

1 **Original Research Article**

2 **Linking Methane Emissions to Iron Dynamics in Bioturbated Rice Systems**

3 Qianrui Huangfu^{1,2,a}, Sha Zhang^{1,2,a,*}, Zheng Chen^{3*}, Lu Wang^{1,2}, Dong Zhu^{1,2}

4 1 Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research
5 Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China

6 2 Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, Chinese Academy of
7 Sciences Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China

8 3 Department of Health and Environmental Sciences, Xi'an Jiaotong-Liverpool University, 111 Ren'ai Road,
9 Suzhou, Jiangsu, 215123, China

10 ^aThe authors contribute equally.

11 *Corresponding authors

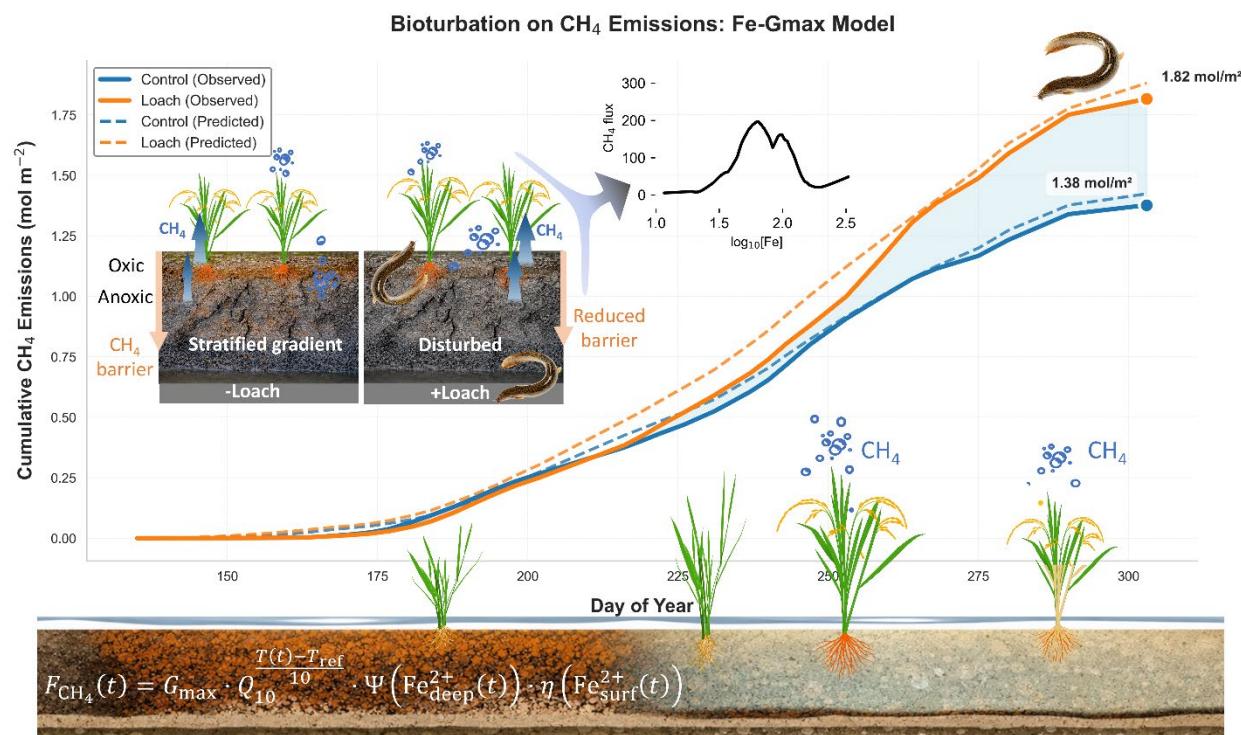
12 Lead contact:

13 Sha Zhang

14 Tel: +86-17798590069

15 Email: biogeochemx@outlook.com, szhang@iue.ac.cn

16 Address: Ningbo Observation and Research Station
17 Institute of Urban Environment, Chinese Academy of Sciences
18 No. 88 Zhongke Road, Chunxiao Street
19 Beilun District, Ningbo City
20 Zhejiang Province, China
21 Postal Code: 315800


22 **Abstract**

23 Iron (Fe) redox cycling is intricately linked to methane (CH_4) emissions in global wetlands, yet its role under
24 sustained bioturbation remains poorly quantified. We investigated how continuous loach (*Misgurnus*
25 *anguilllicaudatus*) activity influences CH_4 emissions and Fe dynamics in a ratoon rice system over 178 days.
26 Methane and ecosystem CO_2 fluxes were measured continuously, while *in situ* microdialysis quantified
27 dissolved Fe in surface and root-zone porewaters. The results showed that loach bioturbation increased
28 cumulative CH_4 emissions by 31.9% (95% CI: [18.2%, 40.2%], $p = 0.0033$) and sustained elevated dissolved Fe
29 concentrations near the soil–water interface (SWI), indicating intensified reducing conditions and a
30 weakened SWI barrier for CH_4 . A Fe-based process model alone explained >78% of CH_4 flux variability. A more
31 integrated model further suggested that loach activity enhanced CH_4 emissions by increasing labile carbon
32 supply, CH_4 production efficiency, and CH_4 transport. These findings position dissolved Fe as a practical proxy
33 for CH_4 emissions, with implications on improving global CH_4 models.

34 **Keywords:** Bioturbation; methane; microdialysis; oxic-anoxic interface; dissolved iron; ratoon (semi-
35 perennial) rice; temperature sensitivity

36 **Graphical abstract**

37

38

39 **Highlights**

40 • Stratified microdialysis revealed increased surface ferric reduction.

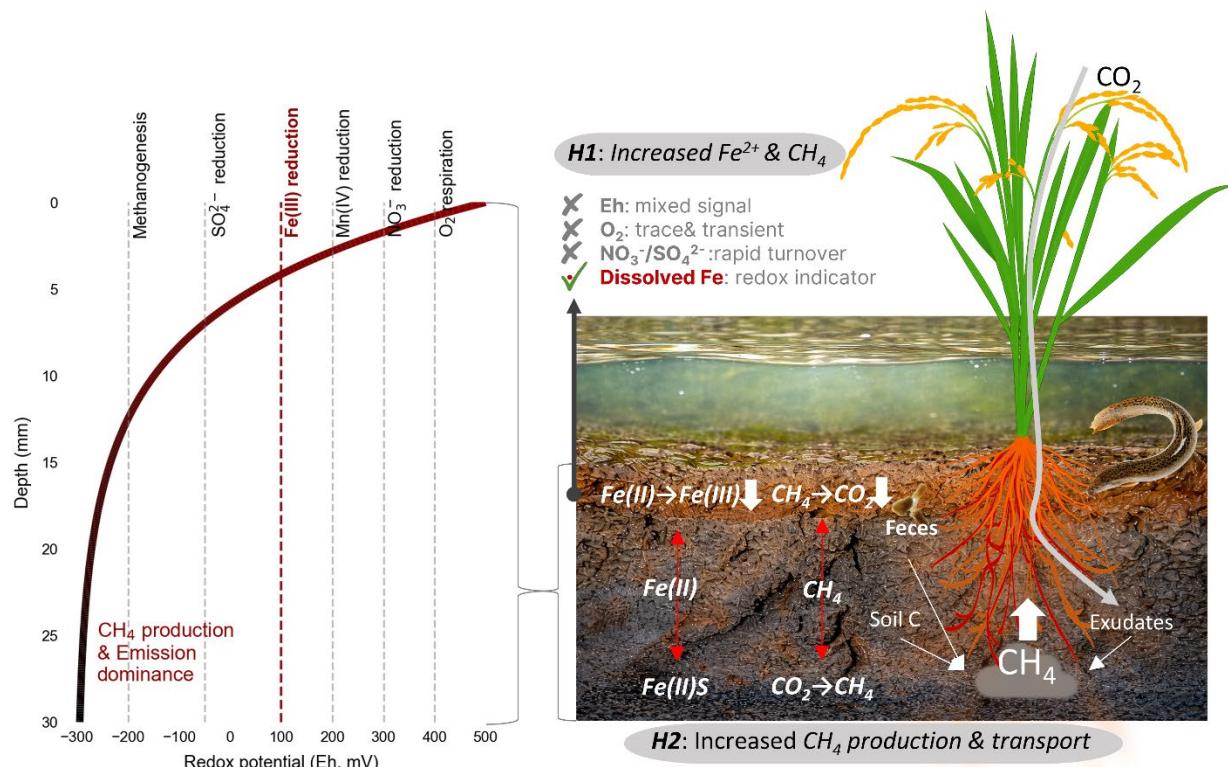
41 • Loach activity increased cumulative CH₄ emissions by 31.9% over 178d rice season.

42 • Seasonal CH₄ was positively linked to bottom Fe and negatively to surface Fe.

43 • Temperature regulated CH₄ indirectly via CO₂ fluxes and rice phenological stages.

44 • Surface dissolved Fe emerged as a practical proxy for seasonal CH₄ emissions.

45 **Introduction**


46 Biogeochemical cycles are fundamentally driven by perturbations that reorganize redox gradients and
47 substrate availability across Earth's critical zone [1-4]. Among these, biological disturbances—from microbial
48 metabolism to macrofaunal bioturbation—exert primary control on greenhouse gas (GHG) fluxes by
49 mediating electron acceptor competition and carbon transformation pathways [5, 6]. Flooded
50 agroecosystems like rice paddies, contributing ~8-12% of global anthropogenic CH₄ emissions (~30 Tg CH₄
51 yr⁻¹) [3, 6], represent highly dynamic systems in which redox processes, plant physiology, and biological
52 disturbance interact to shape CH₄ cycling [5, 7, 8].

53 Under flooded conditions, CH₄ production, oxidation, and emission are not uniformly distributed throughout
54 the soil profile but are constrained by **two critical redox interfaces**: the **soil–water interface (SWI)** and the
55 **rhizosphere** [3, 9, 10]. Microorganisms at the SWI can oxidize > 40% of CH₄ [3]. The rhizosphere oxygen
56 release forms localized oxidized microsites that regulate CH₄ production, oxidation, and plant-mediated
57 transport [11]. The integrity and oxidative capacity of these two interfaces largely determine whether CH₄ is
58 retained and oxidized within flooded soils or rapidly released to the atmosphere.

59 Bioturbation profoundly alters the structure and functioning of these interfaces, yet its net effect on CH₄
60 emissions remains unresolved. Numerous studies report reduced CH₄ emissions under bioturbated
61 conditions [5, 12-14] due to enhanced oxygen penetration and stimulated oxidative processes at interfacial
62 zones [3, 15-17]. In contrast, sustained benthic activities such as loaches, shrimp or *Paphia undulata* can
63 increase CH₄ emissions by accelerating organic matter mineralization, increasing labile carbon availability,
64 and disrupting redox stability [18-23]. These contrasting outcomes suggest that the presence of bioturbation
65 alone is insufficient to predict CH₄ responses; rather, **the key lies in how bioturbation reshapes redox**
66 **processes at interface scales**.

67 Mechanistic understanding of these effects is further constrained by methodological limitations. In field
68 settings, spatial heterogeneity of animal activity, external feed inputs, and variable water management
69 complicate isolation of bioturbation effects [5, 8, 18, 19, 24]. Low-frequency CH₄ measurements may miss
70 emission peaks [3], fixed-point measurements may not confirm active bioturbation [25, 26], and most studies
71 focus on single growing seasons, implicitly assuming post-harvest reoxidation. Such assumptions overlook
72 the persistence of reduced conditions and root biomass in semi-perennial (or ratoon) rice systems [27].
73 Critically, **there remains a lack of process-based indicators that can quantitatively link interfacial redox**
74 **dynamics to CH₄ fluxes under sustained bioturbation**.

75 The identification of a mechanistically meaningful and operationally **robust indicator** is essential (Fig. 1). Bulk
76 redox potential (Eh) integrates multiple processes and lacks specificity, while field measurements often show
77 poor reproducibility [28]. Dissolved oxygen is extremely low and highly transient under flooded conditions,
78 and alternative electron acceptors such as nitrate or sulfate exhibit rapid turnover and limited inventories,
79 restricting their relevance to short temporal windows. In contrast, iron (Fe) is abundant in flooded soils and
80 undergoes continuous redox cycling between Fe(III) and Fe(II) across relevant spatial and temporal scales [4,
81 29], during which **Fe reduction consume about 50% e-donors** [30, 31]. Microbial Fe(III) reduction directly
82 competes with methanogenesis for electron donors and can be coupled to anaerobic CH₄ oxidation, whereas
83 reoxidation of Fe(II) at the SWI and in the rhizosphere reinforces oxidative barrier functions at both interfaces
84 [3, 32]. Because Fe redox cycling is intrinsically coupled to CH₄-related processes and integrates cumulative
85 redox information across interfaces and time, Fe represents the most plausible proxy for establishing
86 quantitative linkages to CH₄ emissions in flooded systems [33, 34]. **Despite this potential, direct evidence**
87 **linking depth-resolved Fe redox dynamics to CH₄ emissions under sustained bioturbation remains scarce.**

88

89 **Fig. 1. Hypothesized role of dissolved Fe as an integrated redox indicator of bioturbation-mediated CH₄**
90 **emissions in flooded rice systems.** Methane produced in anoxic soils must traverse an oxidized Fe belt at the
91 SWI, with possible extension to floating Fe biofilms at the water-air interface and root Fe plaques. Fish

92 bioturbation increases labile carbon inputs and disrupts the SWI CH₄ barrier, enhancing Fe reduction, CH₄
93 production, and emissions, forming the basis of hypotheses H1 and H2.

94 We tried to address these gaps through a 178-day mesocosm experiment integrating ratoon rice with benthic
95 loaches (*Misgurnus anguillicaudatus*) under feed-free conditions. Continuous CH₄/CO₂ flux monitoring, in situ
96 microdialysis of porewater Fe at surface/root-zone depths, and process-based modeling tested two
97 hypotheses (Fig. 1): (1) Loach bioturbation weakens SWI barrier function, elevating surface soil reducing
98 conditions; (2) Dissolved Fe serves as a robust CH₄ emission proxy across seasonal scales. By establishing Fe
99 redox as a mechanistic integrator of bioturbation effects, this study provides quantitative constraints for
100 global CH₄ models and allows simulating the net impact of bioturbation in flooded systems.

101 **2. Materials and Methods**

102 **2.1. Soil location and characterization**

103 Paddy soil collected from Shangyu City (30°01'38.256" N, 120°52'23.311" E), Zhejiang in China, characterized by
104 total organic matter (3.5% by weight), with a soil paste pH of 5.6, 3.5% Fe and loam characteristics. Other soil
105 properties were described previously [35].

106 **2.2. Open-field rice growth experiment**

107 An open field mesocosm experiment was conducted to examine the effects of loach bioturbation on rice growth
108 and GHG fluxes. The experiment included two treatments: rice grown without loach (–Loach) and rice grown with
109 loach (+Loach), each with two replicate soil containers.

110 The experimental units consisted of polyvinyl chloride (PVC) container tanks (30 × 40 cm, length × width), each
111 filled with approximately 20 kg of sieved air-dried soil. On day of year (DOY) 167, two loaches (*Misgurnus*
112 *anguilllicaudatus*) were introduced into each +Loach container, whereas –Loach containers received no loach
113 fishes. Prior to introduction, loaches were pre-cultured under natural rainwater conditions for approximately 30
114 days and sustained by aquatic plants and duckweeds transplanted from the experimental soil. Throughout the
115 rice–loach cocultivation period, loaches foraged on naturally available food sources, including soil organic matter,
116 snails, *Alligator weed*, *Cyperus difformis*, macroalgae, phytoplankton, and other zoobenthos and zooplankton [18].

117 Basal nitrogen fertilizer was applied as urea at a rate equivalent to 60 kg N ha⁻¹ at the beginning of the growing
118 season. No additional organic amendments were applied during the experiment. Seeds of the rice cultivar
119 *Yliangyou No.1* were germinated in deionized water and raised for four weeks on a horticultural substrate.
120 Subsequently, six rice hills consisting of 25-day-old seedlings were uniformly transplanted into each container.

121 All containers were embedded in a large sand bed filled with river sand, with a total sand volume at least 20 times
122 greater than the combined volume of the containers. This configuration ensured continuous submergence of the
123 containers and insulated the sidewalls from direct solar radiation. The sand bed was maintained under flooded
124 conditions, producing a stable water column of approximately 5 cm above the soil surface in each container. This
125 design minimizes edge effects and temperature heterogeneity associated with uneven heating. To maintain
126 consistent flooding throughout the experimental period, a rainwater collection system was used to compensate
127 for evaporative water losses, thereby supporting a near-natural hydrological regime under open-field conditions.
128 In addition, thermocouples were installed at a soil depth of 5–10 cm. Temperature was recorded at 30-min
129 intervals using a remote temperature monitoring data logger (Xiandun CIMC Inc., China) [27].

130 **2.3. Chamber-based CH₄ flux measurement**

131 Methane and CO₂ fluxes were measured at intervals of 3–10 days using a static half-transparent chamber
132 approach coupled with a portable greenhouse gas analyzer (LI-7810, LI-COR Biosciences). During each
133 measurement, the analyzer continuously recorded CH₄ and CO₂ concentrations following chamber closure [3, 36].
134 Gas fluxes were calculated based on the initial rate of change in gas mole fraction ($\partial C/\partial t$) according to Equation
135 (1):

$$136 J = \frac{\partial C_{CH_4}}{\partial t} \times \frac{V}{A} \times \frac{P(1-W_0)}{RT} \quad (1)$$

137 where J is the gas flux ($\mu\text{mol m}^{-2} \text{s}^{-1}$), V is the chamber volume (0.1925 m^3), A is the soil surface area enclosed by
138 the chamber (0.12 m^2), P is atmospheric pressure (101.3 kPa), W_0 is the mean water vapor mole fraction during
139 each measurement, R is the universal gas constant ($0.008134 \text{ m}^3 \text{ kPa mol}^{-1} \text{ K}^{-1}$), and T is soil temperature (K)
140 measured at 5 cm depth. The term $\frac{\partial C_{CH_4}}{\partial t}$ represents the rate of change in gas mole fraction ($\mu\text{mol mol}^{-1} \text{s}^{-1}$)
141 immediately after chamber closure. Carbon dioxide fluxes were measured in the similar way. These measurements
142 represent instantaneous net ecosystem exchange (NEE), integrating both photosynthetic CO₂ uptake and
143 respiratory CO₂ release within the chamber.

144 To resolve short-term dynamics, intensive flux measurements were conducted during the grain-filling stage of the
145 main rice crop. On day of year (DOY) 242, gas fluxes were measured every 1–2 hours throughout the daytime to
146 capture diurnal variability and its relationships with environmental drivers, including air temperature and soil
147 temperature.

148 The gas analyzer was automatically calibrated using standard gas mixtures prior to measurements. Air samples
149 were partially dehydrated using an integrated gas dryer before entering the analyzer. During each measurement,
150 real-time changes in CH₄, CO₂, and H₂O concentrations were monitored to identify disturbances caused by abrupt

151 perturbations or gas ebullition. Measurements showing irregular concentration changes were discarded and
152 repeated. Flux calculations were based on the initial linear concentration change beginning 30 s after chamber
153 closure.

154 Linear regression coefficients were recorded for each measurement, and all raw concentration data were archived
155 for quality control. Flux estimates were accepted only when the coefficient of determination (R^2) exceeded 0.75
156 and the root mean square error (RMSE) was below 1.5% for CO_2 (300–700 ppm) or below 2 ppb for CH_4 . During
157 gas flux measurements, concurrent environmental variables were monitored, including soil temperature at 5 cm
158 depth, canopy air temperature, relative humidity, and photosynthetic photon flux density (PPFD), using an on-site
159 miniature weather station.

160 **2.4. Soil microdialysis and dissolved Fe analysis**

161 Soil porewater redox dynamics were investigated using in situ soil microdialysis, following the methodological
162 framework established in previous studies [9, 10]. Microdialysis sampling was conducted repeatedly
163 throughout the experimental period, with increased frequency during key rice growth stages. Microdialysis
164 probes were installed at two soil depths: near the soil surface (covered only by the device) and at
165 approximately 5–10 cm depth, allowing simultaneous monitoring of redox dynamics in both layers. Dialysate
166 samples were pipetted into acid-cleaned polypropylene vials, and collected volumes were recorded for
167 concentration calculations.

168 Immediately after collection, dialysate samples were acidified to $\text{pH} < 2$ with ultrapure nitric acid to stabilize
169 dissolved Fe species. Dissolved Fe concentrations were quantified using inductively coupled plasma mass
170 spectrometry (ICP-MS). Instrument calibration was performed using multi-element standard solutions, and
171 procedural blanks were included to ensure analytical accuracy. Quality control was assessed through
172 repeated analysis of standards and selected samples. Microdialysis-derived dissolved Fe concentrations were
173 used to characterize soil redox status and redox succession rather than to directly quantify microbial Fe
174 reduction rates.

175 **2.5. Conceptual and mathematical framework of Fe– CH_4 coupling**

176 Here, we formalize the conceptual understanding of Fe–carbon interactions in flooded soils into a minimal,
177 process-based mathematical framework that links Fe redox dynamics to CH_4 production and CH_4 emission
178 efficiency (More details in TEXT S1).

179 **2.5.1 Thermodynamic hierarchy of redox processes**

180 The framework is grounded in the thermodynamic hierarchy of anaerobic respiration in flooded soils, in
181 which terminal electron-accepting processes proceed sequentially from Fe(III) reduction to sulfate reduction
182 and ultimately to methanogenesis [16, 37, 38]. Ferric oxides consume more than 50% electron donors in
183 freshwater environment [30]. As long as reactive Fe(III) remains available, Fe reduction competitively
184 consumes shared electron donors and suppresses CH₄ production [33]. Methanogenesis is assumed to
185 initiate only after Fe(III) becomes depleted or kinetically constrained, and deep-layer Fe²⁺ is subsequently
186 immobilized through sulfide precipitation. A more reducing environment would result in a lower dissolved Fe
187 concentration.

188 **2.5.2 Dual role of Fe in regulating CH₄ dynamics**

189 Iron is assumed to regulate CH₄ cycling through two distinct but interconnected mechanisms operating at
190 different soil depths. In deeper soil layers, reactive Fe(III) indirectly controls CH₄ production by scavenging
191 sulfide and alleviating sulfate inhibition, thereby shaping the timing and magnitude of CH₄ generation. In
192 contrast, in surface soil layers, Fe redox cycling directly governs CH₄ oxidation. Oxidized Fe phases serve as
193 electron acceptors for CH₄ oxidation, whereas elevated Fe²⁺ concentrations indicate increasingly reducing
194 conditions that weaken oxidative capacity. These contrasting controls motivate a vertically stratified
195 representation of the soil system (section 2.4).

196 **2.5.3 Spatial compartmentalization and process coupling**

197 The soil profile is conceptualized as two functionally distinct compartments: a deep methanogenic zone and a
198 surface oxidative layer. Methane production is assumed to occur predominantly in deeper soil layers,
199 whereas CH₄ oxidation and transport regulation are controlled near the SWI. Although these processes are
200 modeled independently, they are coupled through CH₄ diffusion, such that variations in deep CH₄ production
201 propagate upward to influence surface emission efficiency.

202 **2.5.4 Functional representation of CH₄ production**

203 Methane production potential in the deep soil layer is assumed to depend nonlinearly on dissolved Fe²⁺
204 concentration. High Fe²⁺ concentrations indicate active Fe reduction and strong suppression of
205 methanogenesis. As Fe²⁺ is progressively removed through sulfide fixation, this suppression is relaxed,
206 resulting in a rapid increase in CH₄ production potential. This transition is represented using an inverse
207 sigmoidal function:

209
$$\Psi(\text{Fe}_{\text{deep}}^{2+}) = \left(1 - \frac{\text{Fe}_{\text{deep}}^{2+}}{\text{Fe}_{\text{deep}}^{2+} + K_{\text{trig}}}\right)^m \quad (1)$$

208

210 where K_{trig} denotes the Fe^{2+} concentration at which methanogenesis is half-released from Fe-mediated
211 suppression, and m controls the sharpness of the transition.

212 **2.5.5 Functional representation of CH_4 oxidation efficiency**

213 Methane oxidation efficiency in the surface layer is assumed to decline monotonically with increasing Fe^{2+}
214 concentration, reflecting a shift toward more reducing conditions and diminished oxidative capacity. This
215 behavior is described using a Hill-type function:

217
$$\eta(\text{Fe}_{\text{surf}}^{2+}) = \eta_0 + (1 - \eta_0) \cdot \frac{(\text{Fe}_{\text{surf}}^{2+})^p}{K_{\text{emit}}^p + (\text{Fe}_{\text{surf}}^{2+})^p} \quad (2)$$

216

218 where η_0 represents the minimum oxidation efficiency under strongly reducing conditions, K_{emit} defines the
219 Fe^{2+} concentration at which oxidation efficiency is reduced by half, and p controls the sensitivity of the
220 response.

221 **2.5.6 Temperature response and process decoupling**

222 Temperature effects on CH_4 production are represented using a Q_{10} formulation, assuming constant
223 temperature sensitivity across the studied range:

225
$$f(T) = Q_{10}^{\frac{T-T_{\text{ref}}}{10}} \quad (4)$$

224

226 **2.5.7 Parameterization of maximum CH_4 production capacity (G_{max})**

227 The maximum CH_4 production capacity (G_{max}) represents the upper limit of substrate-supported
228 methanogenesis under optimal redox and temperature conditions. Rather than treating G_{max} as a purely
229 empirical constant, we parameterized it as a dynamic quantity linked to carbon input availability, reflecting

230 the coupling between plant-derived carbon supply, additional organic inputs, and microbial CH₄ production
231 potential.

232 Specifically, G_{\max} was decomposed into a baseline carbon input term modulated by photosynthetic activity
233 and, where applicable, an additional organic carbon contribution associated with animal-derived inputs.
234 Photosynthetic activity was inferred from net CO₂ fluxes and translated into a photosynthesis potential index,
235 accounting for the fact that enhanced respiration in bioturbated systems may obscure gross carbon
236 assimilation when only net CO₂ exchange is observed. To reflect delayed carbon translocation from
237 aboveground production to belowground substrates, a temporal lag was introduced using an exponentially
238 weighted moving average. Ethane emissions exhibit a time-lagged response to key drivers such as
239 temperature and plant productivity, as demonstrated by global analyses of the FLUXNET-CH4 dataset [39,
240 40].

241 For systems without animal inputs, G_{\max} was expressed as a function of photosynthesis-modulated plant
242 carbon input:

244

$$G_{\max}(t) = G_{\text{base}} \left[1 + k_{\text{photo}} \cdot \frac{P_{\text{lag}}(t) - P_{\text{ref}}}{P_{\text{ref}}} \right] \quad (5a)$$

243

244 where G_{base} is the baseline CH₄ production capacity, k_{photo} quantifies the sensitivity of CH₄ production to
245 photosynthetic carbon input, $P_{\text{lag}}(t)$ denotes lagged photosynthesis potential, and P_{ref} is a reference level
246 used for normalization.

247 In systems with benthic fauna, G_{\max} additionally incorporated an animal-derived organic carbon input term,
248 representing fecal deposition and enhanced organic matter turnover induced by bioturbation. In this case,
249 total CH₄ production capacity was formulated as:

250

$$G_{\max}(t) = [G_{\text{plant}}(t) + G_{\text{feces}}(t)] \cdot k_{\text{meth}} \quad (5b)$$

251

252 where $G_{\text{plant}}(t)$ follows Eq. (5a), $G_{\text{feces}}(t)$ represents the time-dependent contribution of animal-derived
253 carbon inputs, and k_{meth} is a dimensionless conversion factor describing the efficiency with which available
254 carbon substrates are converted into CH₄. Differences in k_{meth} between treatments capture treatment-

256 specific constraints on methanogenic efficiency arising from redox disturbance, microbial competition, or
257 altered substrate quality.

258 Together, this formulation allows G_{\max} to vary dynamically in response to carbon supply while remaining
259 mechanistically interpretable, thereby linking aboveground carbon assimilation, bioturbation-induced organic
260 inputs, and subsurface CH_4 production within a unified modeling framework.

261 CH_4 production and oxidation are assumed to be separable processes operating at different soil depths.
262 Accordingly, total CH_4 emission flux is calculated as the product of temperature-modulated CH_4 production
263 potential and surface emission efficiency:

264

$$F_{\text{CH}_4}(t) = G_{\max} \cdot Q_{10}^{\frac{T(t)-T_{\text{ref}}}{10}} \cdot \Psi(\text{Fe}_{\text{deep}}^{2+}(t)) \cdot \eta(\text{Fe}_{\text{surf}}^{2+}(t)) \quad (6)$$

265 **2.5.8. Model parameters and input variables**

266 **Model parameters:** The parameters used in the Fe– CH_4 coupling model, together with their physical
267 interpretations and typical ranges reported in flooded soil systems, are summarized in Table 1. Parameter
268 values were either constrained by literature ranges or calibrated against observed CH_4 flux dynamics,
269 ensuring mechanistic interpretability rather than purely empirical fitting.

270 **Table 1. Model parameters, symbols, physical meaning, and typical ranges.**

Parameter	Symbol	Unit	Physical meaning	Typical range
Maximum production capacity	G_{\max}	$\text{nmol m}^{-2} \text{s}^{-1}$	Maximum CH_4 production potential under optimal redox and temperature conditions	1–1000 [39]
Deep-layer trigger threshold	K_{trig}	dimensionless	Threshold Fe^{2+} concentration controlling the release of Fe-mediated suppression on methanogenesis	10–700 [4]
Deep-layer shape parameter	m	dimensionless	Steepness of the deep-layer CH_4 production response to Fe^{2+} decline	0.5–5 (Empirically)
Minimum emission efficiency	η_0	dimensionless	Residual CH_4 emission efficiency under strongly oxidizing surface conditions	0.01–0.5 [33]
Surface half-saturation constant	K_{emit}	dimensionless	Fe^{2+} concentration at which surface emission efficiency reaches its midpoint	5–50 [34]
Surface shape parameter	p	dimensionless	Sensitivity of surface emission efficiency to Fe^{2+} variation	0.5–5 [34]
Temperature sensitivity	Q_{10}	dimensionless	Multiplicative increase in reaction rate for a 10 °C rise in temperature	1.5–4.0 [41]

272 **Input variables:** The model is driven by time-resolved environmental and biogeochemical input variables
273 (Table 2). Dissolved Fe^{2+} concentrations in deep and surface soil layers represent the redox state of the
274 methanogenic and oxidative compartments, respectively. Soil temperature regulates CH_4 production through
275 a Q_{10} -type response, while CO_2 flux is used as a proxy for ecosystem carbon exchange and photosynthetic
276 activity in the parameterization of G_{\max} .

277 **Table 2. Model input variables and descriptions.**

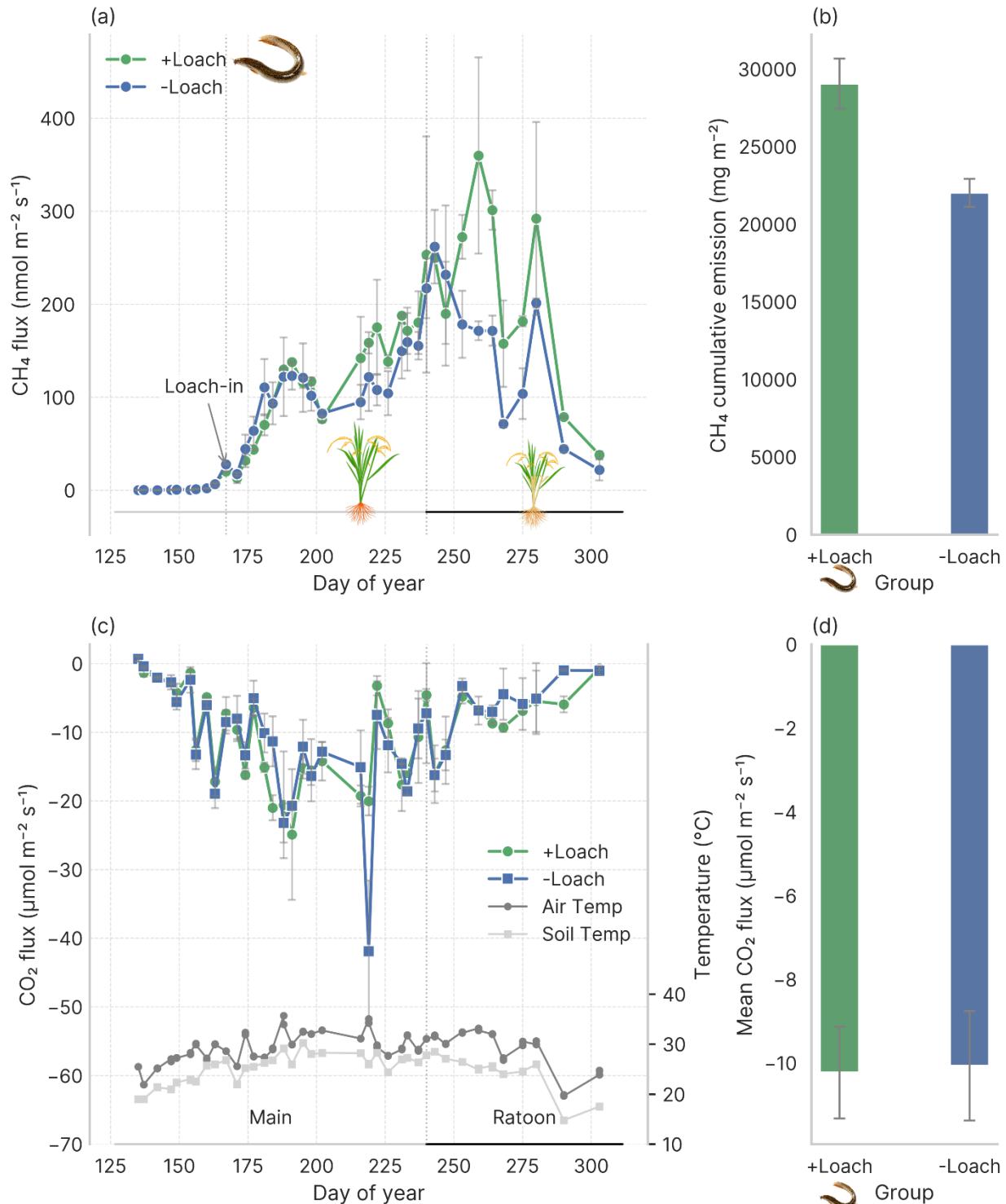
Variable	Symbol	Unit	Description
Time	$t(\text{DOY})$	day	Day of year
Deep-layer dissolved Fe	$\text{Fe}_{\text{deep}}^{2+}(t)$	dimensionless	Relative total dissolved Fe concentration in the deep, methanogenic soil layer
Surface-layer dissolved Fe	$\text{Fe}_{\text{surf}}^{2+}(t)$	dimensionless	Relative total dissolved Fe concentration in the surface, oxidative soil layer
Soil temperature	$T(t)$	°C	Time series of soil temperature
Reference temperature	T_{ref}	°C	Reference temperature for the Q_{10} response (default: 25 °C)
Net CO_2 flux	$F_{\text{CO}_2}(t)$	$\mu\text{mol m}^{-2} \text{s}^{-1}$	Net ecosystem CO_2 exchange, used as a proxy for photosynthetic carbon input in the parameterization of G_{\max}

278
279 Net CO_2 flux was incorporated to capture variations in plant-derived carbon supply that regulate CH_4
280 production capacity. Because net CO_2 exchange reflects the balance between photosynthesis and respiration,
281 its influence on G_{\max} was interpreted in combination with temporal smoothing to account for delayed
282 translocation of assimilated carbon to belowground substrates, as described in Section 2.5.7.

283 **2.6. Statistical analysis**

284 All analyses were conducted in Python 3.10 using numpy, pandas, scipy, and statsmodels. Results are
285 reported as means \pm standard deviations unless otherwise stated. For CH_4 flux data, differences between
286 treatments (+Loach vs -Loach) were evaluated using paired t-tests across all sampling dates, with cumulative
287 emission differences quantified using trapezoidal integration and uncertainty estimated via bootstrap
288 resampling ($n = 10,000$ iterations). Treatment effects on seasonal or stage-averaged variables (e.g.,
289 greenhouse gas fluxes and porewater elemental concentrations) were assessed using two-tailed Student's t -
290 tests (scipy.stats.ttest_ind). To avoid pseudoreplication, comparisons were based on values averaged over
291 defined growth stages or measurement periods rather than individual observations. Fold changes were
292 calculated to quantify relative differences between loach treatments and controls. For dissolved Fe
293 concentrations after DOY 242, bottom-layer and surface-layer Fe were predicted using an XGBoost model

294 driven by environmental variables and gas fluxes, with hyperparameters tuned by cross-validation and
295 uncertainty estimated via residual variance and quantile regression. Nonlinear relationships between
296 dissolved Fe concentrations and CH₄ fluxes were examined using LOESS smoothing. Data from all treatments
297 and soil layers were pooled, and Fe concentrations were log₁₀-transformed prior to analysis. LOESS was
298 implemented as robust local linear regression (it = 3) with the statsmodels LOWESS function, with the
299 smoothing parameter selected by five-fold cross-validation. Resulting R² values are reported as descriptive
300 indicators of fit, and uncertainty was estimated using bootstrap-derived 95% confidence intervals.
301 Associations between CH₄ fluxes and environmental variables (air and soil temperature, relative humidity,
302 vapor pressure deficit, and CO₂ flux) were evaluated using simple linear regressions (statsmodels.OLS). These
303 analyses were intended to characterize treatment-specific response sensitivities rather than infer causality;
304 slopes, R² values, and *p*-values are reported.

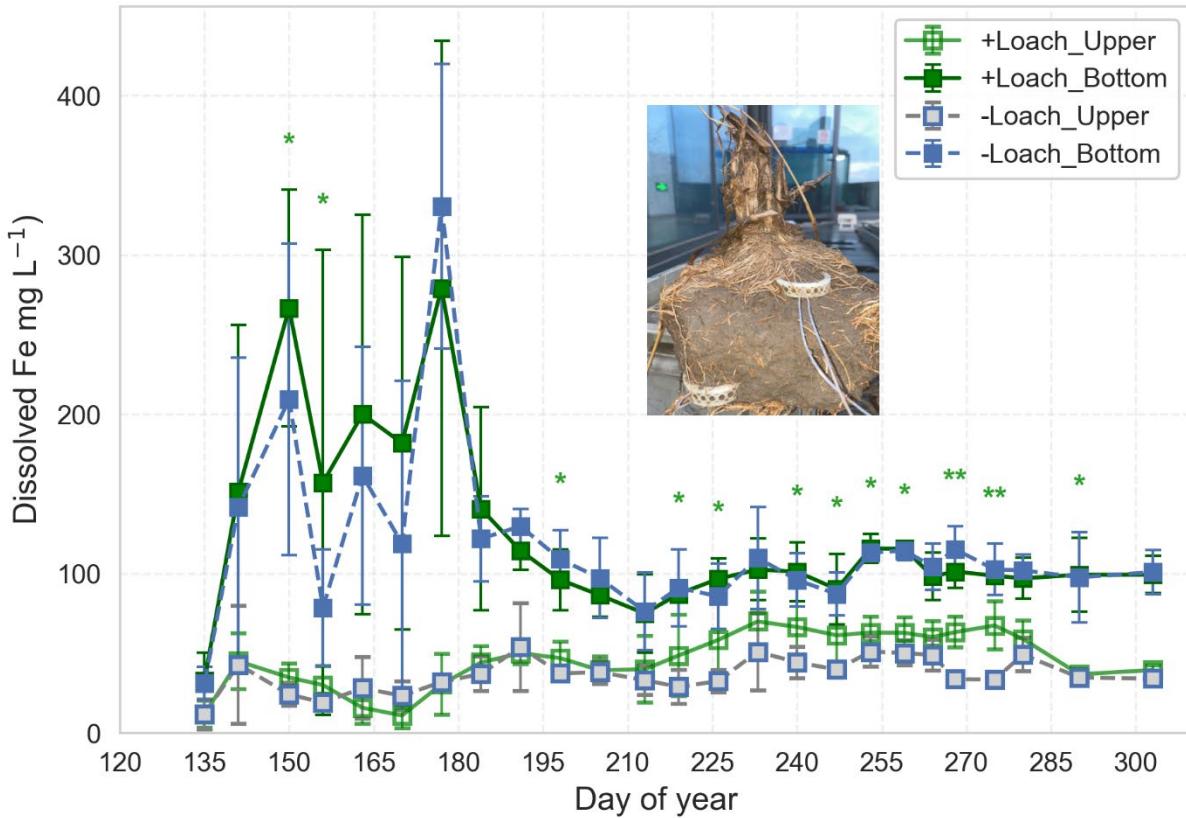

305 **3. Results and discussion**

306 **3.1. Seasonal dynamics of CH₄/CO₂ fluxes and temperatures**

307 At the seasonal scale, loach-rice co-cultivation significantly increased cumulative CH₄ emissions (Fig. 2a, b).
308 Total CH₄ emissions in +Loach group were $29.06 \pm 1.62 \text{ g m}^{-2}$, compared with $22.03 \pm 0.91 \text{ g m}^{-2}$ in -Loach
309 group, representing a 31.9% (95% CI: [18.2%, 40.2%], *p* = 0.0033, Cohen's *d* = 0.510) increase. Most emissions
310 occurred from main-season grain filling to ratoon stages, peaking after the first-season harvest. This period
311 typically coincides with increased organic carbon inputs from senescing leaves.

312 Loach effects varied depending on environmental conditions. During early tillering (DOY 162–177), +Loach
313 exhibited significantly lower CH₄ flux ($-43.3\% \pm 9\%$, *p* < 0.001), during which turbid water and brown color (vs.
314 grey color in -Loach group) of surface soil were observed, which suggested a more oxidized redox status. In
315 contrast, during flowering to grain filling (DOY 202–226), CH₄ fluxes increased in loach plots ($29.8\% \pm 7.2\%$, *p*
316 = 0.001), coinciding with clearer water and greater plant biomass (Fig. 2c, d). During DOY 242–243 of the
317 main crop rice (the grain filling), diel dynamics of CH₄ and CO₂ fluxes were continuously measured for
318 confirming that loach cultivation increased mean CH₄ fluxes by 26.1% from 207.08 to 280.28 nmol m⁻² s⁻¹
319 (Fig. S1). However, on DOY 243 the effect of single point measurements only yielded $3.3\% \pm 36.5\%$ (1σ) effect,
320 which suggested an underestimation of the daily emission. Seasonal CH₄ fluxes were positively correlated
321 with air and soil temperatures ($R^2 = 0.29\text{--}0.39$, *p* < 0.001) and negatively correlated with CO₂ fluxes ($R^2 =$
322 $0.18\text{--}0.23$, *p* < 0.05), with no significant relationships observed for PPFD, relative humidity, or VPD (Fig. S2).
323 Temperature peaks preceded CH₄ emissions by 7–14 d (R^2 increased to $0.635\text{--}0.694$, *p* < 0.001), while CO₂
324 fluxes lagged CH₄ emissions by 7–21 d (R^2 increased to $0.696\text{--}0.706$, *p* < 0.001, Figs. S1, S3–S4); this lag

325 structure was further supported by high-frequency measurements on DOY 242–243 (Fig. S1). Consistent with
 326 this lag structure, lagged soil temperature showed significant linear correlation with CH₄ fluxes (coefficient r
 327 increased from -0.608–0 to 0.494–0.833, Fig. S5).

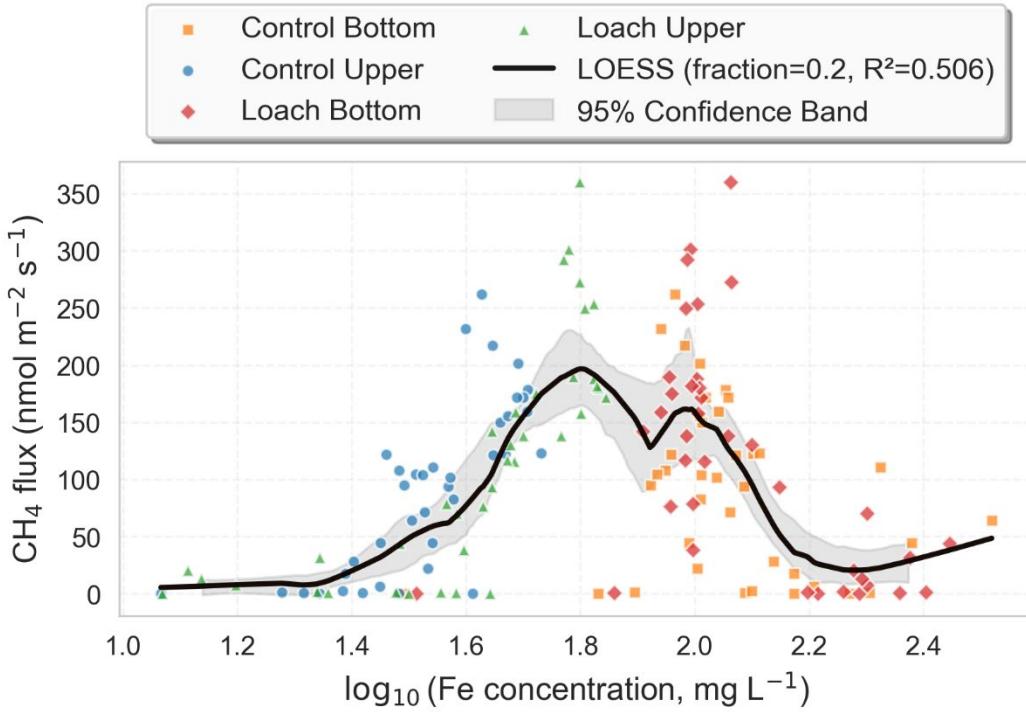


329 **Fig. 2. Temporal dynamics of greenhouse gas fluxes, cumulative CH₄ emissions, seasonal mean CO₂ fluxes,**
330 **and temperatures. (a, b)** seasonal CH₄ flux (nmol m⁻² s⁻¹) and cumulative CH₄ emissions (mg m⁻²). **(c, d)** CO₂
331 flux (μmol m⁻² s⁻¹) over time and mean CO₂ flux (μmol m⁻² s⁻¹) across the measurement period. Each data point
332 is shown as mean ± SD ($n = 2-3$). Air and soil temperatures during the flux measurement are presented in (c)

333 **3.2 Dynamics of dissolved Fe concentrations at the SWI**

334 Dissolved Fe concentrations showed strong depth stratification across the season, with deep-layer porewater
335 (~5–8 cm) consistently exceeding surface concentrations (Fig. 3). At the first post-flooding sampling following
336 rice transplanting, deep-layer Fe concentrations were already elevated, reaching 32.62 mg L⁻¹ (+Loach) and
337 30.97 mg L⁻¹ (-Loach). Note: Soils were flooded for months before soil wet mixing and transplanting. During
338 the subsequent 25 days (seedling stage), deep-layer Fe increased rapidly to seasonal maxima of 279.08 mg L⁻¹
339 (+Loach) and 330.46 mg L⁻¹ (-Loach), before declining thereafter. Throughout this early phase, surface-layer
340 Fe remained comparatively low and showed no consistent treatment differences.

341 Statistically significant treatment effects emerged within discrete temporal windows. During early-season
342 periods (DOY 150–163 and 156–170), deep-layer porewater Fe concentrations were higher in the +Loach
343 treatment (207.93 vs. 149.77 mg L⁻¹, $t = 2.340$, $p = 0.0288$; and 179.68 vs. 119.60 mg L⁻¹, $t = 2.686$, $p =$
344 0.0135; $n = 12$). In contrast, during the rice jointing stage (DOY 191–205 and 198–213), deep-layer Fe
345 concentrations were significantly lower under +Loach conditions (99.00 vs. 111.97 mg L⁻¹, $t = -3.359$, $p =$
346 0.0028; and 85.86 vs. 94.16 mg L⁻¹, $t = -2.607$, $p = 0.0167$). Late in the season, treatment effects were
347 primarily observed in surface-layer porewater, where +Loach exhibited consistently higher Fe concentrations
348 across multiple windows (DOY 219–290, $p < 0.001$).

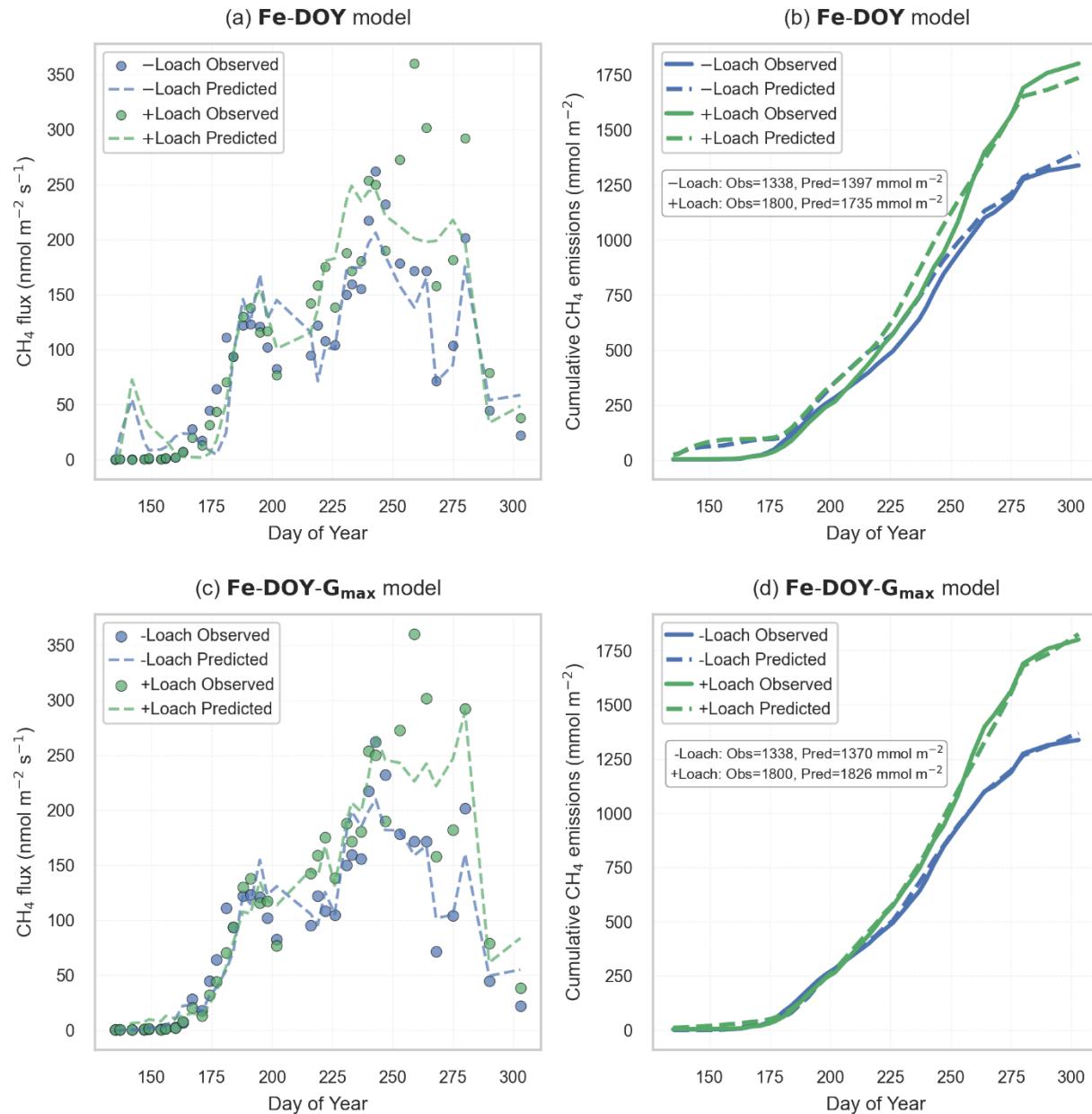

349

350 **Fig. 3. Seasonal dynamics of dissolved Fe concentrations in the upper and bottom soil layers under fish-
351 cultivated (+Loach) and control (-Loach) conditions during the flooded main and ratoon crop season.** Data
352 are shown as means \pm std ($n = 4$ per time point) and plotted against DOY. The inserted photograph shows the
353 location of the microdialysis device used for in situ porewater sampling. Asterisks (*) indicate significant
354 differences between +Loach and -Loach treatments in the upper soil layer, while detail comparisons were
355 summarized in Table S1.

356 **3.4. The relationship between CH_4 fluxes and dissolved Fe concentrations**

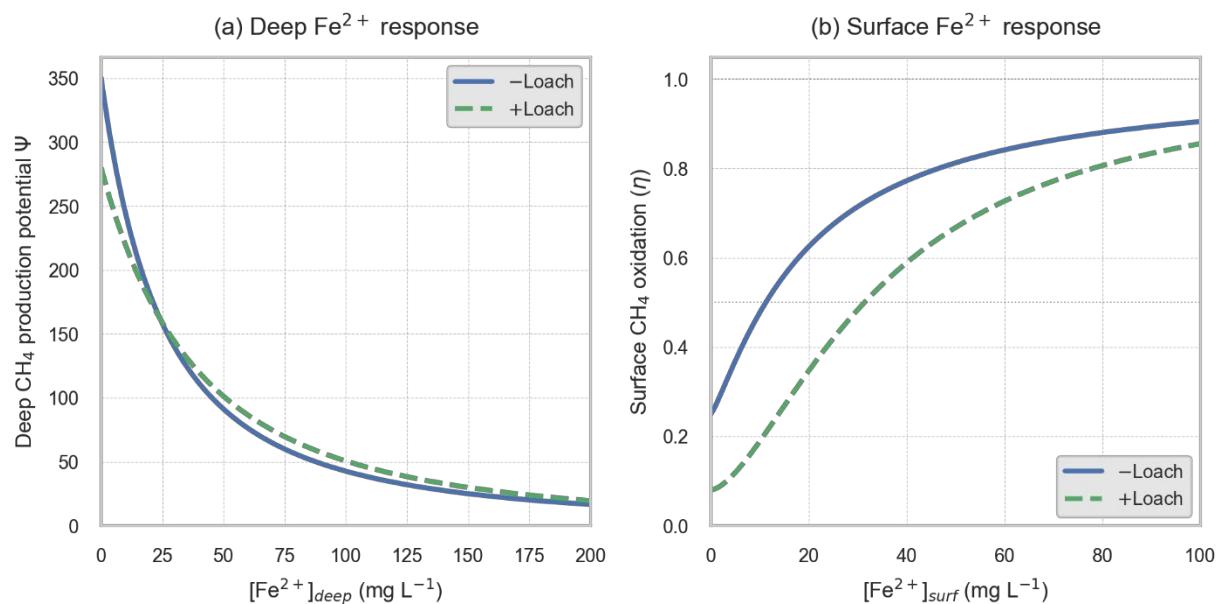
357 Across all observations, CH_4 flux exhibited a pronounced nonlinear relationship with dissolved Fe
358 concentration, captured by LOESS smoothing (fraction = 0.2; Fig. 5, Fig. S4–S6), explaining 50.6% of the
359 variance ($R^2 = 0.506$, $n = 152$, $p < 0.001$). Methane flux increased from low to intermediate Fe concentrations
360 and declined at higher Fe levels, forming a non-monotonic response. Stratified analyses showed that this
361 relationship was significantly stronger in the +Loach group ($R^2 = 0.596$, $n = 76$) than in the -Loach group ($R^2 =$
362 0.316, $n = 76$; Fig. 5). Depth-resolved patterns further indicated that the contrast was concentrated in the
363 upper soil layer, where the Fe– CH_4 coupling was strongest in the +Loach group ($R^2 = 0.751$, $n = 38$), compared
364 to the -Loach group ($R^2 = 0.468$, $n = 38$). In contrast, relationships in the bottom layer were weak in both

365 groups ($R^2 = 0.164\text{--}0.442$). Residual variance differed significantly among depth–group combinations, with
366 formal tests indicating heteroscedasticity (Bartlett test: $p = 4.1 \times 10^{-4}$; Levene test: $p = 0.013$; Fig. S6). Despite
367 this variance structure, the nonlinear Fe–CH₄ relationship and its stratified contrasts across groups and soil
368 layers remained consistent.



369
370 **Fig. 4. Nonlinear relationships between dissolved Fe and CH₄ dynamics across treatments and soil layers.**
371 Nonlinear relationships between CH₄ flux and dissolved Fe concentration across treatments and soil layers,
372 quantified using LOESS smoothing (fraction = 0.2). Points represent individual measurements from control and
373 loach treatments in upper and bottom soil layers ($n = 120$). The solid curve shows the LOESS fit, and the shaded
374 band represents the 95% bootstrap confidence interval. Residual distributions are provided to illustrate model
375 fit and variance structure. Methane flux displays a non-monotonic pattern along the dissolved Fe gradient.

376 3.5. Process-based model simulation


377 **(I) Iron-based model with seasonal constraint (Fe–DOY model):** The model incorporating dissolved Fe
378 dynamics and seasonal progression (DOY) captured a substantial proportion of the observed variability in CH₄
379 fluxes, supporting dissolved Fe as a key predictor of CH₄ emissions across treatments. The Fe–DOY model
380 explained a substantial proportion of the observed variability in CH₄ fluxes in both treatments, with higher
381 predictive accuracy in the –Loach group than in the +Loach group. In the –Loach group, model performance

382 reached $R^2 = 0.816$ and $RMSE = 31.7 \text{ nmol m}^{-2} \text{ s}^{-1}$ ($MAE = 24.3 \text{ nmol m}^{-2} \text{ s}^{-1}$, $NSE = 0.816$; $n = 38$), and
383 predicted fluxes closely matched observed seasonal dynamics and cumulative emissions (Fig. 5a–b).

384
385 **Fig. 5. Performance of Fe-DOY and Fe-DOY-G_{max} models in predicting CH₄ emissions from paddy fields with**
386 **and without loach.** (a, b) Fe-DOY model: (a) Time series of observed and predicted CH₄ fluxes, and (b)
387 cumulative CH₄ emissions for both treatments. (c, d) Enhanced Fe-DOY-G_{max} model: (c) Time series
388 predictions incorporating photosynthetic carbon inputs with optimized lag effects, and (d) cumulative
389 emissions.

390 In the +Loach group, Fe–DOY model performance was lower, with $R^2 = 0.783$ and $RMSE = 46.5 \text{ nmol m}^{-2} \text{ s}^{-1}$
391 ($MAE = 33.2 \text{ nmol m}^{-2} \text{ s}^{-1}$, $n = 38$). Underestimation was most pronounced during high-emission periods (Fig.
392 5a), leading to increased residual variance around peak fluxes (Fig. 5a–b). Fitted parameters differed
393 substantially between treatments: G_{max} declined from 1000 (i.e., upper boundary with high uncertainty) to
394 335 $\text{nmol m}^{-2} \text{ s}^{-1}$ (−66.5%), the Fe-response exponent m decreased from 8.88 to 1.21 (−86.4%), and K_{emit}
395 increased from 34.4 to 49.7 (+44.4%) in the +Loach group. Model response curve suggested that +Loach
396 increased the CH_4 production potential ($\Psi(\text{Fe}^{2+}_{\text{deep}})$, Eq. 2; Fig. 6) and decreased the CH_4 oxidation efficiency
397 at the surface soil layer ($\eta(\text{Fe}^{2+}_{\text{surf}})$, Eq. 3, Fig. 6).

398
399 **Fig. 6. Modeled CH_4 responses to dissolved Fe concentrations by Fe-DOY model.** (a) Deep-layer Fe inhibits
400 CH_4 production (Ψ) in reduced soils. (b) Surface-layer Fe promotes CH_4 oxidation (η) in oxic layers. Note: Total
401 dissolved Fe used as proxy for Fe^{2+} .

402 **(ii) Incorporating variable CH_4 production capacity (Fe – DOY – G_{max} model, optimized parameters in**
403 **Table S2):** Allowing CH_4 production capacity to vary in the Fe–DOY– G_{max} model substantially improved
404 predictive performance in both treatments (Fig. 5c, d). In the –Loach group, R^2 increased from 0.816 to 0.890
405 and $RMSE$ declined from 31.7 to 24.5 $\text{nmol m}^{-2} \text{ s}^{-1}$, while in the +Loach group, R^2 increased from 0.783 to
406 0.886 with $RMSE$ reduced by 27.6%. Beyond improved goodness-of-fit metrics, the variable- G_{max} formulation
407 enhanced model performance across the full CH_4 flux range, yielding more evenly distributed residuals
408 (percentage of $|\text{residuals}| < 1\sigma$: 97.4%).

409 Plant productivity (net CO₂ flux proxy) shows a positive but lagged relationship with CH₄ emissions (Fig. S3a–
410 b). Lag optimization further improved model fit, with optimal lags of 14 days in the –Loach group and 4 days
411 in the +Loach group (Fig. S10, S11). The substantially shorter lag in the +Loach treatment indicates a faster
412 coupling between recent carbon inputs and CH₄ emissions. Incorporation of treatment-specific lags reduced
413 RMSE by 22.8% and 27.5% relative to the Fe–DOY model in the –Loach and +Loach groups, respectively,
414 resulting in comparable predictive performance between treatments ($\Delta R^2 < 0.01$).

415 Fe – DOY – G_{max} model considering the carbon-source-partitioning, plant-derived CH₄ tracked CO₂ uptake,
416 whereas feces-derived CH₄ followed a temperature-modulated decomposition function, indicating that loach
417 introduction substantially shifted carbon-cycling pathways. Parameter estimates revealed distinct
418 carbon-processing pathways between treatments. In +Loach, plant-derived CH₄ capacity (G_{max} -base = 136.39
419 i.e., -Loach, Base maximum CH₄ production rate (nmol m⁻² s⁻¹) was an order of magnitude lower than in
420 –Loach, while feces-derived carbon contributed ~42% of total methanogenic potential. The Fe²⁺ trigger
421 threshold reached the upper bound in +Loach but remained within the observed range in –Loach. In addition,
422 model results suggested a higher temperature sensitivity of methanogenesis under +Loach conditions, as
423 reflected by a higher Q₁₀ (1.68 vs. 1.50).

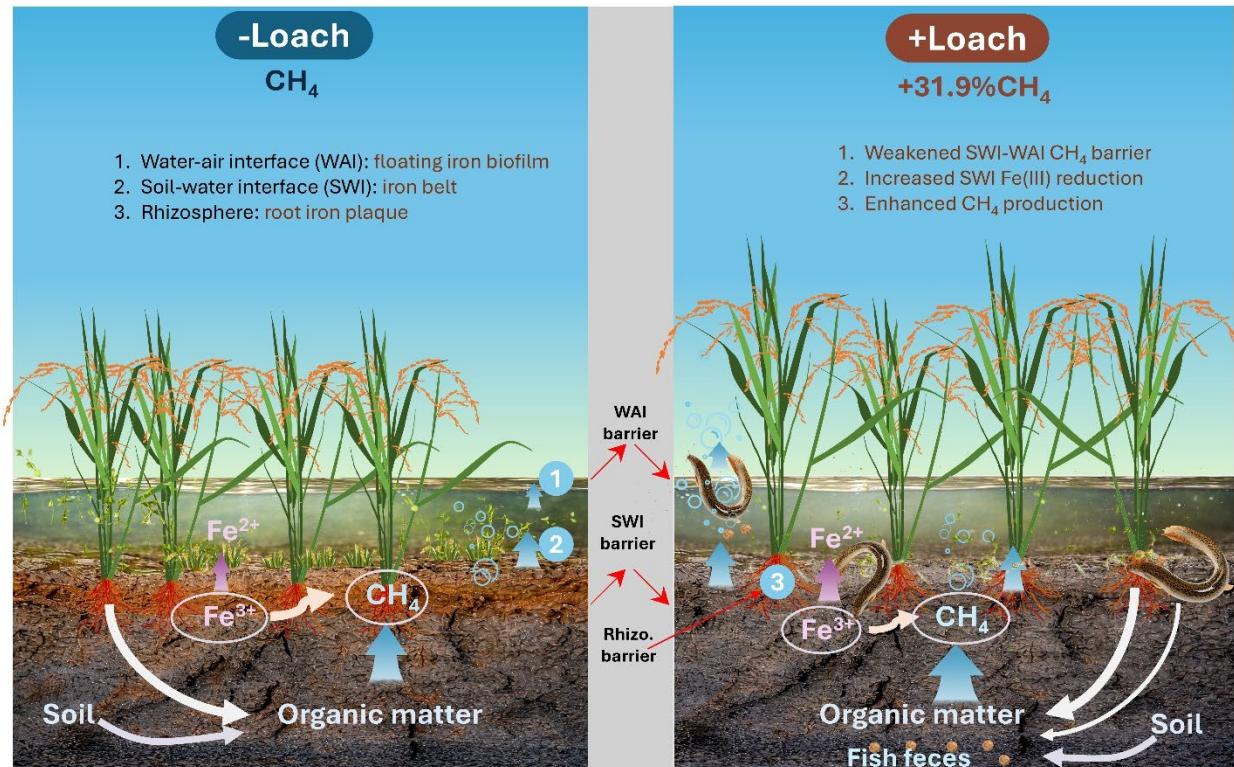
424 **4. Discussion**

425 **4.1. Does fish–rice cocultivation increase or reduce CH₄ emissions?**

426 In this work, we evaluated the effects of loach bioturbation on CH₄ emissions in ratoon rice systems by
427 combining long-term porewater Fe monitoring with a mechanistic modeling framework. Under continuously
428 flooded conditions, moderate-to-high bioturbation intensity, and in the absence of external feed inputs, the
429 presence of loach increased seasonal cumulative CH₄ emissions by 31.9% relative to rice-only controls. This
430 magnitude is comparable to reported increases in other fish–rice systems under controlled conditions,
431 including 27.1% in carp-based systems and 13.1% in carp–tilapia cocultivation [20, 21]. However,
432 bioturbation altered emission magnitude but not the seasonal pattern: Peak fluxes were observed in late
433 rice-growing stages (also see ref [21]).

434 Although our findings align with prior observations that ratoon rice can emit substantial higher CH₄ gas [42–
435 44], most field-based studies supported a low-emission pattern during ratooning stage [45, 46]. These
436 discrepancies are largely attributed by field water and straw residual management: sustained flooding and
437 straw-returns can result high emissions (as this study did) while most low-emission cases commonly perform
438 intermittent drainage practices for ratoon cropping [44, 46]. Sufficient evidence have demonstrated that

439 water-saving practice can reduce seasonal CH₄ emissions by increasing soil redox status to inhibit
440 methanogenesis [47]. The seasonal pattern was rice growth stage-dependent in our study, which was also
441 widely support by field observations (such as global FLUX-NET dataset [40]) or control experiments [20, 21].


442 In most cases, rice plants dominate terminal CH₄ emissions through plant-mediated transport, a process that
443 is spatially and temporally decoupled from in situ methanogenesis [5, 18]. Within this conceptual context,
444 model results further indicated that loach presence increased temperature sensitivity (Q₁₀ from 1.50 to 1.68)
445 for methanogenesis (Table S2). Under global warming scenarios, static greenhouse gas emissions from rice
446 paddies are commonly attributed to the activities of CH₄-producing and CH₄-oxidizing microorganisms and
447 are often assumed to be intrinsically temperature-regulated. A prevailing view holds that methanogenesis
448 exhibits higher temperature sensitivity than CH₄ oxidation (e.g., Q₁₀ 4.1 versus 1.1), implying increased
449 future emission risks under warming [16]. Accordingly, the net bioturbation effect on CH₄ emissions depends
450 on whether loach activity enhances CH₄ production, for example by increasing labile carbon availability, while
451 simultaneously reducing CH₄ oxidation through accelerated diffusion or suppression of CH₄ oxidizers at the
452 soil–water interface and in the rhizosphere during key growth stages.

453 **4.2. Conceptual model of loach's mechanisms on CH₄ emissions**

454 Mechanistically, the enhancement of CH₄ emissions under loach cultivation can be primarily attributed to
455 enhanced CH₄ production in deep soil layers and bioturbation-driven weakening of redox stratification at the
456 SWI (Fig. 6, 7), as supported by many studies [3, 22, 48]. This is directly supported by the Fe redox chemistry
457 (i.e., the significant difference of dissolved Fe concentrations in surface soils, Fig. 3) in this study. We also
458 observed severe turbid of surface water frequently and that there were no clear color gradients (only
459 consistent grey and rotted egg smells implying sulfides) of soil profile in +Loach soils.

460 The SWI typically acts as an oxidative barrier, oxidizing a large fraction of upward-diffusing CH₄ before it
461 reaches the water column [3]. Repeated sediment disturbance and grazing on oxygen-producing weeds
462 reduced the thickness and persistence of the oxic–anoxic transition zone, thereby shortening CH₄ residence
463 time within oxidative layers and increasing the fraction of CH₄ transferred across the SWI [22, 48]. Our Fe–
464 DOY models directly support this claim (Fig. 6). Also, as indicated by CO₂–CH₄ lags (Fig. S10, S11), bioturbation
465 accelerates organic matter turnover through sediment resuspension, grazing on oxygen-producing weeds,
466 and redistribution of labile carbon substrates [48, 49]. Although intense disturbance could theoretically
467 enhance sediment oxygenation and suppress methanogenesis, such conditions were not evident in this
468 study, consistent with moderate-to-high bioturbation intensities typical of field management [8, 22, 50]. In
469 addition, underestimation of peak CH₄ fluxes by the Fe–DOY–G_{max} model in the +Loach treatment implies

470 that loach-specific mechanisms, especially physically assisted CH_4 transport, were not fully captured.
471 Concurrent empirical observations of denser root systems in surface water and soils further suggest
472 enhanced plant-mediated CH_4 transport contributing to elevated emissions.

473
474 **Fig. 7. Conceptual model illustrating stage-dependent pathways through which loach-mediated**
475 **bioturbation regulates CH_4 emissions in rice systems.** Sustained loach activity, including grazing on aquatic
476 weeds and physical disturbance of soil surface, disrupts the SWI barrier, thereby accelerating the release of
477 dissolved CH_4 from underlying anoxic layers. Bioturbation also promotes redox transitions among soil
478 particles, enhancing nutrient cycling and rice growth. This leads to two major downstream consequences: (i)
479 increased allocation of photosynthetically fixed carbon to the rhizosphere, and (ii) denser root systems that
480 enhance deep CH_4 transport to the atmosphere. In parallel, accumulation of reduced carbon in surface soils,
481 derived from loach feces and root exudates, further promotes Fe reduction and surface methanogenesis.

482 **4.3. Limitations and future research priorities**

483 Despite providing long-term porewater Fe data and a mechanistic model linking loach activity to CH_4
484 emissions, several limitations remain: First, key parameters in the model (e.g., CH_4 production potential, Fe
485 reduction rate and loach-enhanced transport and oxidation were derived primarily from numerical
486 optimization rather than independent experimental validation, introducing potential uncertainty. Second, gas

487 transport and oxidation processes were simplified without differentiating bubble-mediated versus diffusive
488 pathways or surface versus rhizosphere oxidation, which may affect fine-scale interpretation of flux
489 mechanisms. Furthermore, the study is based on a single site and a single growing season. Hydrology,
490 fertilization, and temperature gradients in other systems may modulate the outcomes differently. Therefore,
491 extrapolating these results to other paddy systems should be done cautiously. Future work should involve
492 multi-site, multi-season field experiments across soils with varying Fe content and hydrological regimes,
493 coupled with high-temporal-resolution CH₄ flux, porewater chemistry, and microbial functional data, to
494 validate and extend the proposed mechanistic framework.

495 **5. Conclusion**

496 This study establishes surface-layer dissolved Fe as a practical and mechanistically grounded proxy for CH₄
497 emissions in flooded rice systems under sustained bioturbation. Depth-resolved microdialysis and process-
498 based modeling show that surface dissolved Fe captures the integrity of the SWI as an oxidative barrier, which
499 ultimately controls the fraction of methane emitted to the atmosphere. An Fe-based model alone
500 explained >78% of seasonal CH₄ variability, outperforming bulk redox indicators and obviating reliance on
501 episodic flux measurements. By integrating cumulative redox disturbance, carbon turnover, and transport
502 processes, surface dissolved Fe provides a scalable alternative for estimating CH₄ emissions and offers a
503 tractable pathway for improving methane representation in wetland and rice-paddy models.

504 **Supplementary information**

505 It accompanies this paper at xxx.

506 **Author contributions**

507 Qianrui Huangfu: Investigation, Data curation, Writing – review & editing. Sha Zhang: Project administration,
508 Conceptualization, Methodology, Investigation, Formal analysis, Visualization, Writing – original draft, Writing
509 – review & editing. Zheng Chen: Funding acquisition. Lu Wang: Funding acquisition. Dong Zhu: Writing – review
510 & editing.

511 **Data availability**

512 The data that supports the findings of this study are available from the corresponding author upon reasonable
513 request.

514 **Funding**

515 This work was supported by the National Science Foundation of China (Nos. 42595623 and 42477116).

516 **Declarations**

517 **Competing interests**

518 The authors declare that they have no conflict of interest.

519 **References**

- 520 [1] P.G. Falkowski, T. Fenchel, E.F. Delong, The microbial engines that drive Earth's biogeochemical
521 cycles, *Science* 320(5879) (2008) 1034-9. <https://doi.org/10.1126/science.1153213>.
- 522 [2] R.A. Berner, The long-term carbon cycle, fossil fuels and atmospheric composition, *Nature* 426(6964)
523 (2003) 323-326. <https://doi.org/10.1038/nature02131>.
- 524 [3] S. Zhang, Q. Huangfu, D. Zhu, Z. Chen, Floating iron biofilms as hidden barriers to methane emissions
525 in wetlands, *Innov. Geosci.* 3(4) (2025) 100161-100161. <https://doi.org/10.59717/j.xinn-geo.2025.100161>.
- 526 [4] S. van de Velde, F.J.R. Meysman, The influence of bioturbation on iron and sulphur cycling in marine
527 sediments: A model analysis, *Aquatic Geochemistry* 22(5) (2016) 469-504.
<https://doi.org/10.1007/s10498-016-9301-7>.
- 528 [5] K. Xie, M. Wang, X. Wang, F. Li, C. Xu, J. Feng, F. Fang, Effect of rice cultivar on greenhouse-gas
529 emissions from rice–fish co-culture, *The Crop Journal* 12(3) (2024) 888-896.
<https://doi.org/10.1016/j.cj.2024.04.011>.
- 530 [6] M. Saunois, A. Martinez, B. Poulter, Z. Zhang, P. Raymond, P. Regnier, J.G. Canadell, R.B. Jackson, P.K.
531 Patra, P. Bousquet, Global Methane Budget 2000–2020, *Earth System Science Data Discussions* 2024
532 (2024) 1-147. <https://doi.org/10.5194/essd-17-1873-2025>.
- 533 [7] K. Butterbach-Bahl, Papen, H. and Rennenberg, H., Impact of gas transport through rice cultivars on
534 methane emission from rice paddy fields, *Plant, Cell & Environment* 20(9) (1997) 1175-1183.
<https://doi.org/10.1046/j.1365-3040.1997.d01-142.x>.
- 535 [8] D.D.H. Fan, L. L.; Zhao, L. F.; He, L.; Tang, J. J.; Chen, X., Methane emission and the effecting factors in
536 rice-fish system, *Journal of Agro-Environment Science* 44(2) (2025) 518–526.
<https://doi.org/10.11654/jaes.2025-0084>.
- 537 [9] S. Zhang, J. Song, L. Wu, S. Du, L. Wang, D. Zhu, Z. Chen, Soil microdialysis as a tool to simulate
538 rhizosphere dynamics and estimate metal(loid) uptake in radish (*Raphanus sativus* L.), *Plant Soil* (2025).
<https://doi.org/10.1007/s11104-025-07958-7>.
- 539 [10] S. Zhang, Z. Yuan, Y. Cai, H. Liu, Z. Liu, Z. Chen, Dissolved solute sampling across an oxic-anoxic soil-
540 water interface using microdialysis profilers, *Journal of Visualized Experiments* (193) (2023) e64358.
<https://doi.org/10.3791/64358>.
- 541 [11] S. Zhang, Q. Huangfu, J. Boyle, L. Wu, J. Song, Z. Chen, Hotspots and dynamics of dissolved thallium
542 species at oxic-anoxic interfaces in flooded soils, *Chemosphere* 377 (2025) 144331.
<https://doi.org/10.1016/j.chemosphere.2025.144331>.
- 543 [12] G. Xu, X. Liu, Q. Wang, X. Yu, Y. Hang, Integrated rice-duck farming mitigates the global warming
544 potential in rice season, *Sci. Total Environ.* 575 (2017) 58-66.
<https://doi.org/10.1016/j.scitotenv.2016.09.233>.
- 545 [13] M. Huang, Y. Zhou, J. Guo, X. Dong, D. An, C. Shi, L. Li, Y. Dong, Q. Gao, Co-culture of rice and
546 aquatic animals mitigates greenhouse gas emissions from rice paddies, *Aquaculture International* 32(2)
547 (2024) 1785-1799. <https://doi.org/10.1007/s10499-023-01243-z>.

557 [14] E.S. Oliveira Junior, R.J.M. Temmink, B.F. Buhler, R.M. Souza, N. Resende, T. Spanings, C.C. Muniz,
558 L.P.M. Lamers, S. Kosten, Benthivorous fish bioturbation reduces methane emissions, but increases total
559 greenhouse gas emissions, *Freshwater Biology* 64(1) (2018) 197-207.
560 <https://doi.org/10.1111/fwb.13209>.

561 [15] H.-C. Tseng, N. Fujimoto, A. Ohnishi, Biodegradability and methane fermentability of polylactic acid
562 by thermophilic methane fermentation, *Bioresource Technology Reports* 8 (2019) 100327.
563 <https://doi.org/10.1016/j.biteb.2019.100327>.

564 [16] J. Zheng, T. RoyChowdhury, Z. Yang, B. Gu, S.D. Wullschleger, D.E. Graham, Impacts of temperature
565 and soil characteristics on methane production and oxidation in Arctic tundra, *Biogeosciences* 15(21)
566 (2018) 6621-6635. <https://doi.org/10.5194/bg-15-6621-2018>.

567 [17] Q.H.X. Li, Q. Y.; Ye, P., Research on the law of greenhouse gas emissions from rice fields under the
568 rice-shrimp planting and breeding model, *Hubei Agricultural Sciences* 62(10) (2023) 30-36.
569 <https://doi.org/10.14088/j.cnki.issn0439-8114.2023.10.007>.

570 [18] L. Zhao, R. Dai, T. Zhang, L. Guo, Q. Luo, J. Chen, S. Zhu, X. Xu, J. Tang, L. Hu, X. Chen, Fish mediate
571 surface soil methane oxidation in the agriculture heritage rice–fish system, *Ecosystems* 26(8) (2023)
572 1656-1669. <https://doi.org/10.1007/s10021-023-00856-y>.

573 [19] H.L. Fan D, Zhao L, He L, Tang J, Chen X, Methane emission and the effecting factors in rice-fish
574 system, *Journal of Agro-Environment Science* 44(2) (2025) 518-526. <https://doi.org/10.11654/jaes.2025-0084>.

575 [20] A. Datta, D.R. Nayak, D.P. Sinhababu, T.K. Adhya, Methane and nitrous oxide emissions from an
576 integrated rainfed rice–fish farming system of Eastern India, *Agriculture, Ecosystems & Environment*
577 129(1) (2009) 228-237. <https://doi.org/https://doi.org/10.1016/j.agee.2008.09.003>.

578 [21] M. Frei, K. Becker, Integrated rice–fish production and methane emission under greenhouse
579 conditions, *Agriculture, Ecosystems & Environment* 107(1) (2005) 51-56.
580 <https://doi.org/10.1016/j.agee.2004.10.026>.

581 [22] M.T. Booth, M. Urbanic, X. Wang, J.J. Beaulieu, Bioturbation frequency alters methane emissions
582 from reservoir sediments, *Sci. Total Environ.* 789 (2021) 148033.
583 <https://doi.org/https://doi.org/10.1016/j.scitotenv.2021.148033>.

584 [23] Z. Zhong, Y. Ruan, J. Qian, M. Xie, Q.-G. Tan, R. Chen, *Paphia undulata* enhances sedimentary CH₄
585 and N₂O emissions via divergent microbial mechanisms, Available at SSRN 6087164 (2026).
586 <https://doi.org/10.2139/ssrn.6087164>.

587 [24] M. Wang, F. Li, J. Wu, T. Yang, C. Xu, L. Zhao, Y. Liu, F. Fang, J. Feng, Response of CH₄ and N₂O
588 emissions to the feeding rates in a pond rice-fish co-culture system, *Environmental Science and Pollution
589 Research* 31(40) (2024) 53437-53446. <https://doi.org/10.1007/s11356-024-34772-y>.

590 [25] S.L. D'Ambrosio, J.A. Harrison, Measuring CH₄ fluxes from lake and reservoir sediments:
591 Methodologies and needs, *Frontiers in Environmental Science* Volume 10 - 2022 (2022).
592 <https://doi.org/10.3389/fenvs.2022.850070>.

593 [26] P. Polseinaere, B. Deflandre, G. Thouzeau, S. Rigaud, T. Cox, E. Amice, T.L. Bec, I. Bihannic, O. Maire,
594 Comparison of benthic oxygen exchange measured by aquatic Eddy Covariance and Benthic Chambers in
595 two contrasting coastal biotopes (Bay of Brest, France), *Regional Studies in Marine Science* 43 (2021)
596 101668. <https://doi.org/10.1016/j.rsma.2021.101668>.

597 [27] Q. Huangfu, S. Zhang, Y. Guo, L. Wang, Z. Chen, S. Du, Elevated soil temperatures during a heatwave
598 year do not necessarily increase metal(loid) mobilization or accumulation across two harvests of semi-
599 perennial rice: evidence from mesocosm experiments, *Environmental and Biogeochemical Processes*
600 1(1) (2025). <https://doi.org/10.48130/ebp-0025-0017>.

601 [28] O. Husson, Redox potential (Eh) and pH as drivers of soil/plant/microorganism systems: a
602 transdisciplinary overview pointing to integrative opportunities for agronomy, *Plant Soil* 362(1) (2013)
603 389-417. <https://doi.org/10.1007/s11104-012-1429-7>.

605 [29] N. Riedinger, M.J. Formolo, T.W. Lyons, S. Henkel, A. Beck, S. Kasten, An inorganic geochemical
606 argument for coupled anaerobic oxidation of methane and iron reduction in marine sediments,
607 *Geobiology* 12(2) (2014) 172-181. <https://doi.org/10.1111/gbi.12077>.

608 [30] T. Fumoto, Process-based modeling of methane emissions from rice fields, *Bulletin of the NARO*,
609 *Agro-Environmental Sciences* (38) (2017).
https://doi.org/https://www.naro.go.jp/publicity_report/publication/files/niaes_report38-2.pdf.

610 [31] C. Chen, S.J. Hall, E. Coward, A. Thompson, Iron-mediated organic matter decomposition in humid
612 soils can counteract protection, *Nat. Commun.* 11(1) (2020) 2255. [https://doi.org/10.1038/s41467-020-16071-5](https://doi.org/10.1038/s41467-020-
613 16071-5).

614 [32] W.H. Yang, G. McNicol, Y.A. Teh, K. Estera-Molina, T.E. Wood, W.L. Silver, Evaluating the classical
615 versus an emerging conceptual model of peatland methane dynamics, *Global Biogeochem. Cycles* 31(9)
616 (2017) 1435-1453. <https://doi.org/10.1002/2017GB005622>.

617 [33] B.N. Sulman, F. Yuan, T. O'Meara, B. Gu, E.M. Herndon, J. Zheng, P.E. Thornton, D.E. Graham,
618 Simulated hydrological dynamics and coupled iron redox cycling impact methane production in an Arctic
619 soil, *J. Geophys. Res. Biogeosci.* 127(10) (2022) e2021JG006662. <https://doi.org/10.1029/2021JG006662>.

620 [34] P. van Bodegom, F. Stams, L. Mollema, S. Boeke, P. Leffelaar, Methane oxidation and the
621 competition for oxygen in the rice rhizosphere, *Appl Environ Microbiol* 67(8) (2001) 3586-97.
<https://doi.org/10.1128/aem.67.8.3586-3597.2001>.

622 [35] Y. Guo, S. Zhang, W. Gustave, H. Liu, Y. Cai, Y. Wei, Z. Chen, Dynamics of cadmium and arsenic at the
624 capillary fringe of paddy soils: A microcosm study based on high-resolution porewater analysis, *Soil &*
625 *Environmental Health* 2(1) (2024) 100057. <https://doi.org/10.1016/j.seh.2023.100057>.

626 [36] M. Ueyama, R. Takeuchi, Y. Takahashi, R. Ide, M. Ataka, Y. Kosugi, K. Takahashi, N. Saigusa, Methane
627 uptake in a temperate forest soil using continuous closed-chamber measurements, *Agric. For. Meteorol.*
628 213 (2015) 1-9. <https://doi.org/10.1016/j.agrformet.2015.05.004>.

629 [37] O. Sivan, S.S. Shusta, D.L. Valentine, Methanogens rapidly transition from methane production to
630 iron reduction, *Geobiology* 14(2) (2016) 190-203. <https://doi.org/10.1111/gbi.12172>.

631 [38] T. Borch, R. Kretzschmar, A. Kappler, P.V. Cappellen, M. Ginder-Vogel, A. Voegelin, K. Campbell,
632 Biogeochemical redox processes and their impact on contaminant dynamics, *Environ. Sci. Technol.* 44(1)
633 (2010) 15-23. <https://doi.org/10.1021/es9026248>.

634 [39] G. McNicol, E. Fluet-Chouinard, Z. Ouyang, S. Knox, Z. Zhang, T. Aalto, S. Bansal, K.-Y. Chang, M.
635 Chen, K. Delwiche, S. Feron, M. Goeckede, J. Liu, A. Malhotra, J.R. Melton, W. Riley, R. Vargas, K. Yuan,
636 Q. Ying, Q. Zhu, P. Alekseychik, M. Aurela, D.P. Billesbach, D.I. Campbell, J. Chen, H. Chu, A.R. Desai, E.
637 Euskirchen, J. Goodrich, T. Griffis, M. Helbig, T. Hirano, H. Iwata, G. Jurasinski, J. King, F. Koebsch, R.
638 Kolka, K. Krauss, A. Lohila, I. Mammarella, M. Nilson, A. Noormets, W. Oechel, M. Peichl, T. Sachs, A.
639 Sakabe, C. Schulze, O. Sonnentag, R.C. Sullivan, E.-S. Tuittila, M. Ueyama, T. Vesala, E. Ward, C. Wille,
640 G.X. Wong, D. Zona, L. Windham-Myers, B. Poulter, R.B. Jackson, Upscaling wetland methane emissions
641 from the fluxnet-ch4 eddy covariance network (upch4 v1.0): model development, network assessment,
642 and budget comparison, *AGU Advances* 4(5) (2023) e2023AV000956.
<https://doi.org/10.1029/2023AV000956>.

644 [40] S.H. Knox, S. Bansal, G. McNicol, K. Schafer, C. Sturtevant, M. Ueyama, A.C. Valach, D. Baldocchi, K.
645 Delwiche, A.R. Desai, E. Euskirchen, J. Liu, A. Lohila, A. Malhotra, L. Melling, W. Riley, B.R.K. Runkle, J.
646 Turner, R. Vargas, Q. Zhu, T. Alto, E. Fluet-Chouinard, M. Goeckede, J.R. Melton, O. Sonnentag, T. Vesala,
647 E. Ward, Z. Zhang, S. Feron, Z. Ouyang, P. Alekseychik, M. Aurela, G. Bohrer, D.I. Campbell, J. Chen, H.
648 Chu, H.J. Dalmagro, J.P. Goodrich, P. Gottschalk, T. Hirano, H. Iwata, G. Jurasinski, M. Kang, F. Koebsch, I.
649 Mammarella, M.B. Nilsson, K. Ono, M. Peichl, O. Peltola, Y. Ryu, T. Sachs, A. Sakabe, J.P. Sparks, E.-S.
650 Tuittila, G.L. Vourlitis, G.X. Wong, L. Windham-Myers, B. Poulter, R.B. Jackson, Identifying dominant
651 environmental predictors of freshwater wetland methane fluxes across diurnal to seasonal time scales,
652 *Global Change Biology* 27(15) (2021) 3582-3604. <https://doi.org/10.1111/gcb.15661>.

653 [41] C. Wang, D.Y.F. Lai, C. Tong, W. Wang, J. Huang, C. Zeng, Variations in Temperature sensitivity (Q_{10})
654 of CH_4 emission from a subtropical estuarine marsh in southeast China, PLoS One 10(5) (2015)
655 e0125227. <https://doi.org/10.1371/journal.pone.0125227>.

656 [42] C.W. Lindau, P. Bollich, Methane emissions from Louisiana first and ratoon crop rice, Soil Sci. 156(1)
657 (1993) 42-48. <https://doi.org/10.1097/00010694-199307000-00006>.

658 [43] C. Lindau, P. Bollich, R. DeLaune, Effect of rice variety on methane emission from Louisiana rice,
659 Agriculture, Ecosystems & Environment 54(1-2) (1995) 109-114. [https://doi.org/10.1016/0167-8809\(95\)00587-I](https://doi.org/10.1016/0167-8809(95)00587-I).

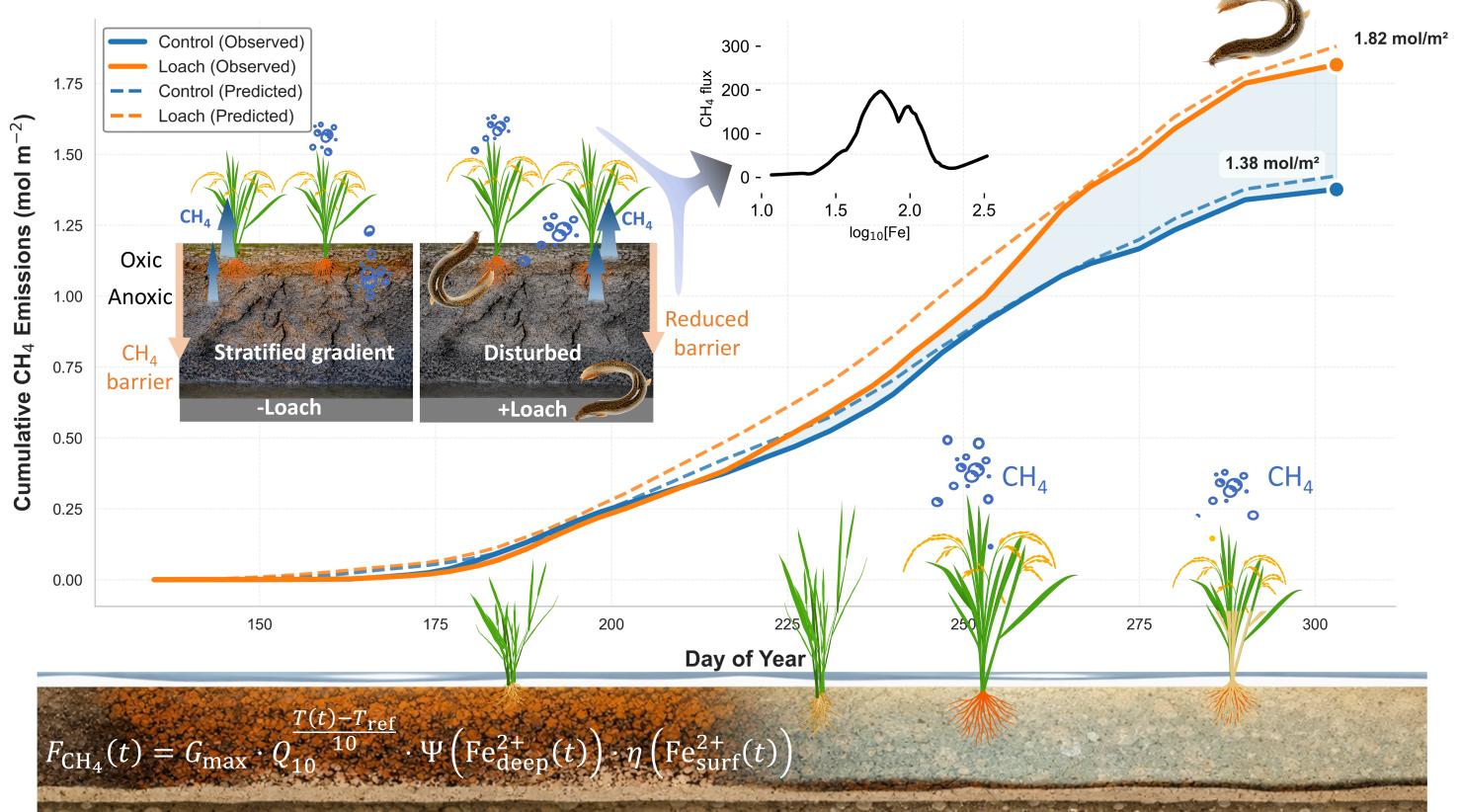
660 [44] M. Leavitt, B. Moreno-García, C.W. Reavis, M.L. Reba, B.R.K. Runkle, The effect of water
661 management and ratoon rice cropping on methane emissions and yield in Arkansas, Agriculture,
662 Ecosystems & Environment 356 (2023) 108652. <https://doi.org/10.1016/j.agee.2023.108652>.

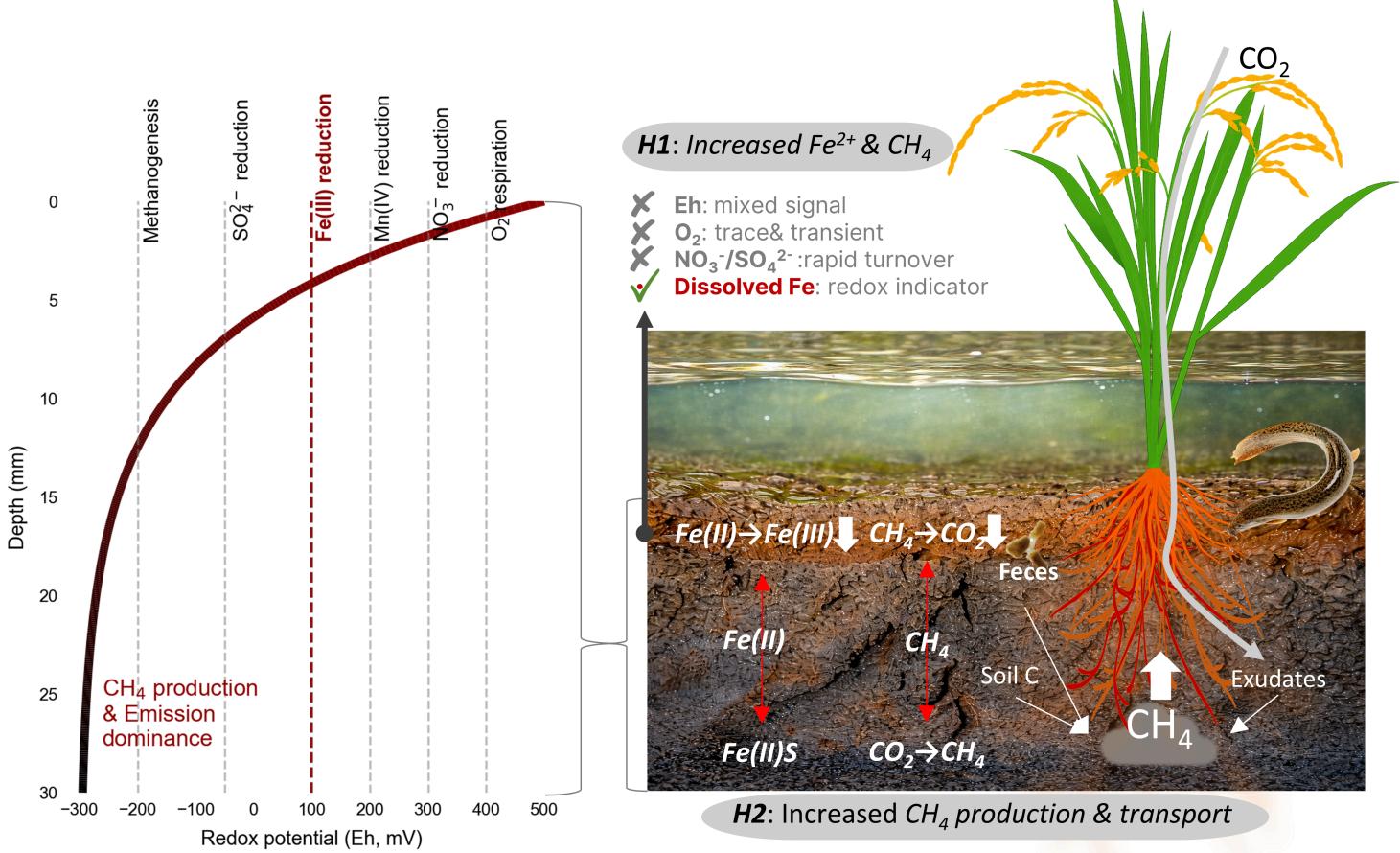
663 [45] X. Ren, K. Cui, Z. Deng, K. Han, Y. Peng, J. Zhou, Z. Zhai, J. Huang, S. Peng, Ratoon rice cropping
664 mitigates the greenhouse effect by reducing CH_4 emissions through reduction of biomass during the
665 ratoon season, Plants (Basel) 12(19) (2023). <https://doi.org/10.3390/plants12193354>.

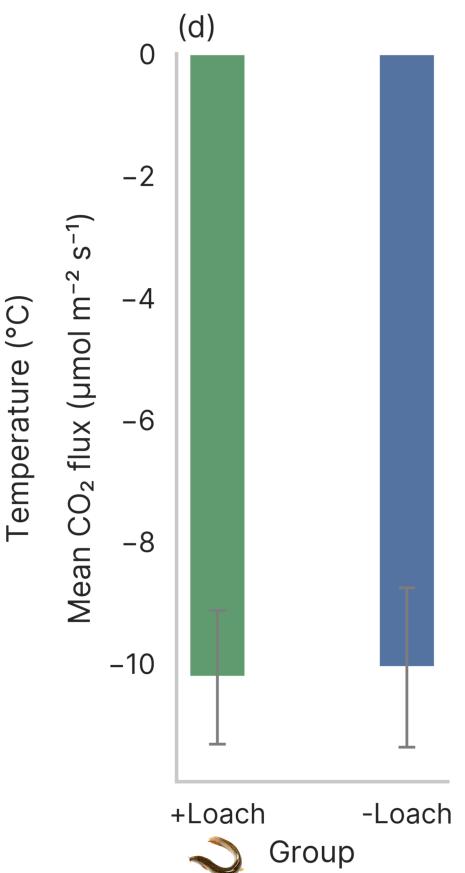
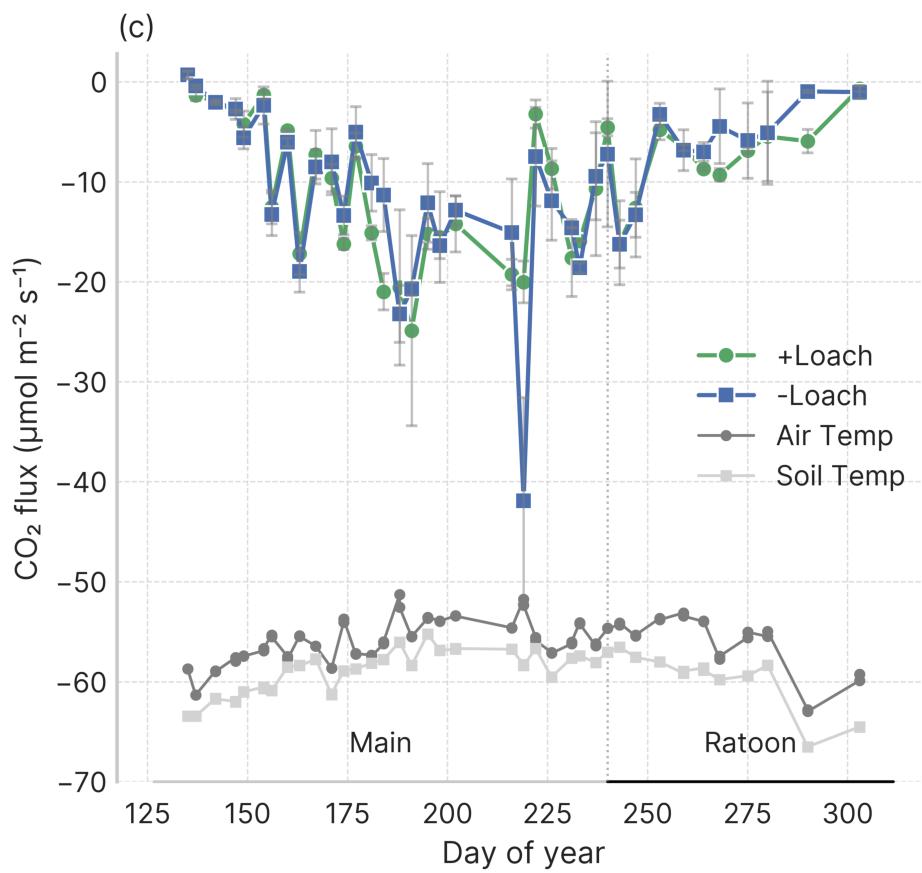
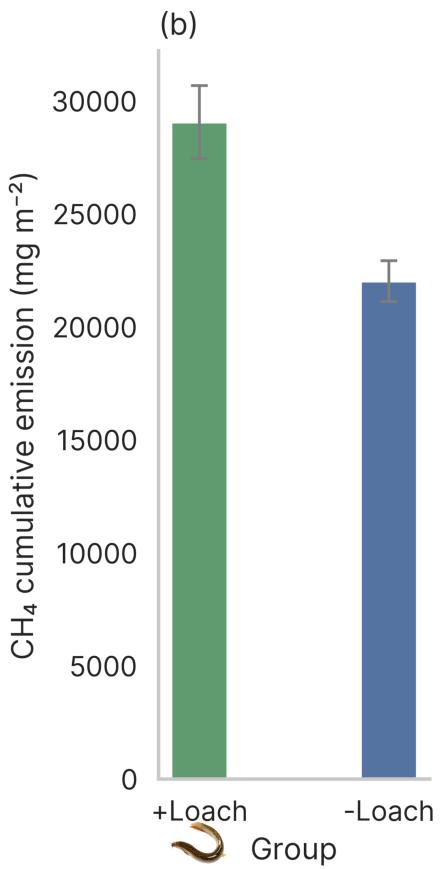
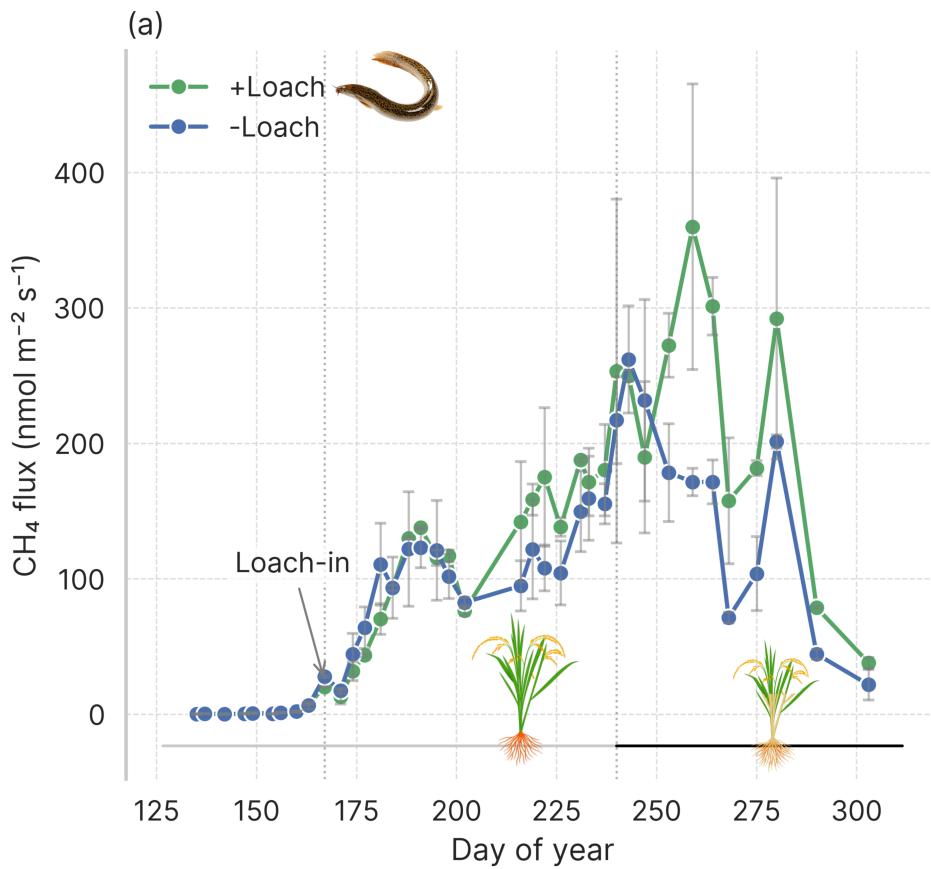
666 [46] Q. Ding, Y. Li, R. Cao, J. Chen, X. Yao, W. Zhang, Spatial optimization of rice systems with ratoon rice
667 increases production and reduces methane emissions, European Journal of Agronomy 170 (2025)
668 127720. <https://doi.org/https://doi.org/10.1016/j.eja.2025.127720>.

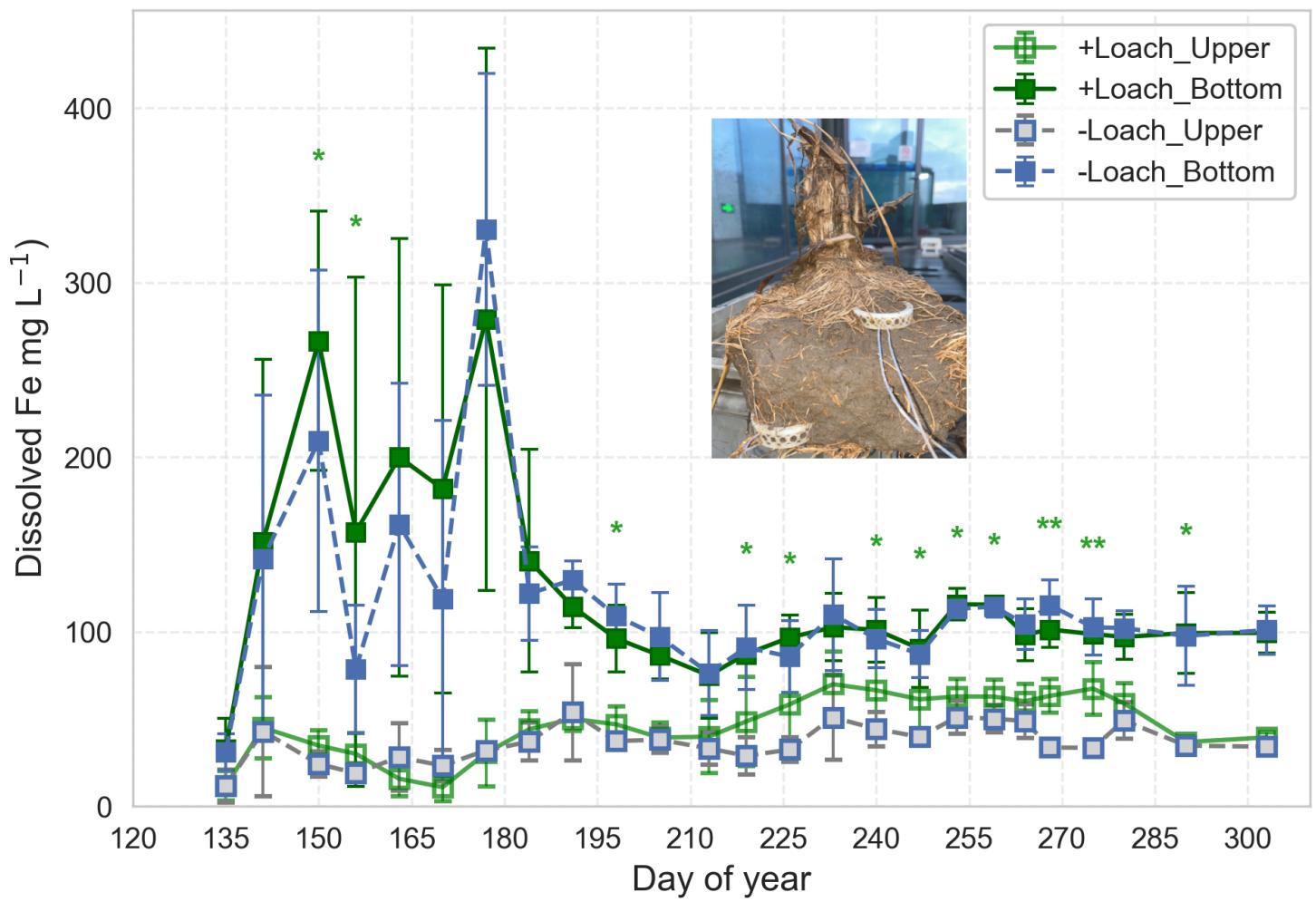
669 [47] B.A. Linquist, M. Marcos, M.A. Adviento-Borbe, M. Anders, D. Harrell, S. Linscombe, M.L. Reba,
670 B.R.K. Runkle, L. Tarpley, A. Thomson, Greenhouse gas emissions and management practices that affect
671 emissions in US rice systems, J. Environ. Qual. 47(3) (2018) 395-409.
672 <https://doi.org/10.2134/jeq2017.11.0445>.

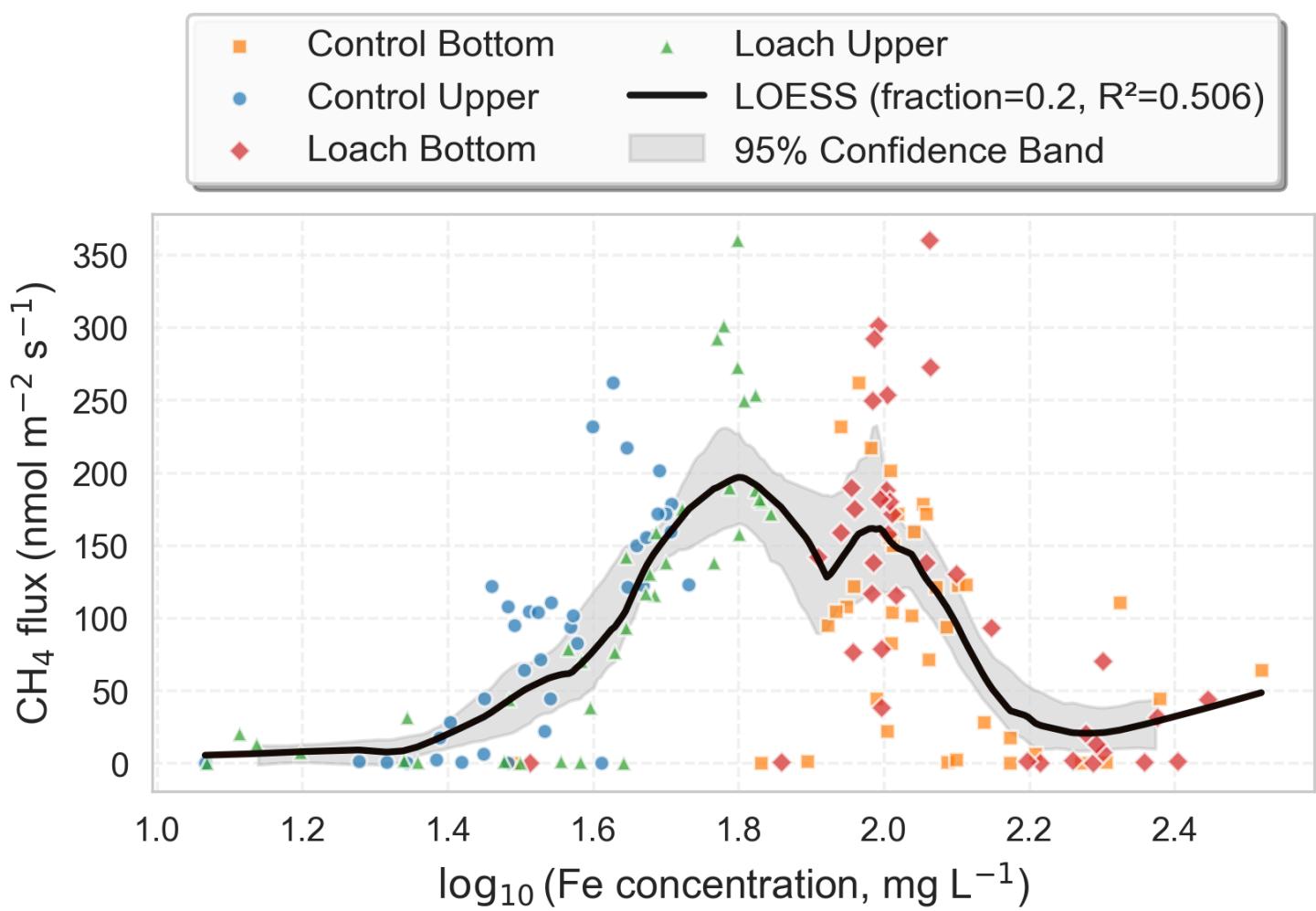
673 [48] E. Broman, M. Olsson, A. Maciute, D. Donald, C. Humborg, A. Norkko, T. Jilbert, S. Bonaglia, F.J.A.
674 Nascimento, Biotic interactions between benthic infauna and aerobic methanotrophs mediate methane
675 fluxes from coastal sediments, ISME J. 18(1) (2024). <https://doi.org/10.1093/ismej/wrae013>.

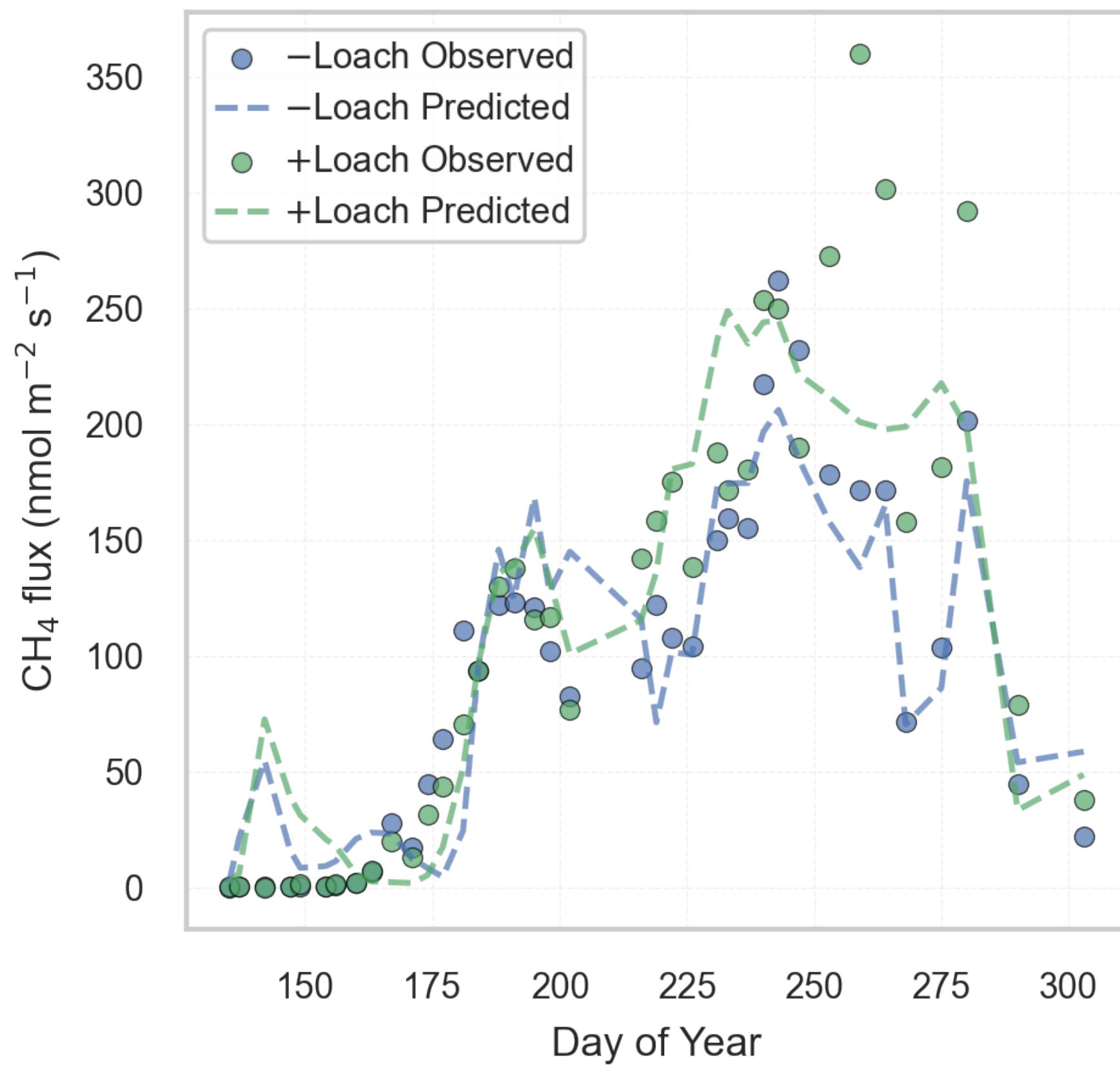

676 [49] L. Nie, Y. Li, Y. Hou, L. Di, M. Xi, Z. Yu, Dynamics of organic carbon under bioturbation by mud crabs
677 (*Macrophthalmus japonicus*) and clamworms (*Perinereis aibuhitensis*) in an estuary ecosystem, Journal
678 of Experimental Marine Biology and Ecology 534 (2021) 151474.
679 <https://doi.org/10.1016/j.jembe.2020.151474>.

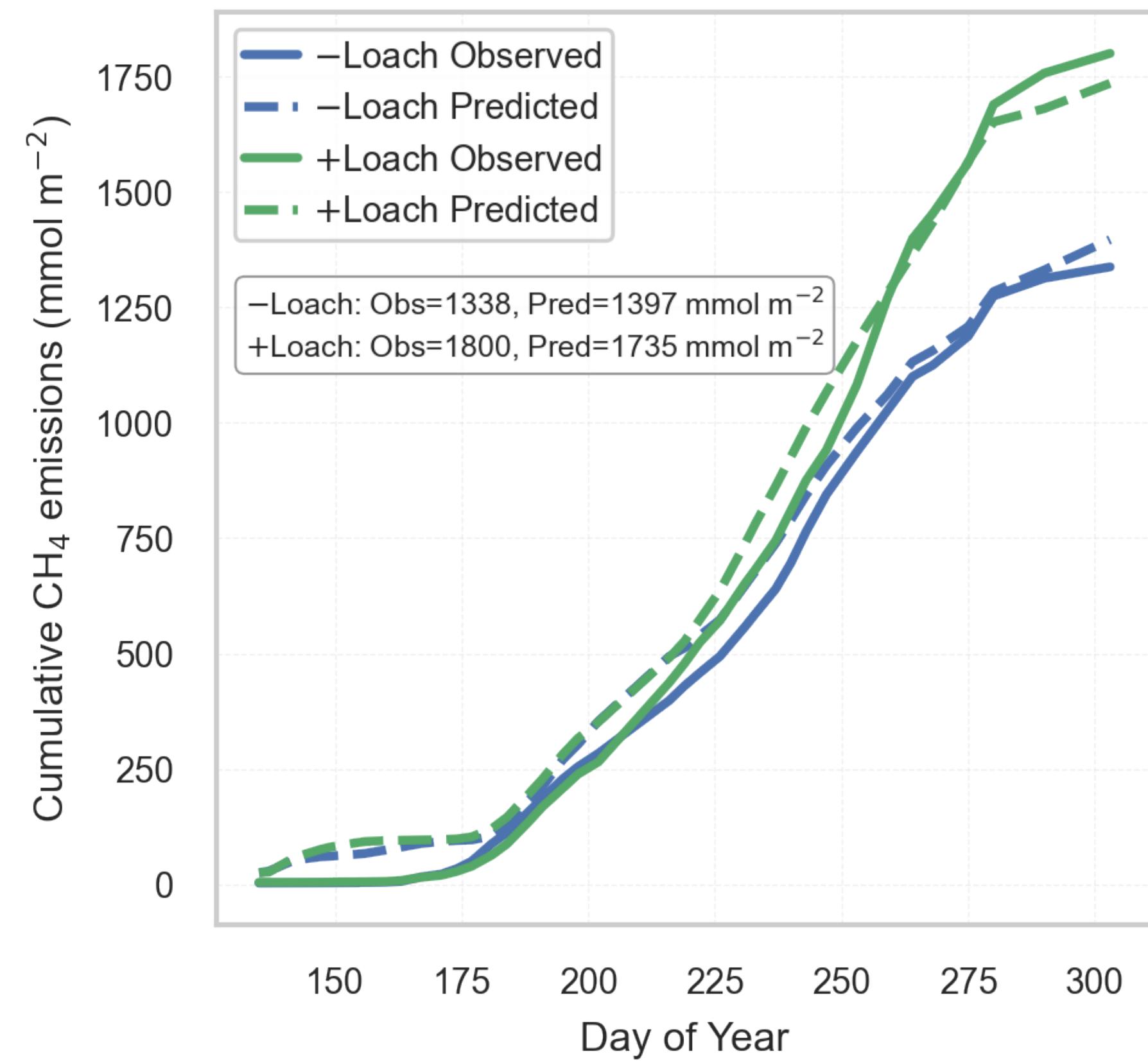

680 [50] I. Bussmann, Methane Release through Resuspension of Littoral Sediment, Biogeochemistry 74(3)
681 (2005) 283-302. <https://doi.org/10.1007/s10533-004-2223-2>.

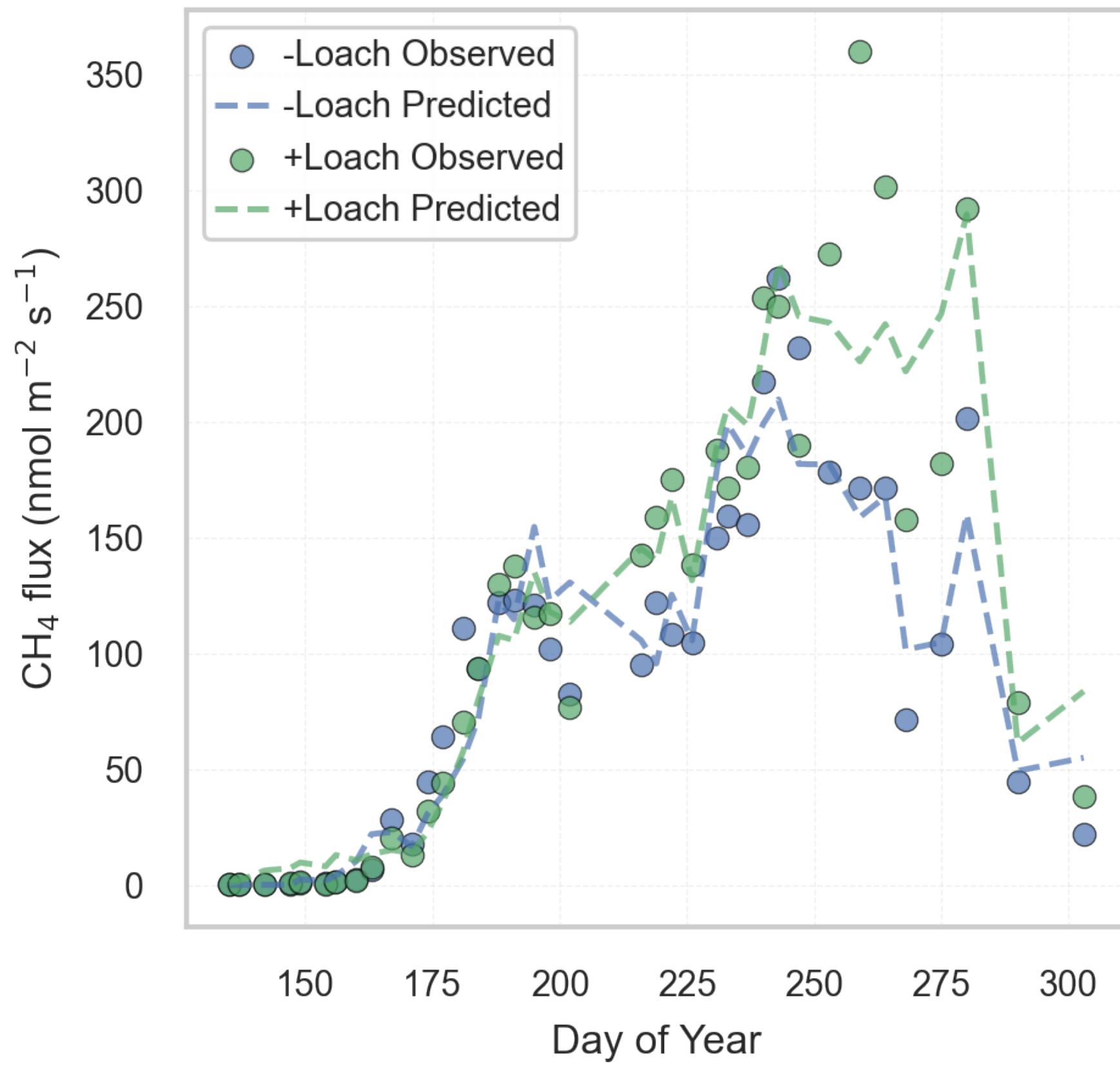




682

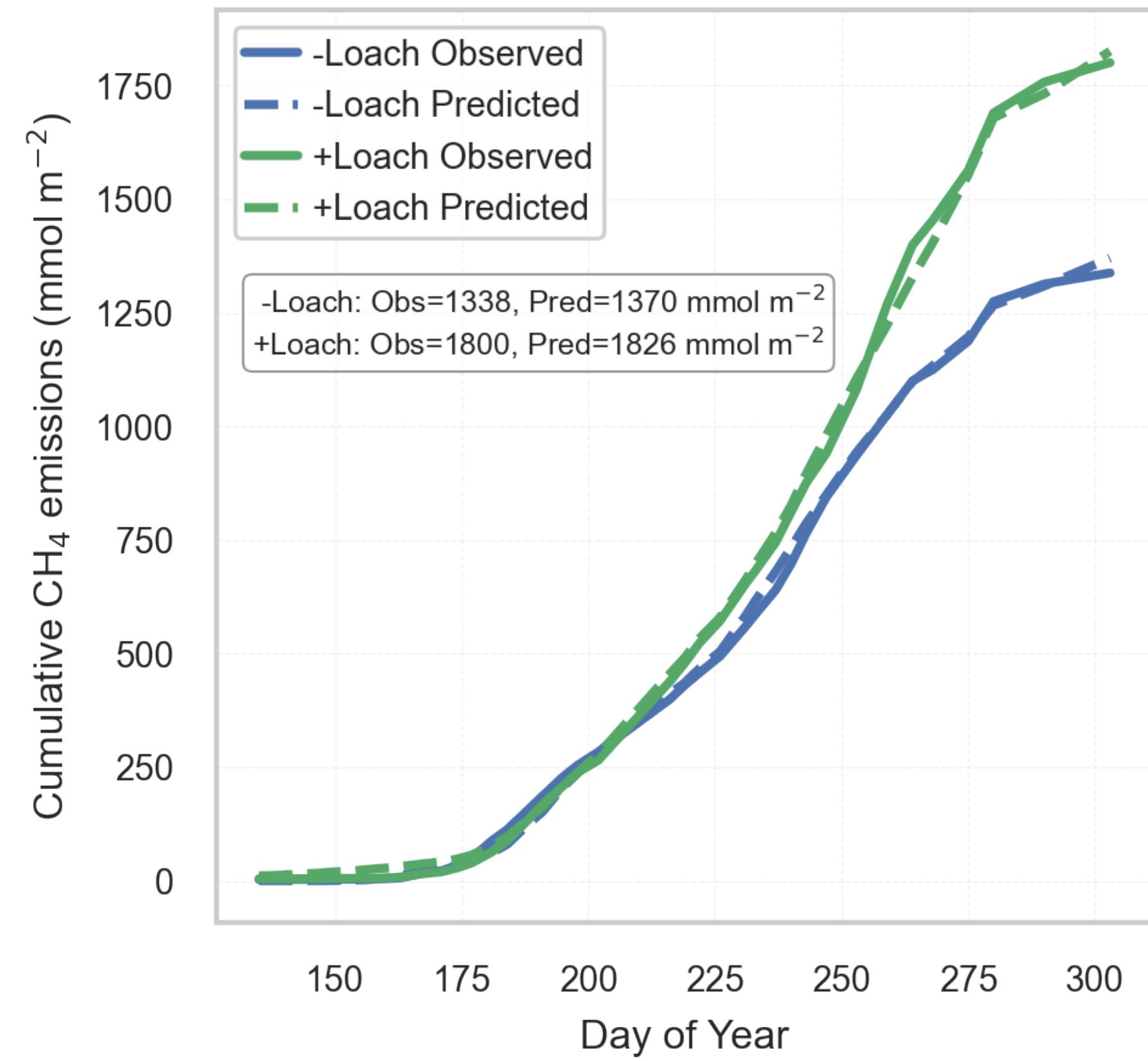

683

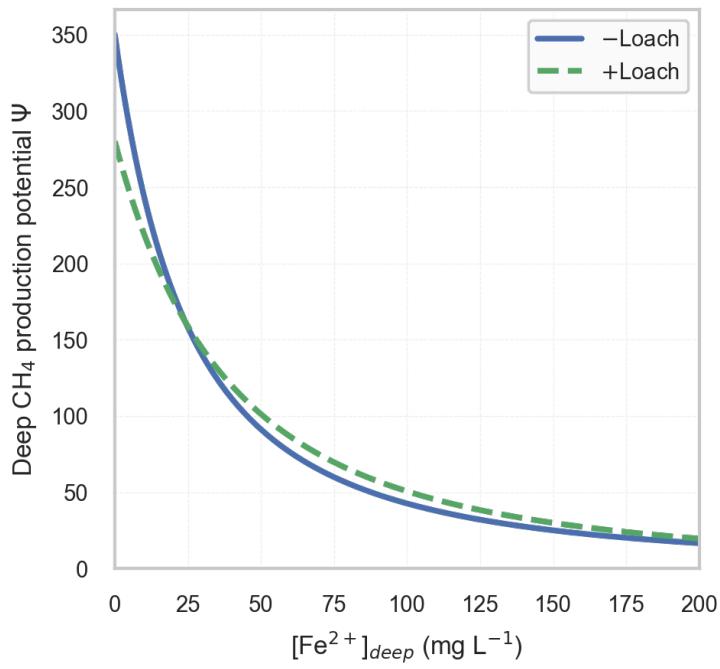

Bioturbation on CH₄ Emissions: Fe-Gmax Model

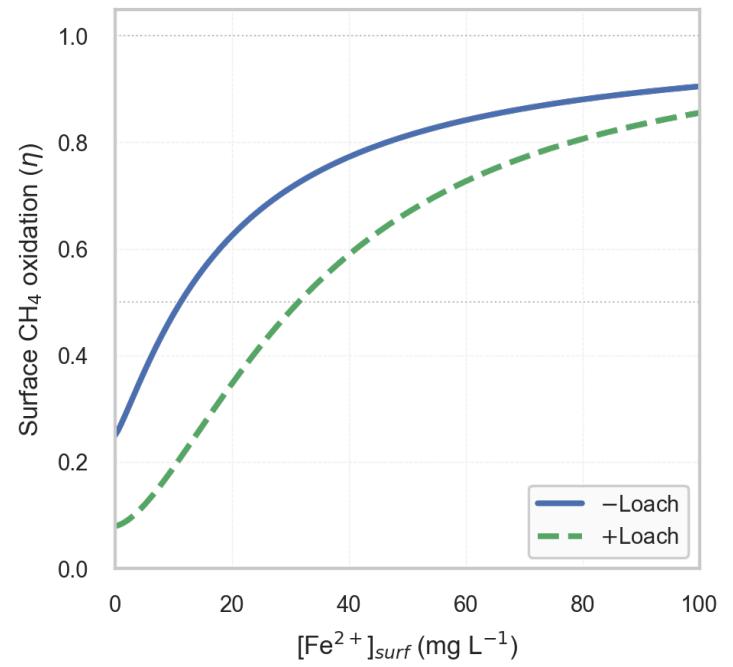




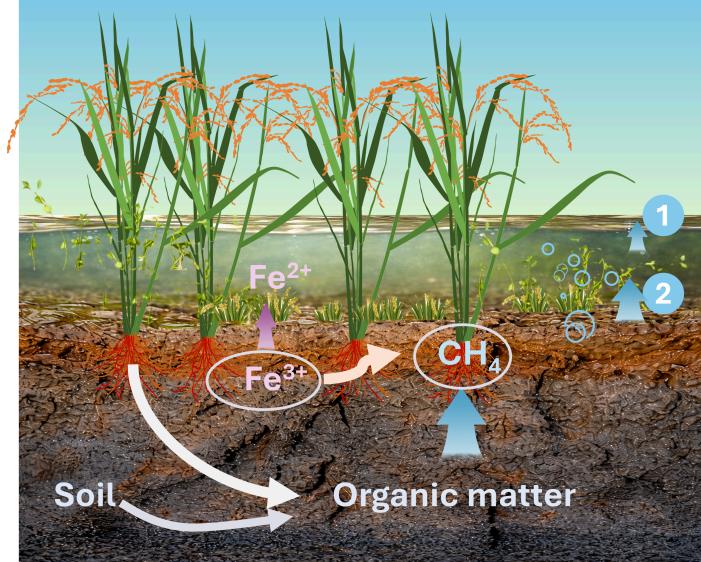

(a) Fe-DOY model


(b) Fe-DOY model


(c) Fe-DOY-G_{max} model

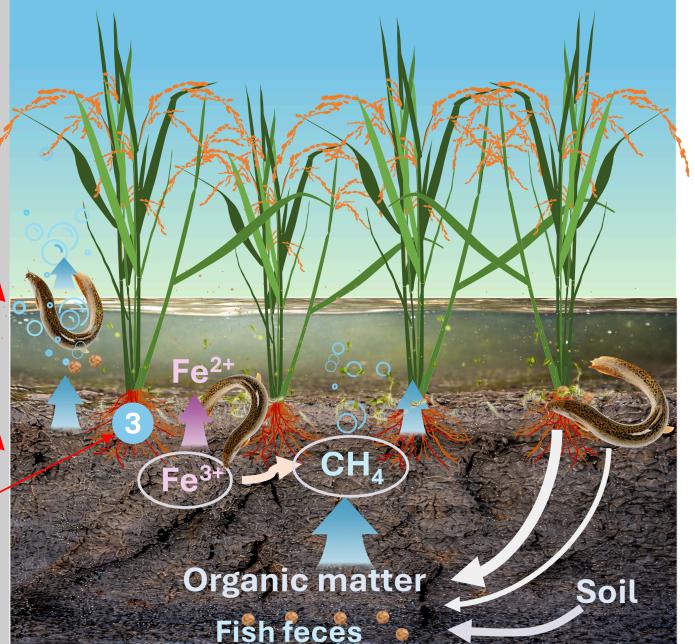

(d) Fe-DOY-G_{max} model

(a) Deep Fe^{2+} response


(b) Surface Fe^{2+} response

-Loach

CH_4


1. Water-air interface (WAI): floating iron biofilm
2. Soil-water interface (SWI): iron belt
3. Rhizosphere: root iron plaque

+Loach

+31.9% CH_4

1. Weakened SWI-WAI CH_4 barrier
2. Increased SWI $\text{Fe}(\text{III})$ reduction
3. Enhanced CH_4 production

