fic

ie
nc

y 0.54

0.48

0.50

0.080.06

0.52

0.56

0.58
a

MutationCrossover

Parent 1 Parent 2 Child

Genetic algorithm

W (λ = 0.1)

W (λ = 0.3)

W (λ = 0.5)

W (λ = 0.7)

W (λ = 0.9)

Pareto solution

Cost-matched Pareto

Efficiency-matched Pareto

Optimal Pareto

0.9

c

O
pt

im
iz

at
io

n 
de

gr
ee

0.82

0.86

0.90
c

0.5 0.7

λ
0.30.1

λ = 0.72 Efficiency-matched Pareto solution
d

Cost-matched Pareto solution Optimal Pareto solution

W (λ = 0.1)

W (λ = 0.3)

W (λ = 0.5)

W (λ = 0.7)

W (λ = 0.9)

0.35

0.40

0.45

W
ith

in
-n

et
w

or
k 

ef
fic

ie
nc

y

0.60

0.65

0.70

Be
tw

ee
n-

ne
tw

or
k 

ef
fic

ie
nc

y

0.50

0.55

0.60
l

0.4 0.6

Fraction of removed edges

R
el

at
iv

e 
gl

ob
al

 e
ffi

ci
en

cy

0.6

0.20.0

0.8

1.0

W (λ = 0.56)
Cost-matched Pareto
Efficiency-matched Pareto
Optimal Pareto

W
 (λ

 =
 0

.5
6)

 - 
Pa

re
to

 D
ic

e 
co

ef
fic

ie
nt

i
***

***
***j k***

***
***

Schaefer200 atlas

MMP atlas

W
ith

in
-n

et
w

or
k 

ef
fic

ie
nc

y

Be
tw

ee
n-

ne
tw

or
k 

ef
fic

ie
nc

y

0.50

0.55

0.60
h

0.4 0.6

Fraction of removed edges
R

el
at

iv
e 

gl
ob

al
 e

ffi
ci

en
cy

0.20.0

W (λ = 0.7)
Cost-matched Pareto
Efficiency-matched Pareto
Optimal Pareto

W
 (λ

 =
 0

.7
) -

 P
ar

et
o 

D
ic

e 
co

ef
fic

ie
nt

e
***

***
***f g

***
***

******
***

***

Biological brain

***
***

***

0.35

0.40

0.45

0.60

0.65

0.70

0.6

0.8

1.0

Fig. 4 Comparison between human EC and Pareto-front solutions from a
genetic algorithm. a, One genetic evolution step in the genetic algorithm, where a child is
produced by inheriting a subset of connections from each parent and introducing additional
randomly mutated connections. b, Trade-off locations of estimated EC and Pareto-front solu-
tions in cost–efficiency space. Estimated EC lies close to the Pareto front. c, Optimization
degree across λ, with the mean peaking at λ = 0.72, close to the empirically selected λ = 0.7.
Gray lines show individual participants, and the black curve shows the group mean. d,
Visualization of the cost-matched, efficiency-matched, and optimal Pareto networks. e, Dice
coefficient between empirical EC and three representative Pareto-front networks. Empiri-
cal EC showed the highest overlap with the optimal Pareto network (all three comparisons:
Padj = 1.2 × 10−17). f, Higher within-network efficiency in empirical EC than in three rep-
resentative Pareto-front networks (all three comparisons: Padj = 1.2 × 10−17). g, Slightly
lower between-network efficiency in empirical EC than in three representative Pareto-front
networks (comparisons with cost-matched and efficiency-matched: Padj = 1.2 × 10−17; com-
parison with optimal: Padj = 6.5×10−10). h, Greater robustness of empirical EC to targeted
edge removal than the efficiency-matched and optimal Pareto networks. i–l, Replication of
e–h in the same participants using the Schaefer200 atlas (empirically selected λ = 0.56).
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Pareto networks, which are located near the upper part of within-network effi-236

ciency on the front (Supplementary Fig. 11). These results imply that, beyond237

a two-objective cost–efficiency criterion, human EC preferentially supports effi-238

cient within-network communication while retaining substantial cross-network239

coupling.240

We further assessed robustness to edge removal by progressively remov-241

ing edges ranked by importance and tracking the resulting global efficiency242

(Methods). Empirical EC demonstrated higher robustness than both the243

efficiency-matched and optimal Pareto networks, maintaining higher relative244

global efficiency after removing 10% of edges (i.e., 0.946 for empirical EC vs.245

0.852 for efficiency-matched and 0.835 for optimal Pareto networks; Fig. 4h).246

Interestingly, the differences relative to the cost-matched Pareto network were247

modest. These findings indicate that Pareto solutions emphasizing cost and248

efficiency may be less robust, whereas empirical EC combines near-frontier249

cost–efficiency with greater resilience to targeted edge loss. These results were250

reproduced using the Schaefer200 atlas (Fig. 4i–l), confirming that these obser-251

vations are not specific to a single spatial resolution. Overall, the empirical252

brain network does not merely optimize a single objective but occupies a bal-253

anced region of the trade-off space, where efficiency, cost, and robustness are254

jointly constrained.255

2.4 Cognitive tasks drive the brain operating point256

toward higher efficiency257

Cognitive demands are known to modulate brain effective connectivity [29],258

but whether this modulation systematically shifts brain networks along the259

cost–efficiency spectrum remains unclear. To address this, we tested whether260

cognitive tasks reposition whole-brain EC toward a regime of higher efficiency261

and higher cost compared to resting state. Using the HCP motor task, we262

first verified that the distance-constrained linear dynamical model remains263

predictive in task data (Fig. 5a), indicating that task-evoked BOLD dynamics264

can be captured within the same modeling framework. Additionally, task-state265

EC showed strong correspondence with SC across λ (Fig. 5b), confirming an266

anatomical scaffold for the task-state EC.267

At λ = 0.7, we observed clear state-dependent reconfigurations in whole-268

brain EC, with shifts from resting state to motor-task state (Fig. 5c–d).269

Seed-to-whole-brain maps revealed strengthened couplings from a somatomo-270

tor seed to distributed targets during motor execution (Fig. 5c–d, upper right),271

and a dorsal-attention seed also showed enhanced coupling to motor cortex in272

motor-task state (Fig. 5c–d, lower right). Overall, motor execution involved a273

more distributed coupling profile, with stronger interactions extending beyond274

the local somatomotor areas to include cross-system connections.275

Next, we quantified how these connection-level changes translate into shifts276

in the cost–efficiency landscape. Across participants, motor-task states shifted277

toward higher functional efficiency together with higher communication cost278

compared to rest (P = 3.9 × 10−18 for efficiency and P = 8.2 × 10−17 for279
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λ in resting and motor task states. c–d, Estimated EC at λ = 0.7 in resting state (c)
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maps (white dot: seed) shown for a somatomotor seed (upper right) and a dorsal atten-
tion seed (lower right), illustrating state-dependent differences in connectivity patterns. e,
Higher communication cost in motor task state than resting state across λ (P = 3.9 × 10−18

at λ = 0.7). f, Higher functional efficiency in motor task state than resting state across λ
(P = 8.2 × 10−17 at λ = 0.7). g, Higher between-network cost (P = 3.9 × 10−18; left) and
efficiency (P = 5.4 × 10−18; right) in motor task state than resting state at λ = 0.7. h–j,
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cost at λ = 0.7, two-sided Wilcoxon signed-rank test; Fig. 5e–f). Decomposing280

these shifts, we found that motor tasks increased between-network efficiency281

and cost, with a slight decrease in within-network efficiency and cost (Fig. 5g;282
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Supplementary Fig. 12). This pattern suggests a task-induced move in the283

tradeoff spectrum toward more integrative between-network communications.284

An additional observation is that the motor-task operating point lies285

largely on, but slightly below, the cost–efficiency trade-off spectrum from286

the resting state (Fig. 5h), indicating that task states draw on an intrin-287

sic cost–efficiency framework already present at rest, rather than forming a288

separate configuration. This pattern held across tasks: both language and289

working-memory tasks exhibited similar shifts along the cost–efficiency spec-290

trum toward higher efficiency and higher cost relative to rest (Fig. 5i–j).291

Complementary graph metrics revealed reduced modular segregation and local292

efficiency during tasks, consistent with a shift toward more globally integrative293

communication (Supplementary Fig. 12). Together, these results demonstrate294

that cognitive tasks consistently reposition the brain’s operating point along295

the cost–efficiency spectrum, toward a regime of higher functional efficiency296

accompanied by higher communication cost.297

2.5 Task-evoked alterations in cost–efficiency trade-off of298

the depressive brain299

Having established that task engagement repositions whole-brain networks300

along the cost–efficiency spectrum in healthy participants (Fig. 5), we next301

examined whether psychiatric disorders disrupt this task-evoked reconfigura-302

tion. Specifically, we hypothesized that if disease-related constraints primarily303

affect the ability to reconfigure brain networks under cognitive demands,304

group differences would be modest at rest but more pronounced during task305

engagement [30, 31].306

To test this hypothesis, we compared resting state EC with EC during a307

cognitively demanding task (i.e., promismatch task state) in major depressive308

disorder (MDD) (Fig. 6a). At λ = 0.7, group-averaged EC showed little sep-309

aration between healthy controls (HCs) and MDDs at rest. Both the mean310

whole-brain EC matrices and the seed-to-whole-brain views anchored in the311

frontoparietal network (FPN) appeared broadly comparable across groups312

(Fig. 6b). However, during the promismatch task, group differences became313

more evident in the same FPN-seeded view (Fig. 6c). HCs showed clearer314

task-related enhancements in specific couplings, while MDDs displayed EC315

patterns more similar to their resting-state configuration. Example edges that316

diverged between groups (solid and dashed circles) illustrate this difference,317

suggesting reduced task-related EC reconfiguration in MDD.318

To explore whether these connection-level differences reflect broader func-319

tional changes, we assessed global, within-network, and between-network320

efficiency at rest and during the task in both HC and MDD groups. At321

rest, there were no significant group differences (P = 0.452, 0.510, and 0.382322

for global, within-network and between-network efficiency, two-sided Mann–323

Whitney U test; Fig. 6d). Remarkably, during the task, significant group324

differences emerged (P = 0.040, 0.722, and 0.040 for global, within-network325

and between-network efficiency, two-sided Mann–Whitney U test; Fig. 6e).326
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Fig. 6 Task-evoked alterations in cost–efficiency trade-off of the depressive
brain. a, Schematic of state-dependent group separation in the cost–efficiency space: con-
trol and MDD overlap at rest but diverge during task. b–c, Group-averaged EC at λ = 0.7
in resting state (b) and promismatch task state (c): left, mean whole-brain EC matrix;
right, seed-to-whole-brain EC maps from an FPN seed (upper right, control; lower right,
MDD). Circles highlight connections stronger in control but weaker in MDD (solid) and
weaker in control but stronger in MDD (dashed). d–e, Group differences (control vs.
MDD) in global efficiency, within-network efficiency, and between-network efficiency dur-
ing resting state (P = 0.452, 0.510, 0.382, respectively; d) and promismatch task state
(P = 0.040, 0.722, 0.040, respectively; e). f–g, Network-to-network efficiency change ratios
(MDD relative to control) during resting state (f) and promismatch task state (g). No
network-pair differences survived BH-FDR correction in resting state, whereas in promis-
match task state, three network-to-network pairs showed BH-FDR-adjusted significance
(DMN→SOM, DMN→DAN, and DMN→VAN; Padj = 0.048). h, ROC curves for classifying
control vs. MDD using network-to-network efficiency features, with higher classification per-
formance in the promismatch task state than resting state. P values in d–g were obtained
using two-sided Mann–Whitney U test. Padj values in f–g were adjusted using Benjamini–
Hochberg false discovery rate (BH-FDR) procedure across all network-pair comparisons
within each panel. Sample sizes: resting state, n = 16 (control) and n = 21 (MDD); promis-
match task state, n = 15 (control) and n = 22 (MDD). n.s., not significant; *, P < 0.05 in
d–e and Padj < 0.05 in f–g. VIS, visual network; SOM, somatomotor network; DAN, dorsal
attention network; VAN, ventral attention network; LIM, limbic network; FPN, frontopari-
etal network; DMN, default mode network. ROC, receiver operating characteristic; AUC,
area under the ROC curve.

These results confirm our hypothesis that task engagement facilitated dif-327

ferences in large-scale communication capacity between HCs and MDDs.328
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These findings were corroborated by a cross-dataset comparison with a larger329

resting-state autism dataset (ABIDE, TR = 2 s subset, n = 242 controls and330

n = 193 autism), which also showed limited separation in the cost–efficiency331

landscape between autism participants and healthy controls (Supplementary332

Fig. 13). These results suggest that resting-state cost–efficiency profiles may333

be insufficient for distinguishing clinical groups, highlighting the importance334

of task-state networks for detecting disorder-related deviations.335

At the network-to-network level, efficiency change ratios showed no robust336

differences at rest (Fig. 6f), but during the task, several network-level commu-337

nications were significantly weakened in MDDs compared to HCs (Padj < 0.05338

for DMN→SOM, DMN→DAN, and DMN→VAN; Fig. 6g), indicating task-339

evoked deficits in inter-network interactions in MDD under cognitive demand.340

Finally, we tested whether task-evoked alterations could improve the clas-341

sification of MDDs from HCs. Using network-to-network efficiency features,342

classification performance was higher during the promismatch task than at343

rest (AUC = 0.714 for the task state vs. AUC = 0.648 for resting state;344

Fig. 6h), suggesting that cognitive engagement provides more sensitive fea-345

tures for distinguishing clinical alterations than resting-state alone. Together,346

these results demonstrate that MDD is associated with disrupted task-evoked347

reconfiguration along the cost–efficiency spectrum, with task states offering a348

more sensitive window for detecting psychiatric disease-related changes.349

3 Discussion350

Human cognitive function relies on coordinated communication among dis-351

tributed brain networks, yet such communication is constrained by physical352

distance and energetic limits, requiring a balance between economical wiring353

and the strategic placement of long-range connections for global integra-354

tion [32–35]. Our central insight is that the cost–efficiency trade-off should355

be viewed not as discrete empirical configurations, but as a structured spec-356

trum. This spectrum provides a latent scaffold, enabling navigation across357

brain states, and allows for comparisons between cognitive states and psychi-358

atric conditions, both in terms of their position on the spectrum and their359

shifts under cognitive demand. To uncover the latent spectrum, we introduced360

an explainable linear dynamical model with a tunable spatial distance prior.361

Previous cost–efficiency studies treat a single observed connectome as a post362

hoc object for summarizing the brain network properties [23, 36–38]; however,363

they offer limited insight into how communication architectures might change364

as constraints vary. Instead, by using spatial embedding as an explicit control365

parameter, we expose a continuous spectrum of possible interaction architec-366

tures anchored to observed brain dynamics, allowing us to make counterfactual367

comparisons of state shifts and group differences.368

The choice of inter-regional distance as the regularizing prior, rather than369

SC, is crucial for our aims. While SC-informed priors have been used to370

improve or regularize EC estimation [39–41], it is likely that SC itself is the371
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product of developmental and multi-objective selection [42, 43]. Using SC372

as the regularizing prior risks blurring the distinction between the physical373

constraint we impose and the empirical outcome shaped by that constraint.374

Consistent with this view, our results show that stronger distance regulariza-375

tion aligns EC more closely with SC (Fig. 2c–d), reinforcing the idea that SC376

reflects organization shaped by a spatial distance prior.377

Within this spectrum, resting-state and task engagement can be inter-378

preted as a baseline operating point with low cost and a demand-evoked shift to379

a higher-efficiency, higher-cost regime (Fig. 5) [44–46]. In our results, resting-380

state EC shows lower efficiency at lower cost, consistent with an economical381

default regime that preserves energy for future cognitive integration [14]. In382

contrast, task engagement recruits additional integrative interactions at higher383

cost (Fig. 5e–f), reflecting a functional shift in the brain’s operating point.384

This dynamic rest-to-task reconfiguration allows the brain to flexibly increase385

integration when needed. Importantly, task-state operating points remain386

largely on the resting-state-derived spectrum (Fig. 5h–j), suggesting that tasks387

selectively reweight interactions that are already feasible at rest, rather than388

forming completely new architectures outside the intrinsic scaffold [47].389

This trade-off spectrum is particularly relevant for psychiatry, where group390

differences are most pronounced under conditions of cognitive demand [48, 49].391

Task states act as functional probes of brain dynamics under cognitive pres-392

sure [50, 51], which is in line with our evidence from MDD that cognitive393

challenges under task elicit clinically significant network-level abnormalities,394

indicating impaired task-evoked reconfiguration (Fig. 6). Specifically, MDD395

is characterized by impaired long-range integrative coupling, as evidenced by396

attenuated task-evoked shifts in between-network efficiency (Fig. 6e). This397

contrasts with the healthy brain, where task engagement promotes a strate-398

gic shift toward a higher-efficiency, higher-cost regime (Fig. 5h–j). Within399

this framework, psychiatric disorders can be characterized by two key fea-400

tures: their operating points and their ability to navigate the cost–efficiency401

landscape. Our framework moves beyond static measures, offering a dual-402

dimensional quantification of brain network function that encompasses both403

baseline operation and reconfigurability. This approach shows promise for link-404

ing network dynamics to clinical symptoms and assessing interventions aimed405

at restoring cognitive flexibility.406

We highlight two extensions to broaden this framework. First, although407

the GA-derived Pareto front provides a useful reference boundary, the gap408

between empirical EC and the front suggest the potential for additional opti-409

mization objectives beyond cost and efficiency. Future work could expand the410

set of objectives (such as robustness, flexibility, and topological complexity)411

and benchmark EC against these fronts to explore the principles governing412

real brain organization [52–54]. Second, while task-state operating points align413

with the resting-state-derived spectrum, we observe task-specific deviations414

that may reflect transient, context-dependent interactions not consolidated415

at rest. These may be associated with skill acquisition, automaticity, or task416
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performance [55, 56]. Future studies linking these deviations to behavioral417

measures would test whether both spectrum position and off-spectrum dis-418

placement can provide insight into cognitive efficiency and learning-related419

reconfiguration.420

4 Methods421

4.1 Data processing422

We analyzed fMRI data from HCP [57], CHCP [58], and an OpenNeuro major423

depressive disorder dataset (ds006731, v1.0.0) [59]. Analyses used a subset of424

100 healthy adults per cohort for HCP and CHCP. For HCP, we analyzed425

resting-state fMRI and three task paradigms (motor, language, working mem-426

ory); the repetition time was 0.72 s. For CHCP, we analyzed resting-state427

fMRI; the repetition time was 0.71 s. For ds006731, we included all available428

data from the rest and Promismatch conditions, comprising rest scans from429

16 healthy controls and 21 participants with MDD, and Promismatch scans430

from 15 healthy controls and 22 participants with MDD; the repetition time431

was 3.00 s.432

For HCP and CHCP, images were processed with the HCP Minimal Pre-433

processing Pipeline [60] to produce standardized volumes and cortical surfaces434

in a common space. Briefly, preprocessing included motion correction, EPI435

distortion correction, coregistration of fMRI to each participant’s T1-weighted436

anatomy, and normalization to the MNI152 standard space. For ds006731,437

we preprocessed the data with fMRIPrep [61], normalized the outputs to the438

MNI152 standard space, and discarded the first 10 TRs of each run before439

subsequent analyses.440

Parcel-wise BOLD signals were extracted using Nilearn with the MMP1.0441

cortical parcellation (360 parcels; 180 per hemisphere) [62]. For each run, we442

linearly detrended the BOLD signals, applied a 0.01–0.10 Hz band-pass filter443

to focus on low-frequency fluctuations commonly analyzed in fMRI connectiv-444

ity, and z-scored each parcel. Following Luo et al. [25], parcels were assigned to445

seven networks defined by Yeo et al. [63], comprising visual (VIS), somatomo-446

tor (SOM), dorsal attention (DAN), ventral attention (VAN), limbic (LIM),447

frontoparietal control (FPN), and default mode (DMN).448

When studying the relationship between EC and SC, we used the group-449

average SC provided by Demirtaş et al. [64], derived from diffusion MRI using450

FSL’s bedpostx and probtrackx2 probabilistic tractography workflows. The SC451

matrix was scaled to [0,1], and log-transformed. For an external EC reference,452

we used the publicly available group-average NPI-EC [25]. To assess whether453

our EC estimates capture plausible inter-individual differences, we additionally454

ran NPI for each participant to obtain individual-level NPI-EC matrices and455

compared the resulting NPI-EC with our EC.456
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4.2 Distance-constrained linear dynamical model457

4.2.1 Model specification458

Let xt ∈ RN denote the parcel-wise BOLD vector at time t, where N is459

the number of cortical parcels (N = 360 for MMP1.0). We model single-step460

dynamics with a linear map461

xt+1 = W xt + εt, εt ∼ N (0, σ2I). (1)

Here εt denotes i.i.d. additive Gaussian noise with covariance σ2I. The EC462

matrix W ∈ RN×N is directed and signed: entry Wij quantifies the influence463

of source parcel j at time t on target parcel i at time t+1. Thus, row i collects464

inputs into region i, and column j collects outputs from region j. Parcel BOLD465

signals are z-scored, so we do not include an intercept term in the model.466

4.2.2 Spatial distance regularization467

To encode a spatial prior, we estimate W by minimizing a one-step prediction468

error augmented with a distance-weighted regularizer. The distance weights469

are given by a standardized parcel-wise Euclidean distance matrix D. Let dij470

be the Euclidean distance between the MMP1.0 parcel centroids. We rescale471

off-diagonal distances so their mean equals 1 and set the diagonal to 1 so that472

self-couplings Wii receive the same baseline regularization:473

d̄off = 1
N(N − 1)

∑
i̸=j

dij , Dij =
{

dij/d̄off , i ̸= j,

1, i = j.
(2)

Using D, we estimate W by minimizing the sum of a one-step prediction474

error and a distance-weighted penalty:475

L(W ) = (1 − λ) 1
T

T∑
t=1

∥xt+1 − W xt∥2
2 + λΩ (W ; D) , λ ∈ [0, 1] , (3)

where T denotes the number of available one-step training samples and λ476

balances the prediction error and the distance-weighted regularization.477

We considered two choices for Ω:478

Ωridge(W ; D) =
∥∥∥D1/2 ◦ W

∥∥∥2

F
=

∑
i,j

DijW 2
ij , (4)

479

Ωlasso(W ; D) = ∥D ◦ W ∥1 =
∑
i,j

Dij |Wij |, (5)

where ◦ denotes the Hadamard product and D1/2 is the element-wise square480

root. Because Dij increases with inter-parcel distance, long-range interactions481

are penalized more strongly, encoding a spatial prior.482
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4.2.3 Parameter estimation483

We optimized equation (3) by gradient descent. Updates used all avail-484

able training samples in a full-batch manner, formed from consecutive pairs485

(xt, xt+1). We used 80% of the data for training and 20% for evaluation. The486

held-out evaluation block was contiguous in time to avoid temporal leakage.487

The implementation was performed in PyTorch on an NVIDIA GeForce RTX488

4080 GPU.489

For resting state in HCP and CHCP datasets, for each participant and490

each λ ∈ {0.02, 0.04, . . . , 0.98}, we fitted an individual W using the training491

data. We used a learning rate of 0.01 and trained for 500 epochs. Given the492

length of the resting-state runs, we did not observe overfitting on the held-out493

evaluation data (Supplementary Fig. 14, Supplementary Fig. 15).494

For task state in HCP dataset, per-participant data are shorter, so we used495

a two-stage procedure for each task and each λ ∈ {0.02, 0.04, . . . , 0.98}. First,496

we performed population initialization by pooling the data across participants497

within the same task, and trained with a learning rate of 0.01 for 1000 epochs498

to obtain W init
task,λ. Second, we conducted subject-specific fine-tuning: for each499

task and λ, we selected the number of fine-tuning epochs k ∈ {5, 10, . . . , 50}500

that maximized the participant-averaged held-out R2 on the evaluation data501

when fine-tuning at a learning rate of 0.001. Each participant’s task EC was502

then obtained by initializing at W init
task,λ and fine-tuning for k epochs at a503

learning rate of 0.001.504

For the ds006731 dataset, data length is also short for both rest and task505

conditions. We therefore adopted the same two-stage procedure as for task506

data: for each λ, we first obtained a global initialization Winit
λ by pooling data507

across all conditions and diagnostic groups. We then performed subject-specific508

fine-tuning, selecting the number of fine-tuning epochs k ∈ {5, 10, . . . , 50}509

based on held-out R2; for computational efficiency, the k selection was per-510

formed by randomly subsampling 100 runs for fine-tuning when evaluating511

candidate k values. Each participant’s EC for each condition was then obtained512

by initializing at W init
λ and fine-tuning for k epochs.513

4.3 Model evaluation514

4.3.1 Predictive accuracy on held-out data515

To quantify one–step predictive performance, we computed the coefficient of516

determination R2 on held-out data, parcel by parcel, and then averaged across517

parcels. For parcel i with empirical signal {yi,t}t∈S and model prediction518

{ŷi,t}t∈S on the evaluation split S,519

R2
i = 1 −

∑
t∈S (yi,t − ŷi,t)2∑
t∈S (yi,t − ȳi)2 , ȳi = 1

|S|
∑
t∈S

yi,t. (6)
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The overall metric is the mean over parcels. We used five-fold blocked cross-520

validation: in each fold, a contiguous 20% segment in time served as the521

evaluation block and the remaining 80% as training, ensuring no temporal522

leakage. Reported performance is the average of the overall metric across the523

five folds.524

4.3.2 Alignment of EC with SC525

For each λ, we first averaged the estimated EC matrices across participants to526

obtain a group EC matrix. To assess anatomical alignment, we then computed527

the Pearson correlation between the off-diagonal entries of the group EC and528

those of the log-transformed SC.529

4.3.3 Model-empirical FC correspondence530

Given an estimated EC, we generated a long synthetic BOLD signal (length531

Tsim = 10000 in our analyses) by driving the linear dynamics with i.i.d.532

Gaussian noise ηt,533

xt+1 = W xt + ηt, ηt ∼ N
(
0, σ2I

)
, (7)

where W is the estimated EC, σ = 0.1 in our analyses, and the initial condition534

was x0 = 0 ∈ RN . From the simulated series we computed the model FC as535

the parcel-parcel Pearson correlation matrix. The empirical FC was computed536

from the data used to estimate W . Correspondence was quantified as the537

Pearson correlation between vectorized off-diagonal entries of the model FC538

and those of the empirical FC.539

4.3.4 Alignment with NPI-EC540

For each λ, we first averaged the estimated EC matrices across participants541

to obtain a group EC matrix. Alignment with NPI-EC was quantified as542

the Pearson correlation between the off-diagonal entries of the estimated EC543

and those of the publicly available group-average NPI-EC. In Luo et al. [25],544

NPI-ECij represents a directed connection from region i to region j, whereas545

in our convention Wij encodes the influence from region j to region i; thus we546

transposed NPI-EC before computing the correlation.547

4.4 Graph-theoretic metrics548

Graph metrics were computed on a binary directed adjacency matrix derived549

from EC. For each participant and each λ, we ranked the off-diagonal entries550

of |W | and set the top 15% to 1, with all other off-diagonal entries and the551

diagonal set to 0. Denote the resulting adjacency matrix by A ∈ {0, 1}N×N .552
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4.4.1 Global communication cost553

Let D ∈ RN×N
+ be the parcel-wise distance matrix defined in equation (2).554

Global cost normalizes the distance-weighted edge load to [0, 1]:555

C (W ) := C (A) =
∑

i̸=j AijDij∑
i̸=j Dij

∈ [0, 1] . (8)

Thus, a graph with no inter-areal edges has C (A) = 0, while a complete556

directed graph has C (A) = 1.557

4.4.2 Global functional efficiency558

On the binary directed graph A we computed shortest paths between all559

ordered node pairs. Let ℓij be the minimal number of directed steps from node560

j to node i; if i is unreachable from j then ℓij = +∞. ℓij was computed on561

A using the Brain Connectivity Toolbox [65]. Global efficiency is the mean562

reciprocal path length over ordered pairs,563

E (W ) := E (A) = 1
N (N − 1)

∑
i ̸=j

1
ℓij

,
1

+∞
:= 0. (9)

Global efficiency lies in [0, 1]: it equals 0 for an empty graph and 1 for a564

complete directed graph.565

4.4.3 Within- and between-network cost566

Let g(i) ∈ {1, . . . , 7} denote the Yeo7 network assignment of parcel i. Define567

the within-network and between-network masks as568

Mwithin
ij =

{
1, i ̸= j, g(i) = g(j),
0, otherwise,

(10)

569

Mbetween
ij =

{
1, g(i) ̸= g(j),
0, otherwise.

(11)

Within- and between-network costs quantify the distance-weighted loads570

restricted to the corresponding masks. Intuitively, C(W )within captures the571

communication burden carried by connections confined within the same Yeo7572

network, whereas C(W)between captures the burden carried by cross-network573

links. Both costs are normalized to [0, 1]:574

C(W )within := C(A)within =
∑

i ̸=j AijDijMwithin
ij∑

i̸=j DijMwithin
ij

, (12)

575

C(W )between := C(A)between =
∑

i̸=j AijDijMbetween
ij∑

i̸=j DijMbetween
ij

. (13)
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4.4.4 Within- and between-network efficiency576

Define the index sets Pwithin = {(i, j) : i ̸= j, Mwithin
ij = 1} and Pbetween =577

{(i, j) : i ̸= j, Mbetween
ij = 1}. Within- and between-network efficiency average578

the reciprocals of shortest-path lengths over the corresponding index sets:579

E (W )within := E (A)within = 1
|Pwithin|

∑
(i,j)∈Pwithin

1
ℓij

, (14)

580

E (W )between := E (A)between = 1
|Pbetween|

∑
(i,j)∈Pbetween

1
ℓij

. (15)

Intuitively, E(W )within is high when nodes sharing the same Yeo7 label can581

reach each other through relatively few steps, while E(W )between is high when582

nodes from different labels are connected through short routes.583

4.4.5 Network-to-network cost584

Let g(i) ∈ {1, . . . , 7} denote the Yeo7 network assignment of parcel i. For any585

ordered pair of networks (p, q) (allowing p = q), define the directed mask586

Mp→q
ij =

{
1, i ̸= j, g(j) = p, g(i) = q,

0, otherwise.
(16)

The directed network-to-network cost from p to q summarizes the distance-587

weighted load specifically carried by edges from network p to network q, and588

is normalized to [0, 1]:589

C(W )p→q := C(A)p→q =
∑

i̸=j AijDijMp→q
ij∑

i̸=j DijMp→q
ij

. (17)

4.4.6 Network-to-network efficiency590

Define the index set Pp→q = {(i, j) : i ̸= j, Mp→q
ij = 1}. The directed network-591

to-network efficiency from p to q summarizes how efficiently information can592

travel from network p to network q by averaging the reciprocals of shortest-593

path lengths:594

E(W )p→q := E(A)p→q = 1
|Pp→q|

∑
(i,j)∈Pp→q

1
ℓij

. (18)

4.4.7 Robustness to edge removal595

We quantified robustness by targeted removal of high–betweenness edges on596

the binary directed graph A. For a present edge e, its edge betweenness597
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centrality is598

bc(e) =
∑
u ̸=v

σuv(e)
σuv

, (19)

where σuv denotes the number of directed shortest paths from node v to node599

u in A, and σuv(e) counts those paths that traverse e; ordered pairs with600

σuv = 0 are omitted from the sum.601

For each participant and each λ, we ranked present edges by bc(e) and602

removed the top fraction f ∈ {0.05, 0.10, . . . , 0.60}. Let τf be the largest603

threshold such that at least a fraction f of edges in A satisfy bc(e) ≥ τf ,604

and let Rf = {e : bc(e) ≥ τf } be the removed set. The post-attack adjacency605

matrix is606

(Af )ij = Aij1 [(j → i) /∈ Rf ] . (20)
Global efficiency was computed using equation (9). Robustness was607

summarized by the relative efficiency,608

ρ(f) = E(Af )
E(A) , (21)

with smaller ρ(f) indicating greater vulnerability under targeted edge removal.609

4.5 Pareto-front construction and related metrics610

4.5.1 Multi-objective genetic algorithm for the Pareto front P611

We searched over binary directed adjacencies at fixed density (15% of off-612

diagonal entries set to 1) using a multi-objective genetic algorithm [66]. Each613

candidate was encoded as a length-N(N − 1) bit string (diagonal fixed at 0);614

crossover and mutation were followed by a repair step to maintain the density615

constraint. The two objectives were to minimize the global communication cost616

C(A) defined in equation (8) and to maximize the global functional efficiency617

E(A) defined in equation (9). Non-dominated solutions obtained during evo-618

lution formed an empirical Pareto set P that approximates the cost–efficiency619

trade-off front.620

4.5.2 Optimization degree621

Let cmin = minB∈P C(B) and emax = maxB∈P E(B) denote, respectively,622

the smallest cost and largest efficiency observed on the Pareto front. For nor-623

malization we also defined cmax and emin as the maximal cost and minimal624

efficiency attainable within the feasible set under the same density constraint.625

For any adjacency matrix A derived from W , the optimization degree is626

optdeg (A) =
1
2

[
E(A) − emin

emax − emin
+ cmax − C(A)

cmax − cmin

]
∈ [0, 1] , (22)

which treats cost and efficiency as equally important (Supplementary Fig. 16);627

higher values indicate better cost–efficiency balance.628
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4.5.3 Matched comparators629

Let A(p) denote the binarized EC adjacency of participant p. Define C and630

E as the across-participant means of global communication cost C(A(p))631

and functional efficiency E(A(p)) respectively. We then selected three Pareto632

comparators from P:633

Bcost = arg min
B∈P

∣∣C(B) − C
∣∣ (cost-matched Pareto), (23)

634

Beff = arg min
B∈P

∣∣E(B) − E
∣∣ (efficiency-matched Pareto), (24)

635
Bopt = arg max

B∈P
optdeg(B) (optimal Pareto). (25)

4.5.4 Similarity between EC and Pareto solutions636

For each participant and each λ of interest, let A be the binarized EC adja-637

cency matrix and let P ∈ {Bcost, Beff, Bopt} be a selected Pareto comparator.638

Denote the sets of present directed edges by E(A) = {(i, j) : i ̸= j, Aij = 1}639

and E(P ). We quantified similarity with the Dice coefficient:640

Dice(A, P ) = 2 |E(A) ∩ E(P )|
|E(A)| + |E(P )| ∈ [0, 1], (26)

which is insensitive to the large number of absent edges in sparse graphs.641

4.6 Disease classification using network-to-network642

efficiency features643

Binary classification was used to distinguish healthy controls from participants644

with MDD based on large-scale communication features derived from EC. For645

each participant and each state (rest and promismatch), a feature vector was646

constructed from directed network-to-network efficiency values between Yeo7647

networks computed from the binarized EC matrix at λ = 0.7. All directed648

inter-network pairs were included while excluding within-network entries,649

yielding a fixed-dimensional feature vector per participant. No additional650

feature scaling or transformation was applied.651

A Gaussian Naive Bayes classifier was evaluated using stratified 10-fold652

cross-validation repeated 500 times with fold shuffling to obtain stable perfor-653

mance estimates in this modest-sample setting. In each repetition, out-of-fold654

predicted probabilities were obtained for every participant. For visualization655

and summary, out-of-fold predicted probabilities were averaged across the656

500 repetitions to obtain a single predicted probability per participant. ROC657

curves were computed by sweeping a threshold over these averaged predicted658

probabilities and comparing the resulting labels to the ground-truth group659

labels. AUC was computed from the same ROC curves.660
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