

1 **Enhancing routine noninvasive prenatal testing with cell-free DNA end characteristics**

2 Mengqi Yang^{1,2,#}, Linfeng Yang^{3,#}, Zhe Lin^{3,#}, Shuo Wang^{4,#}, Yunyun An², Yuqi Pan^{2,5,6}, Xiaoyi Liu^{2,5,6},
3 Zhenyu Zhang², Jiguang Wang¹, Xin Jin^{3,7,*}, Kun Sun^{2,*}

4

5 ¹Division of Life Science, Department of Chemical and Biological Engineering, and State Key
6 Laboratory of Nervous System Disorders, Hong Kong University of Science and Technology, Hong
7 Kong SAR 999077, China

8 ²Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen 518132, China

9 ³BGI Genomics, Shenzhen 518083, China

10 ⁴Tianjin Women and Children's Health Center, Tianjin 300070, China

11 ⁵Shenzhen Medical Academy of Research and Translation, Shenzhen 518107, China

12 ⁶School of Life Sciences, Westlake University, Hangzhou 310030, China

13 ⁷School of Medicine, South China University of Technology, Guangzhou 510006, Guangdong, China

14 [#]These authors contribute equally to this work

15 ^{*}Corresponding authors: jinxin@genomics.cn (X.J.), sunkun@szbl.ac.cn (K.S.).

16 **Keywords:** NIPT; cfDNA fragmentomics; Down Syndrome; nucleosome footprint

17

18 **Abstract**

19 **Objective:** Noninvasive prenatal testing (NIPT) based on cell-free DNA (cfDNA) analysis is widely
20 used for detecting fetal aneuploidies globally, such as Trisomy 21 (T21) testing. Despite its high
21 sensitivity, current NIPT methods have a non-negligible rate of false-negative results, primarily due to
22 low fractions of fetal-derived cfDNA in maternal plasma, posing challenges for affected families and
23 public health.

24 **Methods and Analysis:** We propose a computational approach to enrich fetal-derived cfDNA by
25 leveraging end characteristics that does not require any modifications to existing experimental
26 protocols. We have evaluated this method using three independent datasets, including over 2,200
27 samples from diverse ethnic backgrounds and experimental platforms.

28 **Results:** Here we show that through end selection, we significantly increase Z-scores in all T21
29 samples from 3 independent datasets, which shows potential in reducing false-negative results while
30 not introducing any false positives in the euploid samples. Our method is compatible with current
31 routine NIPT workflows that generate low-depth, short, and single-end whole genome sequencing data,
32 therefore allowing for seamless integration with minimal additional cost.

33 **Conclusion:** Our method offers translational potential for enhancing routine NIPT by reducing the
34 false negatives, addressing a critical limitation in current clinical practice.

35

36

Introduction

37 In human physiology, dying cells degrade their chromatin and release fragmented DNA into the
38 bloodstream, resulting in cell-free DNA (cfDNA) in plasma. The majority of cfDNA originate from
39 the hematopoietic system [1]; however, other tissues can also significantly contribute to the cfDNA
40 pool under specific conditions. For instance, in pregnant women and cancer patients, the placentae and
41 tumors, respectively, release fetal- and tumor-derived cfDNA into circulation [2, 3]. These phenomena
42 have enabled the development of noninvasive prenatal testing (NIPT) and liquid biopsy approaches
43 for cancer diagnostics. NIPT, particularly for detecting Trisomy 21 (T21, also known as Down
44 Syndrome), has become widely adopted, with over 10 million tests performed annually worldwide [4].
45 The fraction of fetal cfDNA in maternal plasma is a critical parameter influencing the performance of
46 NIPT, especially the sensitivity [5, 6]. Several factors, including maternal obesity, medical conditions,
47 and therapeutic interventions during pregnancy, are associated with reduced fetal DNA fractions,
48 potentially leading to unreportable (or “no calls”) or false-negative results (ranged between 0.02-
49 0.26%) [6, 7]. In real practice, false negative results often lead to missed diagnoses in the absence of
50 following confirmatory invasive testing, and therefore remain a critical issue in NIPT and to the society.
51 To address this issue, various experimental and computational strategies aiming to enrich apparent
52 fetal-derived cfDNA fractions have been proposed over the past decade, most of which leverage the
53 relatively shorter fragment length of fetal-derived cfDNA molecules [8-12]. For example, Liang and
54 colleagues utilized experimental size-selection during library preparation to enrich fetal-derived DNA,
55 and validation studies demonstrated the potential of this approach to reduce “no calls” [13, 14].
56 Similarly, Budis et al., Kwon et al., and Hu et al. developed and validated that *in silico* size-selection
57 is also helpful [10, 15, 16]. In a previous study, we had developed an alternative algorithm that
58 compares the fraction of reads mapped to chr21 in short and long cfDNA fragments (named
59 “COFFEE”) [11], which showed elevated Z-scores compared to the conventional approach [10].
60 However, these existing methods require additional either experimental procedures, dedicated
61 equipment, or paired-end sequencing, limiting their applicability in routine commercialized NIPT
62 workflows that commonly employ shallow-depth, short, single-end whole-genome sequencing to
63 minimize complexity, turn-around time, and cost [17-21]. Thus, there remains a need for approaches
64 that could enrich fetal cfDNA in routine NIPT protocols without incurring substantial additional
65 expenses.

66 Previous studies have demonstrated that fetal-derived cfDNA molecules in maternal plasma
67 exhibit distinct cleavage patterns compared to maternal-derived ones [8, 22-25]. Specifically, cfDNA
68 of maternal origin tend to be cleaved at linker regions between nucleosomes, whereas fetal-derived
69 cfDNA more frequently exhibit fragmentation within nucleosome cores [8, 22, 24]. Based on this
70 principle, Straver et al. developed an algorithm to predict fetal DNA fraction in maternal plasma using
71 the ratio of cfDNA ends located within nucleosomes to those in linkers [22]. Interestingly, similar
72 cfDNA end patterns have also been observed in tumor-derived cfDNA from cancer patients.
73 Enrichment strategies based on cfDNA end positioning, such as selectively retaining cfDNA molecules
74 with ends located within hematopoietic nucleosomes, have been shown to improve the detection of
75 tumor-derived cfDNA and facilitate cancer diagnostics [8, 26, 27]. These works suggest the feasibility
76 of incorporating cfDNA end signatures towards improving the performance of routine NIPT assays. In
77 this study, we develop and validate a computational approach that selects cfDNA with ends located
78 within hematopoietic nucleosomes. Our results show that this approach could improve the Z-scores
79 for trisomy testing as well as reduce the false negative calls in conventional Z-scores, therefore holding
80 high translational potential in improving routine NIPT for better serving the society.

81

82 **Materials and Methods**

83 *Ethics approval and sample processing*

84 This work has been approved by the Ethics Committee of Shenzhen Bay Laboratory, the Ethics
85 Committee of BGI-research, and the Ethics Committee of Tianjin Women and Children's Health Center.
86 A total of 2,196 patients with elevated risk for T21 (assessed using ultrasound or known risk factors
87 [28]) were recruited as testing cases, and an additional panel of 20 pregnancies with known euploid
88 fetuses were recruited as the control panel. Both subjects were recruited in Tianjin Women and
89 Children's Health Center, Tianjin, China, during 2024 to 2025 with written-informed consents. For
90 each patient, 6 mL peripheral blood was collected using EDTA-containing tubes and processed within
91 4 hours. Briefly, blood samples were centrifuged at 1,600 g, 4 °C for 15 min, and then the plasma
92 portion was harvested and re-recentrifuged at 16,000 g, 4 °C for 15 min to remove blood cells. 300 µL
93 plasma was used to extract cfDNA with MGIEasy Circulating DNA Isolation Kit (MGI, #1000017017)
94 and DNA library was constructed using MGI Cell-free DNA Library Prep kit (MGI, #94000018500)
95 following the manufacturer's instructions. All cfDNA libraries were sequenced on an DNBSEQ-T7
96 sequencer (MGI) in single-end 36 bp mode in multiple runs. After routine NIPT, the euploidy statuses
97 of the fetuses were confirmed using either invasive approaches or after birth.

98 *Sequencing data analysis*

99 CfDNA whole genome sequencing data was processed as reported previously [8, 29]. Briefly, raw
100 cfDNA sequencing data was firstly preprocessed using Ktrim software [30] to remove adapters and
101 low-quality bases. The preprocessed reads were subsequently aligned to the NCBI GRCh38 human
102 reference genome using Bowtie2 software [31]. PCR duplicates, i.e., sequencing reads with identical
103 start and end positions, were identified and filtered out using in-house scripts. An implementation of
104 the whole procedure, including read preprocessing, alignment, and filtering, is freely available from
105 our previous study [29]. Reads with mapping quality scores lower than 30 were discarded from
106 downstream analyses. Moreover, to get rid of dosage biases related to fetal sex, chromosomes X, Y,
107 and mitochondria DNA were excluded from the analysis. Of note, we calculate read counts for
108 chromosomes suffered from common aneuploidies (i.e., 13, 18, and 21) separately, which allows one
109 to utilize these numbers for T13, T18, and T21 testing, as well provides the option to include or exclude
110 chromosomes 13 and 18 into T21 testing (Suppl. Fig. S2). For T21 testing, Z-scores with or without
111 taken chromosomes 13 and 18 into analysis were both reported, and the Z-scores without these two
112 chromosomes were used as the primary results. For T18 testing, Z-scores without taken chromosomes
113 13 and 21 into the analysis were reported.

114 *Hematopoietic nucleosome track and end selection*

115 Fig. 1 illustrated the principle of cfDNA ending patterns in relative to nucleosome positioning. The
116 maternal-derived cfDNA molecules are primarily released from the hematopoietic system, and
117 therefore the ends of these cfDNA molecules are expected to be concordant with the nucleosome
118 positions of the hematopoietic system, i.e., the majority of the cfDNA ends should locate in linker
119 DNA. In contrast, the fetal-derived cfDNA molecules are shorter and primarily originated from
120 placental tissues, which possess distinct nucleosome positioning patterns with the hematopoietic
121 system, and thus their ends should exhibit lower consistencies to the nucleosome positioning of
122 hematopoietic system. Hence, selecting the cfDNA molecules whose ends are located within
123 hematopoietic nucleosomes would enrich fetal-derived cfDNA.

124 In this study, the nucleosome track for GM12878 cell line (lymphoblastoid lineage; RRID:
125 CVCL_7526) was utilized to define the hematopoietic nucleosomes, which had been proven applicable
126 for cfDNA fragmentomic analyses in previous studies [8, 32, 33]. The nucleosome track for GM12878
127 cell line was obtained from NucMap database [34], with accession number hsNuc0390101. This track
128 was constructed from MNase-seq experiments and nucleosome center positions were called using
129 DANPOS algorithm [35]. We defined nucleosome regions as ± 73 bp around the annotated center loci
130 of the nucleosome centers as in previous studies [8, 22]. To perform end selection, for a given sample,
131 we compared all the cfDNA 5'-end with the nucleosome track and only reported those reads with 5'-
132 end falling within nucleosome regions. Note that this end selection is performed for both testing
133 samples and the control panel.

134 *Noninvasive prenatal testing for fetal aneuploidies*

135 Z-score-based T21 tests were conducted as reported previously [36]. For each cfDNA sample from
136 maternal plasma, the proportion of reads mapped to chromosome 21 (referred to as "%chr21") was
137 first calculated, either using the raw alignment results to calculate standard Z-score or by focusing on
138 the reads whose ends were located within the hematopoietic nucleosomes to calculate Z-scores after
139 end selection. Then, for the control samples, the mean and standard deviation (s.d.) of their %chr21
140 values were calculated. Subsequently, the Z-score for each test sample was measured by subtracting
141 the mean %chr21 of the control panel from that of the test sample and then dividing the result by the
142 S.D. of the control group's %chr21 values, as illustrated in the following formula:

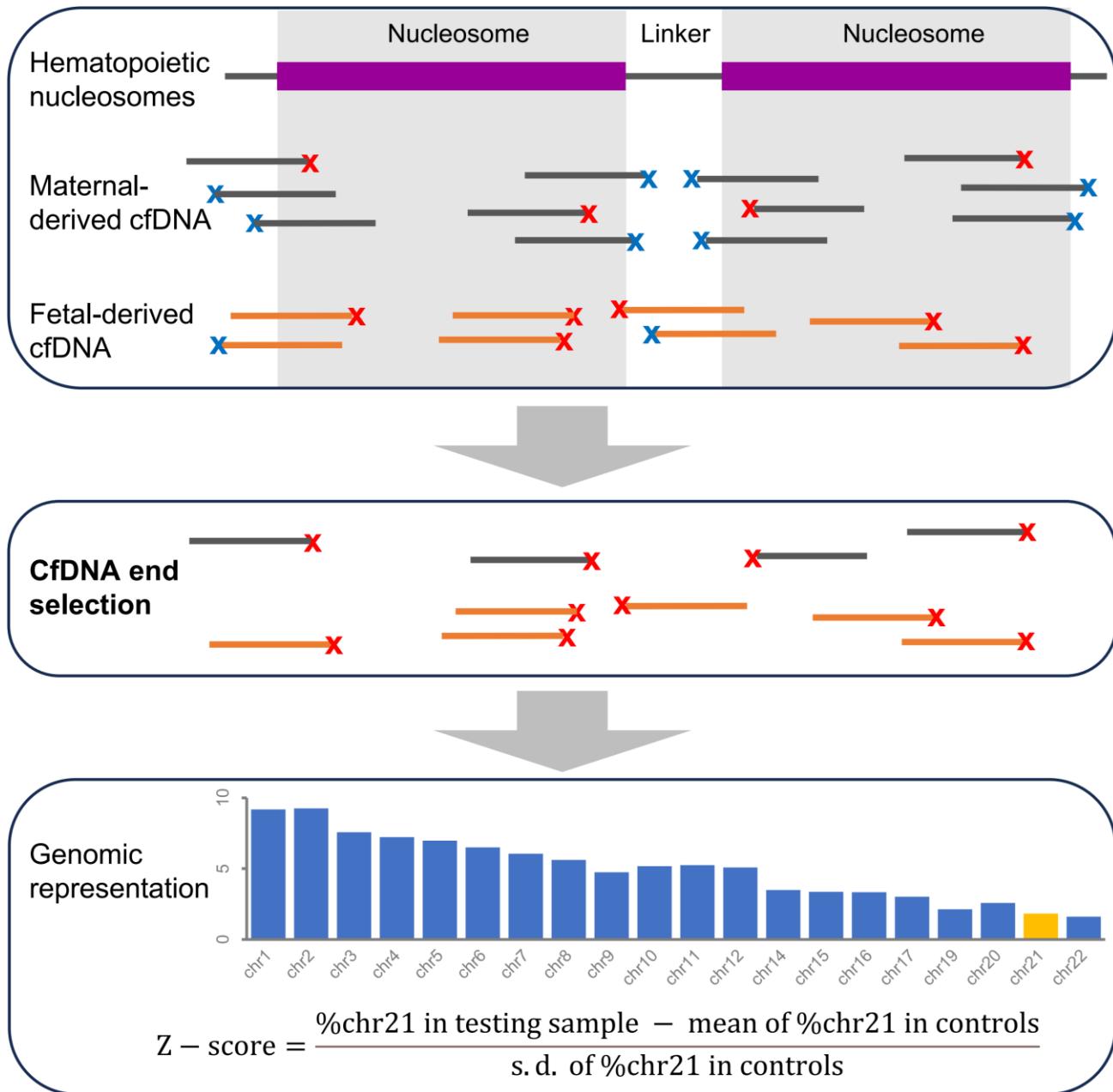
$$143 Z\text{-}score = \frac{\%chr21 \text{ in testing sample} - \text{mean of } \%chr21 \text{ in controls}}{s.d. \text{ of } \%chr21 \text{ in controls}}$$

144 Similarly, for T18 testing, we counted the reads mapped to chr18 in both the testing cases and
145 controls samples; we then calculated the mean and s.d. of the proportion of reads mapped to chr18
146 as %chr18 values, and used the following formula to calculate the Z-scores for testing cases:

$$147 Z\text{-}score = \frac{\%chr18 \text{ in testing sample} - \text{mean of } \%chr18 \text{ in controls}}{s.d. \text{ of } \%chr18 \text{ in controls}}$$

148 A cutoff of 3 was used: samples with Z-scores > 3 were considered as T21 or T18, samples with Z-
149 scores < -3 were considered as positive for monosomy 21 or 18, and the rest were considered as
150 euploidies. For all cohorts investigated in this study, cfDNA end selection procedure was also applied
151 to the control panels, and we calculated the mean and s.d. of fraction of %chr21 using on the reads
152 passing end selection. A similar approach was applied for T18 testing, where chr18 was selected to
153 analyze its read counts in the sample-of-interest compared to the control panel to calculate Z-scores.

154 *Statistics and reproducibility*


155 No statistical method was used to predetermine the sample size. All samples were treated as biological
156 replicates. Paired t-tests were used to compare conventional Z-scores and those with end selection.
157 Mann-Whitney U test was used to compare the changes in Z-scores with end selection between T21
158 cases and euploidies. For Karlsson dataset, one sample with accession SRR1705799 was omitted due
159 to extra-low read number.

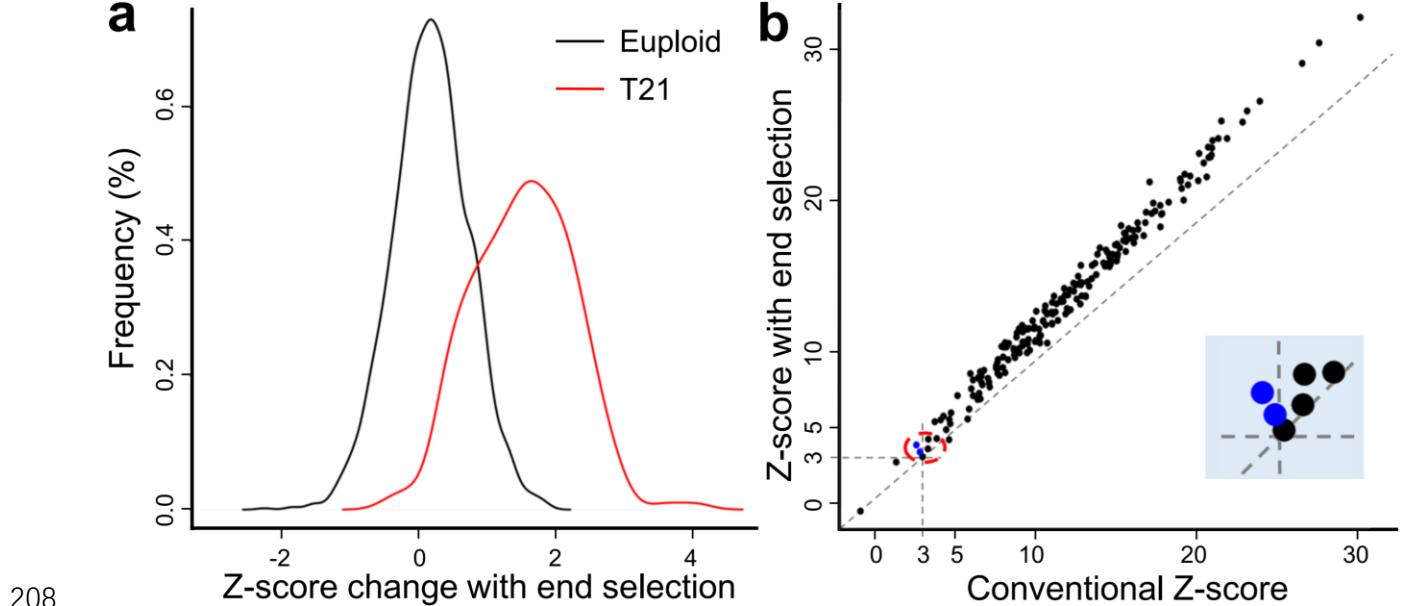
161 **Results**

162 *Schematic workflow of the end selection algorithm for NIPT*

163 In routine T21 screening, the Z-score-based approach is typically used [10, 11]. This involves
164 calculating the proportion of sequencing reads mapped to chromosome 21 in a test sample and
165 comparing to a reference panel of known euploid pregnancies. A Z-score exceeding 3 (i.e., three
166 standard deviations above the reference mean) is indicative of T21 case [10, 11]. Fig. 1 illustrates the
167 schematic workflow of our method, which incorporates cfDNA end selection. The key modification
168 involves evaluating the 5'-end position of each sequencing read in relation to hematopoietic
169 nucleosome coordinates: reads with 5'-ends located in linker regions are discarded, while those with
170 5'-ends within nucleosomes are retained. Since maternal cfDNA molecules are primarily originated
171 from the hematopoietic system and longer in size, they tend to be cleaved in linker regions; in contrast,
172 fetal cfDNA derived from the placental tissues do not follow hematopoietic nucleosome positioning
173 and is more frequently cut within nucleosomes [8, 24]. Hence, this end selection process would
174 preferentially enrich fetal-derived cfDNA fragments and result in elevated apparent fetal DNA
175 fractions in the filtered data, potentially improving NIPT sensitivity.

176

177


178 **Fig. 1. Cell-free DNA (cfDNA) end selection for enhanced noninvasive prenatal testing.** Grey and
179 orange lines represent cfDNA molecules originating from the mother (mostly from the hematopoietic
180 system) and fetus, respectively; the “X” marks represent cfDNA ends located in linker DNA (blue) or
181 within nucleosomes (red). “%chr21” means the fraction of reads mapped to chr21.

182

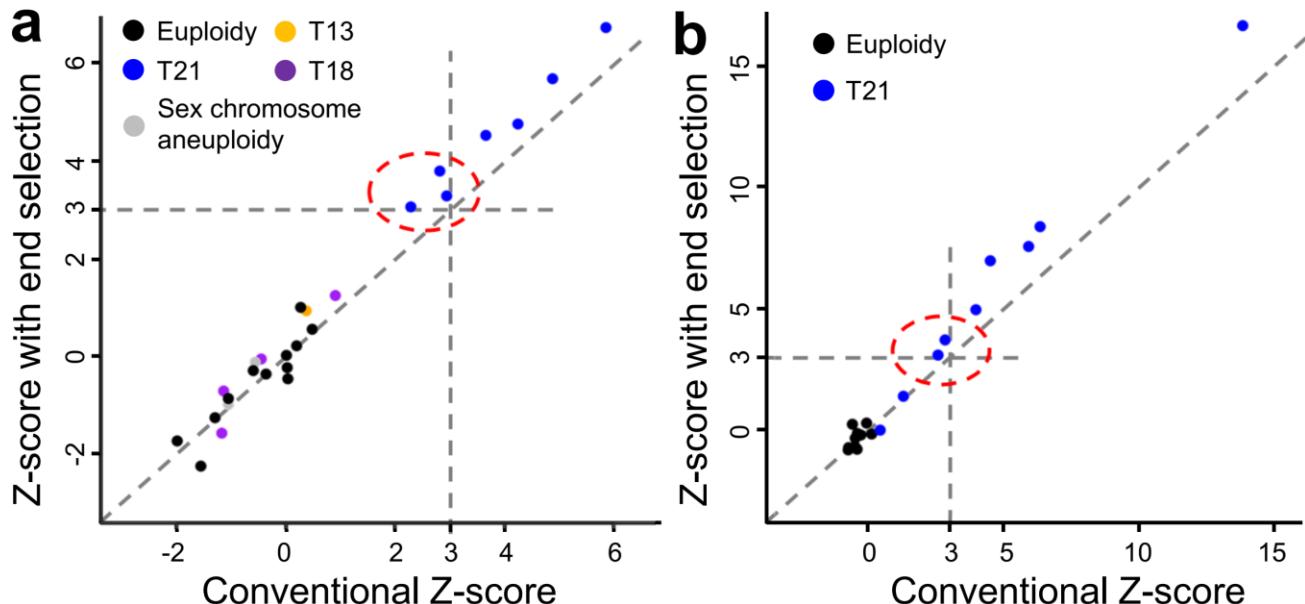
183 *Performance evaluation on a cohort with 2,196 samples*

184 To evaluate the effectiveness of our approach, we applied it to a cohort with 2,196 pregnancies
185 recruited in Tianjin, China, of which 207 cases were T21 and 1,989 cases were euploid. For all samples,
186 we collected the maternal blood, then extracted and sequenced the cfDNA to an average of ~9 million
187 (range: 5.0-17.6 million) reads in single-end 36 bp mode using the DNBSEQ platform, following the
188 routine NIPT setting by BGI group, one of the largest NIPT service providers in China [17-21]. We
189 calculated the Z-scores using a control panel with known euploidies, and then applied end selection on
190 all the samples. Of note, the median fraction of reads passing the end selection procedure was 61.16%
191 (range: 58.47-63.95%), and therefore enough number of reads (~5 million) were kept for reliable
192 chromosome counting and Z-score calculation. As a result, the Z-scores after end selection were
193 significantly elevated in all T21 samples, with a median increase of 1.59 ($P<10^{-10}$, paired t-test); the
194 Z-scores were also elevated in euploidies ($P<10^{-10}$, paired t-test), while the increases in Z-scores were
195 very subtle (median: 0.19, $P<10^{-10}$ compared to T21 cases, Mann-Whitney U test; Fig. 2a and Suppl.
196 Fig. S1). Moreover, in the conventional approach, four T21 cases (1.93%) were misclassified as false
197 negatives with Z-scores lower than 3; in contrast, our method reduced the number to two (0.97%; Fig.
198 2b). Meanwhile, in euploidies, our approach corrected one sample with Z-score > 3 (i.e., potential
199 false-positive) and one sample with Z-score < -3 (i.e., potential false-monosomy) called by the
200 conventional Z-score approach while did not introduce any false positives (i.e., specificity increased
201 from 99.90% to 100.00%; Suppl. Fig. S1), suggesting an improvement of overall accuracy in T21
202 testing accuracy. Additionally, for the conventional Z-score approach, we tried lowering the diagnostic
203 threshold (i.e., change to 2.64 instead of 3 in this cohort) to rescue the two false-negative cases;
204 however, this parameter would cause two additional false positives (Suppl. Fig. S1), suggesting that
205 this strategy is not appropriate for routine usage and therefore justify the value of improving Z-scores
206 in T21 testing.

207

208

Fig. 2. Validation of our approach for improving routine noninvasive Trisomy 21 (T21) testing.
209 (a) Distribution of changes in Z-scores with end selection between T21 and euploid cases. (b)
210 (b) Comparison of Z-scores in T21 cases. Each dot represents one sample. In (b), red circles highlight the
211 samples with false negative results by conventional Z-scores while are corrected by our approach, and
212 these samples were zoomed-in with light blue background at the bottom-right corner.
213


214

215 *Validation on external cohorts*

216 To validate the findings, two publicly available maternal plasma cfDNA datasets were analyzed: the
217 Karlsson dataset [37] comprises 8 T21 (1 sample discarded due to extra-low depth, and 7 kept in
218 analysis), 1 Trisomy 13 (T13), 4 Trisomy 18 (T18), 2 sex chromosome aneuploidies, 12 euploid
219 samples, and a pre-defined control panel with 4 samples; the Chandrananda dataset [38] includes 9
220 T21 and 20 euploid samples (of which 10 samples were randomly selected to form the control panel).
221 Notably, both datasets were generated using Illumina platforms in single-end mode with different
222 experimental protocols. In these cohorts, the median fraction of reads passing the end selection
223 procedure was 71.24% (range: 69.02-72.38%; Suppl. Fig. S2). The results, summarized in Fig. 3 and
224 Suppl. Fig. S3, demonstrated that Z-scores for T21 samples were significantly elevated following end
225 selection ($P < 0.01$ in both datasets, paired t-tests), while Z-scores for euploid samples remained
226 unchanged ($P > 0.1$ in both datasets, paired t-tests). Importantly, in the Karlsson dataset, conventional
227 Z-scores for 3 out of 7 (42.86%) T21 samples were below the diagnostic threshold (i.e., potential false
228 negative results), while all of them received Z-scores higher than 3 with end selection, and therefore
229 would be correctly reported as T21 by our approach; meanwhile, in Chandrananda dataset, our
230 approach successfully corrected 2 out of 4 (50.00%) potential false negative results by conventional
231 Z-scores.

232 Of note, there are four T18 cases in Karlsson dataset, and we therefore applied end selection to
233 evaluate the performance of T18 testing on this dataset. As a result, Z-scores for T18 testing were also
234 significantly elevated for the T18 cases with end selection ($P=0.0022$, paired t-test; Suppl. Fig. S4);
235 interestingly, end selection also corrected 1 out of 2 false positive calls in T18 testing (Suppl. Fig. S4)
236 while did not introduce any new false positives in these 2 datasets for both T21 and T18 testing (all
237 specificity=100.00%). Collectively, these results indicate that our cfDNA end selection strategy
238 improves the sensitivity of T21 test in NIPT, particularly by elevating Z-scores and thereby reducing
239 the risk of false-negative outcomes.

240

241

242 **Fig. 3. Validation results in external datasets.** Comparison of Z-scores in (a) Karlsson, and (b)
243 Chandrananda datasets. Each dot represents one sample; red circles highlight the samples with false
244 negative results in conventional analysis while are corrected by our approach. Blue and black dots
245 represent T21 and euploidies, respectively. In (a), orange, purple, and grey dots represent Trisomy 13
246 (N=1), Trisomy 18 (N=4), and sex chromosome aneuploid (N=2) cases, respectively.

247

248 **Discussion**

249 In clinical practice, false negatives in T21 screening are especially of concern, because these cases
250 often do not undergo further confirmatory examinations and result in severe emotional and societal
251 consequences. Here, we propose a computational method that leverages cfDNA end characteristics to
252 improve T21 detection without altering experimental protocols at all. As validated on 3 datasets, our
253 end selection procedure generated elevated Z-scores compared to the conventional approach in T21
254 cases. As Z-scores are positively correlated with fetal DNA fractions in T21 cases [39, 40], the data
255 suggested that our end selection improved (apparent) fetal DNA fractions. Crucially, our approach is
256 compatible with conventional shallow-depth, short, single-end sequencing workflows and causes
257 negligible additional cost, making it highly suitable for seamless integration into current whole
258 genomewide sequencing-based NIPT workflows. As a contrast, current size-based computational
259 approaches require paired-end or long-read sequencing data, and therefore could not work on such
260 routine NIPT data generated in this study; hence, head-to-head comparisons are impossible. However,
261 as paired-end sequencing might be available in some regions or service providers, it would be
262 interesting to benchmark our approach versus the current algorithms using such data in future studies.

263 As shown in 3 cohorts, the evaluated Z-scores generated by our approach could rescue false
264 negative results, thus possessing translational merit in NIPT. Interestingly, our approach also shows
265 the ability to reduce false positive results in trisomy tests (Suppl. Fig. S1 and S4). Furthermore, given
266 that our approach enriches fetal-derived cfDNA in a genome-wide manner, it might be applicable to
267 other chromosomal aneuploidy tests beyond T21; due to data limitations, this feasibility was only
268 roughly explored on four T18 samples in the Karlsson dataset (Suppl. Fig. S4), and therefore it
269 represents an important avenue for future evaluations. Moreover, broader validations with large-scale
270 retrospective or prospective studies are still needed before clinical deployment on specific NIPT
271 platforms and/or settings.

272 In addition, it would be interesting to explore the feasibility of integrating end selection into other
273 Z-score calculation methods besides the conventional approach. Of note, it is known that different
274 chromosomes have their own unique compositional properties [41], which might introduce biases to
275 the end selection procedure. As evaluated in 3 cohorts, such bias might not significantly affect end
276 selection when comparing read counts from the same chromosome between testing cases and controls
277 in conventional Z-score definitions; however, approaches utilizing within-sample comparisons that
278 use genomic regions from different chromosomes as controls (e.g., the WISECONDOR algorithm [42])
279 might be affected and therefore requires future investigations. In conclusion, by exploiting cfDNA end
280 characteristics, we present and validate a novel and costless strategy for enhancing routine NIPT assays.
281 Our work expands the utility and highlights translational merit of cfDNA fragmentomics in
282 noninvasive prenatal diagnostics.

283 **Data availability**

284 Raw cfDNA sequencing data used in this study was downloaded from Sequence Read Archive (SRA)
285 with accession numbers SRP028828 and SRP050360. Data generated in this study are available from
286 the corresponding authors upon reasonable requests.

287 **Code availability**

288 Pre-compiled programs and scripts for common x86_64 GNU/Linux operating system to reproduce
289 this work has been deposited to Zenodo (<https://zenodo.org/records/17107133>; the package would be

290 made publicly accessible upon acceptance of this manuscript). Source codes under a non-commercial
291 license are available from the corresponding authors upon reasonable requests.

292 **Acknowledgements**

293 This work was supported by National Natural Science Foundation of China (32401206), Guangdong
294 Basic and Applied Basic Research Foundation (2023B1515120073), Shenzhen Clinical Research
295 Center for Oral Diseases (20210617170745001), and National Key R&D Program of China
296 (2022YFA0912700). J.W. was supported by an ITC grant (ITCPD/17-9) and the Padma Harilela
297 Professorship. We'd like to thank Ms. Qi Wang for technical assistance, and Shenzhen Bay Laboratory
298 HPC facility for computational supports.

299 **Author contributions**

300 Conception and design: K.S.; Supervision: X.J., K.S.; Methodology: M.Y., K.S.; Patient recruitment
301 and analysis of clinical data: S.W.; Sequencing data analysis: M.Y., L.Y., Z.L.; Result interpretation:
302 all authors; Writing the manuscript: M.Y., K.S.; Review and edit of the manuscript: M.Y., J.W., X.J.,
303 K.S.

304 **Declaration of interests**

305 K.S. had filed patent applications to China National Intellectual Property Administration
306 (202311138167.X) based on the method developed in this work; the remaining authors declare no
307 conflict of interests.

308 **References**

- 309 1. Sun K, Jiang P, Chan KCA, Wong J, Cheng YK, Liang RH, Chan WK, Ma ES, Chan SL, Cheng
310 SH *et al*: **Plasma DNA tissue mapping by genome-wide methylation sequencing for**
311 **noninvasive prenatal, cancer, and transplantation assessments**. *Proc Natl Acad Sci U S A*
312 2015, **112**(40):E5503-5512.
- 313 2. Lo YMD, Corbetta N, Chamberlain PF, Rai V, Sargent IL, Redman CW, Wainscoat JS: **Presence**
314 **of fetal DNA in maternal plasma and serum**. *Lancet* 1997, **350**(9076):485-487.
- 315 3. Stroun M, Anker P, Maurice P, Lyautey J, Lederrey C, Beljanski M: **Neoplastic characteristics**
316 **of the DNA found in the plasma of cancer patients**. *Oncology* 1989, **46**(5):318-322.
- 317 4. Norton ME, Jacobsson B, Swamy GK, Laurent LC, Ranzini AC, Brar H, Tomlinson MW, Pereira
318 L, Spitz JL, Hollemon D *et al*: **Cell-free DNA analysis for noninvasive examination of trisomy**.
319 *N Engl J Med* 2015, **372**(17):1589-1597.
- 320 5. Lopes JL, Lopes GS, Enninga EAL, Kearney HM, Hoppman NL, Rowsey RA: **Most**
321 **noninvasive prenatal screens failing due to inadequate fetal cell free DNA are negative for**
322 **trisomy when repeated**. *Prenat Diagn* 2020, **40**(7):831-837.
- 323 6. Hui L, Bianchi DW: **Fetal fraction and noninvasive prenatal testing: What clinicians need**
324 **to know**. *Prenat Diagn* 2020, **40**(2):155-163.
- 325 7. Van Opstal D, Srebnik MI, Polak J, de Vries F, Govaerts LC, Joosten M, Go AT, Knapen MF,
326 van den Berg C, Diderich KE *et al*: **False negative NIPT results: risk figures for chromosomes**
327 **13, 18 and 21 based on chorionic villi results in 5967 cases and literature review**. *PLoS One*
328 2016, **11**(1):e0146794.

329 8. An Y, Zhao X, Zhang Z, Xia Z, Yang M, Ma L, Zhao Y, Xu G, Du S, Wu X *et al*: **DNA**
330 **methylation analysis explores the molecular basis of plasma cell-free DNA fragmentation.**
331 *Nat Commun* 2023, **14**(1):287.

332 9. Qiao L, Yu B, Liang Y, Zhang C, Wu X, Xue Y, Shen C, He Q, Lu J, Xiang J *et al*: **Sequencing**
333 **shorter cfDNA fragments improves the fetal DNA fraction in noninvasive prenatal testing.**
334 *Am J Obstet Gynecol* 2019, **221**(4):345 e341-345 e311.

335 10. Budis J, Gazdarica J, Radvanszky J, Szucs G, Kucharik M, Strieskova L, Gazdaricova I,
336 Harsanyova M, Duris F, Minarik G *et al*: **Combining count- and length-based z-scores leads**
337 **to improved predictions in non-invasive prenatal testing.** *Bioinformatics* 2019, **35**(8):1284-
338 1291.

339 11. Sun K, Chan KCA, Hudecova I, Chiu RWK, Lo YMD, Jiang P: **COFFEE: control-free**
340 **noninvasive fetal chromosomal examination using maternal plasma DNA.** *Prenat Diagn*
341 2017, **37**(4):336-340.

342 12. Lo YMD, Chan KCA, Sun H, Chen EZ, Jiang P, Lun FM, Zheng YW, Leung TY, Lau TK, Cantor
343 CR *et al*: **Maternal plasma DNA sequencing reveals the genome-wide genetic and**
344 **mutational profile of the fetus.** *Sci Transl Med* 2010, **2**(61):61ra91.

345 13. Qiao L, Zhang B, Wu X, Zhang C, Xue Y, Tang H, Tang H, Shi J, Liang Y, Yu B *et al*: **A fetal**
346 **fraction enrichment method reduces false negatives and increases test success rate of fetal**
347 **chromosome aneuploidy detection in early pregnancy loss.** *J Transl Med* 2022, **20**(1):345.

348 14. Liang B, Li H, He Q, Li H, Kong L, Xuan L, Xia Y, Shen J, Mao Y, Li Y *et al*: **Enrichment of**
349 **the fetal fraction in non-invasive prenatal screening reduces maternal background**
350 **interference.** *Sci Rep* 2018, **8**(1):17675.

351 15. Kwon HJ, Yun S, Joo J, Park D, Do WJ, Lee S, Lee MS: **Improving the accuracy of**
352 **noninvasive prenatal testing through size-selection between fetal and maternal cfDNA.**
353 *Prenat Diagn* 2023, **43**(13):1581-1592.

354 16. Hu P, Liang D, Chen Y, Lin Y, Qiao F, Li H, Wang T, Peng C, Luo D, Liu H *et al*: **An enrichment**
355 **method to increase cell-free fetal DNA fraction and significantly reduce false negatives and**
356 **test failures for non-invasive prenatal screening: a feasibility study.** *J Transl Med* 2019,
357 **17**(1):124.

358 17. Liu S, Liu Y, Gu Y, Lin X, Zhu H, Liu H, Xu Z, Cheng S, Lan X, Li L *et al*: **Utilizing non-**
359 **invasive prenatal test sequencing data for human genetic investigation.** *Cell Genom* 2024,
360 **4**(10):100669.

361 18. Liu S, Huang S, Chen F, Zhao L, Yuan Y, Francis SS, Fang L, Li Z, Lin L, Liu R *et al*: **Genomic**
362 **Analyses from Non-invasive Prenatal Testing Reveal Genetic Associations, Patterns of**
363 **Viral Infections, and Chinese Population History.** *Cell* 2018, **175**(2):347-359 e314.

364 19. Zheng L, Yin N, Wang M, Huang H, Zhang S, Su L, Xu L: **Comparative performance and**
365 **health economic analysis of prenatal screening for down syndrome in Fujian province,**
366 **China.** *Sci Rep* 2025, **15**(1):23940.

367 20. Zhen J, Zhang L, Wang H, Chen X, Wang W, Li L, Zhang Q: **Clinical experience of genome-**
368 **wide non-invasive prenatal testing as a first-tier screening test in a cohort of 59,771**
369 **pregnancies.** *PLoS One* 2025, **20**(8):e0329463.

370 21. Huang Q, Xu Q, Chen M, Fan W, Huang H: **Application of non-invasive prenatal testing for**
371 **fetal chromosomal disorders in low-risk pregnancies: a follow-up study in central China.**
372 *Front Genet* 2025, **16**:1574775.

373 22. Straver R, Oudejans CB, Sistermans EA, Reinders MJ: **Calculating the fetal fraction for**
374 **noninvasive prenatal testing based on genome-wide nucleosome profiles.** *Prenat Diagn* 2016,
375 **36**(7):614-621.

376 23. Chan KCA, Jiang P, Sun K, Cheng YK, Tong YK, Cheng SH, Wong AI, Hudecova I, Leung TY,
377 **Chiu RWK et al: Second generation noninvasive fetal genome analysis reveals de novo**
378 **mutations, single-base parental inheritance, and preferred DNA ends.** *Proc Natl Acad Sci U*
379 **SA** 2016, **113**(50):E8159-8168.

380 24. Sun K, Jiang P, Wong AIC, Cheng YKY, Cheng SH, Zhang H, Chan KCA, Leung TY, Chiu RWK,
381 **Lo YMD: Size-tagged preferred ends in maternal plasma DNA shed light on the production**
382 **mechanism and show utility in noninvasive prenatal testing.** *Proc Natl Acad Sci U S A* 2018,
383 **115**(22):E5106-E5114.

384 25. Sun K, Jiang P, Cheng SH, Cheng THT, Wong J, Wong VWS, Ng SSM, Ma BBY, Leung TY,
385 **Chan SL et al: Orientation-aware plasma cell-free DNA fragmentation analysis in open**
386 **chromatin regions informs tissue of origin.** *Genome Res* 2019, **29**(3):418-427.

387 26. Ju J, Zhao X, An Y, Yang M, Zhang Z, Liu X, Hu D, Wang W, Pan Y, Xia Z et al: **Cell-free DNA**
388 **end characteristics enable accurate and sensitive cancer diagnosis.** *Cell Rep Methods* 2024,
389 **4**(10):100877.

390 27. Liu X, Gong F, Lin H, An Y, Sun K: **Protocol for the analysis of cell-free DNA end**
391 **characteristics for accurate cancer diagnosis.** *STAR Protoc* 2025, **6**(2):103757.

392 28. Coppede F: **Risk factors for Down syndrome.** *Arch Toxicol* 2016, **90**(12):2917-2929.

393 29. Liu X, Yang M, Hu D, An Y, Wang W, Lin H, Pan Y, Ju J, Sun K: **Systematic biases in reference-**
394 **based plasma cell-free DNA fragmentomic profiling.** *Cell Rep Methods* 2024, **4**(6):100793.

395 30. Sun K: **Ktrim: an extra-fast and accurate adapter- and quality-trimmer for sequencing**
396 **data.** *Bioinformatics* 2020, **36**(11):3561-3562.

397 31. Langmead B, Salzberg SL: **Fast gapped-read alignment with Bowtie 2.** *Nat Meth* 2012,
398 **9**(4):357-359.

399 32. Gaffney DJ, McVicker G, Pai AA, Fondufe-Mittendorf YN, Lewellen N, Michelini K, Widom J,
400 **Gilad Y, Pritchard JK: Controls of nucleosome positioning in the human genome.** *PLoS Genet*
401 2012, **8**(11):e1003036.

402 33. Snyder MW, Kircher M, Hill AJ, Daza RM, Shendure J: **Cell-free DNA comprises an in vivo**
403 **nucleosome footprint that informs its tissues-of-origin.** *Cell* 2016, **164**(1-2):57-68.

404 34. Zhao Y, Wang J, Liang F, Liu Y, Wang Q, Zhang H, Jiang M, Zhang Z, Zhao W, Bao Y et al:
405 **NucMap: a database of genome-wide nucleosome positioning map across species.** *Nucleic*
406 *Acids Res* 2019, **47**(D1):D163-D169.

407 35. Chen K, Xi Y, Pan X, Li Z, Kaestner K, Tyler J, Dent S, He X, Li W: **DANPOS: dynamic**
408 **analysis of nucleosome position and occupancy by sequencing.** *Genome Res* 2013, **23**(2):341-
409 351.

410 36. Chiu RWK, Chan KCA, Gao Y, Lau VY, Zheng W, Leung TY, Foo CH, Xie B, Tsui NB, Lun FM
411 **et al: Noninvasive prenatal diagnosis of fetal chromosomal aneuploidy by massively parallel**
412 **genomic sequencing of DNA in maternal plasma.** *Proc Natl Acad Sci U S A* 2008,
413 **105**(51):20458-20463.

414 37. Karlsson K, Sahlin E, Iwarsson E, Westgren M, Nordenskjold M, Linnarsson S: **Amplification-**
415 **free sequencing of cell-free DNA for prenatal non-invasive diagnosis of chromosomal**
416 **aberrations.** *Genomics* 2015, **105**(3):150-158.

417 38. Chandrananda D, Thorne NP, Ganesamoorthy D, Bruno DL, Benjamini Y, Speed TP, Slater HR,
418 Bahlo M: **Investigating and correcting plasma DNA sequencing coverage bias to enhance**
419 **aneuploidy discovery.** *PLoS One* 2014, **9**(1):e86993.

420 39. Hudecova I, Sahota D, Heung MM, Jin Y, Lee WS, Leung TY, Lo YM, Chiu RW: **Maternal**
421 **plasma fetal DNA fractions in pregnancies with low and high risks for fetal chromosomal**
422 **aneuploidies.** *PLoS One* 2014, **9**(2):e88484.

423 40. Balslev-Harder M, Richter SR, Kjaergaard S, Johansen P: **Correlation between Z score, fetal**
424 **fraction, and sequencing reads in non-invasive prenatal testing.** *Prenat Diagn* 2017,
425 **37**(9):943-945.

426 41. Costantini M, Clay O, Auletta F, Bernardi G: **An isochore map of human chromosomes.**
427 *Genome Res* 2006, **16**(4):536-541.

428 42. Straver R, Sistermans EA, Holstege H, Visser A, Oudejans CB, Reinders MJ: **WISECONDOR:**
429 **detection of fetal aberrations from shallow sequencing maternal plasma based on a within-**
430 **sample comparison scheme.** *Nucleic Acids Res* 2014, **42**(5):e31.

431