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Abstract

Obesity-associated metabolic inflammation is driven by lipid-laden macrophages that release
proinflammatory cytokines such as interleukin-1@3, yet how macrophages sense lipid overload
to trigger inflammation remains unclear. Here, we identify sphingomyelin sensing as a key
mechanism linking lipid metabolism to inflammatory activation. We show that macrophages
detect specific sphingomyelin species to induce metabolic inflammation through the TMED10-
channeled unconventional secretion (THU) pathway, a recently discovered non-lytic route for
cytokine release distinct from GSDMD-dependent pyroptosis. Single-cell transcriptomic
profiling revealed a metabolic inflammation macrophage subset with enhanced lipid uptake,
active sphingomyelin metabolism, and elevated TMED10 expression, marking a population
tuned to metabolic stress and inflammation. A high-fat diet feeding induced a shift toward
medium-chain sphingomyelin species in the adipose tissue macrophages, which potently
activated TMED10 and promoted IL-1( secretion via the THU pathway. TMED10 directly binds
sphingomyelin through its transmembrane domain, with residue Q204 being essential for this
interaction. TMED10 displays high sensitivity to medium-chain sphingomyelin (ECso = 0.5%),
underscoring its role as a precise lipid sensor. Mutation of Q204 disrupted sphingomyelin
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40 binding, impaired IL-1B release, and protected mice from metabolic inflammation. Together,
41  these findings establish a TMED10-sphingomyelin axis as a molecular circuit that senses lipid
42 composition to drive chronic inflammation, revealing new therapeutic opportunities for obesity
43 and other lipid-associated inflammatory disorders.

44

45 Main

46  Obesity, affecting over one billion individuals worldwide, lies at the core of the global metabolic
47  disease epidemic'. A major pathological consequence of obesity is chronic, low-grade
48 inflammation—referred to as metabolic inflammation—driven by lipid-engorged macrophages
49  within adipose tissue that secrete proinflammatory cytokines such as interleukin-1p (IL-1B3)%7.
50  The persistent production of these cytokines leads to systemic metabolic dysfunction, including
51  insulin resistance and dyslipidemia®'°. A substantial body of evidence links lipid metabolic
52 rewiring to the functional remodeling of heterogeneous adipose tissue macrophages (ATMs)
53  during obesity"'8; however, the mechanistic connections between lipid metabolism and
54 macrophage activation—particularly their inflammatory responses leading to metabolic
55 inflammation—remain poorly defined.

56  In contrast to the limited understanding of chronic inflammation in obesity, bacteria-induced
57 acute inflammation is well characterized and is predominantly mediated by Gasdermin D
58 (GSDMD)-dependent pore formation in macrophages, a process that typically culminates in
59 pyroptotic cell death and drives the rapid release of proinflammatory cytokines such as IL-1p"®
60 22, Notably, obesity-associated chronic inflammatory states and GSDMD-mediated acute
61 inflammation share several upstream signaling modules, including Toll-like receptor
62  engagement, inflammasome activation, and caspase-dependent processing?®?°. The
63 convergence of these pathways prompted us to investigate whether GSDMD also contributes
64 to cytokine release in macrophages experiencing metabolic stress—induced chronic
65 inflammation.

66  GSDMD is dispensable for high-fat diet-induced metabolic inflammation

67  To assess the role of macrophage GSDMD in metabolic inflammation, we generated Lyz2—cre
68  GSDMD" mice, in which GSDMD is specifically deleted in myeloid lineage cells, including
69  macrophages. Consistent with previous reports'®-2', GSDMD-deficient macrophages exhibited
70 markedly reduced IL-1[ release in response to LPS plus nigericin or ATP stimulation (Fig. 1a),
71 recapitulating acute inflammatory conditions. In vivo, GSDMD myeloid cell lineage-specific
72 knockout significantly decreased IL-1p levels in both plasma and peritoneal fluid following LPS
73 challenge and prolonged the survival of LPS-treated mice (Fig. 1b,c), confirming the
74  established role of GSDMD in acute inflammation'9-2627,

75  We next examined whether GSDMD in macrophages contributes to obesity—induced chronic
76  metabolic inflammation. Surprisingly, plasma IL-13 levels were comparable between control
77  (GSDMD") and Lyz2-cre GSDMD" mice after long-term high-fat diet (HFD) feeding (Fig. 1d).
78  Loss of macrophage GSDMD didn't alter adipocyte hypotrophy or crown-like structure (CLS)
79  formation in epididymal white adipose tissue (eWAT) (Fig. 1e). In agreement, transcriptomic
80  profiling revealed no significant changes in inflammatory gene expression in GSDMD-deficient
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81  mice (Fig. 1f,g and Supplementary Table 1). Furthermore, systemic metabolic testing showed
82  that Lyz2-cre GSDMD" and control mice displayed comparable glucose tolerance and insulin
83 sensitivity under both normal chow diet (ND) and HFD feeding, as determined by glucose
84  tolerance tests (GTT) and insulin tolerance tests (ITT) (Fig. 1h). Collectively, these findings
85 indicate that GSDMD-mediated inflammatory cytokine release, which drives acute inflammation,
86 is not required for HFD-induced metabolic inflammation, suggesting the involvement of
87 alternative macrophage secretory mechanisms.

88  TMED10 regulates HFD-induced metabolic inflammation

89 Our previous work identified a non-lytic IL-1B release pathway, termed TMED10-channeled
90 unconventional secretion (THU), in which TMED10 forms a protein translocator that mediates
91  IL-1B transport into the ER-Golgi intermediate compartment for vesicular secretion?®2°. To
92 explore its role in metabolic inflammation, we generated Lyz2—cre TMED10"" mice with myeloid
93 lineage—specific TMED10 deletion and subjected them to HFD feeding to induce obesity
94 (Extended Data Fig. 1a). Notably, despite comparable body weight gain and fat mass between
95  TMED10-deficient and control (TMED10"") mice (Extended Data Fig. 1a,b), macrophage
96 TMED10 depletion resulted in an approximately 50% reduction in plasma IL-1f3 levels following
97 HFD-induced obesity (Fig. 1i). HFD-driven macrophage accumulation in e WAT was markedly
98 attenuated in TMED10-deficient mice, as evidenced by fewer CLSs and reduced adipose tissue
99 macrophages detected by immunostaining and flow cytometric analysis (Fig. 1j-1). Importantly,
100 these changes occurred independently of total fat mass, adipose depot distribution, adipocyte
101 hypertrophy and white blood cell constitution (Extended Data Fig. 1b-€), highlighting a specific
102 role of TMED10 in regulating the inflammatory response of ATMs during obesity. Consistently,
103  transcriptomic profiling of obese adipose tissue further confirmed that macrophage TMED10
104 depletion resulted in substantially altered adipose transcriptome (Fig. 1m), with a pronounced
105 repression of inflammatory gene expression (Fig. 1n,0, Extended Data Fig. 1f and
106  Supplementary Table 2).

107 Of note, genes involved in adipose metabolic elasticity’®, adipogenesis, and fatty acid
108 metabolism were upregulated in eWAT (Fig. 1p,q, Extended Data Fig. 1g and Supplementary
109  Table 2), suggesting a metabolically healthier phenotype in obese TMED10-deficient mice. In
110  agreement, insulin signaling was more robustly activated in obese eWAT of TMED10-deficient
111 mice (Fig. 1r). Beyond adipose tissue, livers of obese TMED10-deficient mice exhibited reduced
112 weight, alleviated hepatic steatosis, and diminished lipid accumulation (Extended Data Fig. 2a-
113 d). Liver transcriptomic profiling revealed broad alterations, including downregulation of genes
114 associated with inflammation and lipid synthesis (Extended Data Fig. 2e-g and Supplementary
115  Table 3), alongside enhanced Akt phosphorylation in response to insulin stimulation (Extended
116  Data Fig. 2h).

117  Relative to controls, HFD-fed Lyz2—cre TMED10"" mice displayed reduced plasma glycerol and
118  non-esterified fatty acid levels (Fig. 1s), as well as improved glucose tolerance and insulin
119  sensitivity (Fig. 1t), reflecting enhanced systemic metabolic health upon macrophage TMED10
120  deficiency. Together, these findings demonstrate that myeloid lineage TMED10 promotes HFD-
121 induced metabolic inflammation and systemic metabolic dysfunction, whereas its loss confers
122 both metabolic and inflammatory protection.
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123 IL-1B is the major pro-inflammatory cytokine accounting for the effect of TMED10
124  deficiency

125 IL-1B is a key pro-inflammatory cytokine produced by macrophages, and its release is regulated
126 by TMED10%*3!, Previous work indicated a direct involvement of IL-1 in insuslin resistance3223,
127  Pharmacological inhibition of IL-1 signaling in control (TMED10"") mice using the IL-1 receptor
128  antagonist (IL-1RA)* resulted in a comparable reduction of macrophage infiltration and CLSs
129 in adipose tissue after HFD treatment as observed in Lyz2—cre TMED 10" mice (Extended Data
130  Fig. 3a). Moreover, the combination of IL-1RA treatment and TMED10 deficiency did not
131 produce additional effects, indicating that TMED10 and IL-1[ act within the same inflammatory
132 pathway (Extended Data Fig. 3a).

133 Consistently, IL-1RA administration in control mice enhanced Akt phosphorylation in both
134  adipose tissue and liver (Extended Data Fig. 3b,c), reduced hepatic lipid accumulation
135  (Extended Data Fig. 3d-f), and improved systemic glucose metabolism as assessed by GTT
136  and ITT (Extended Data Fig. 3g), to a similar extent as in Lyz2—cre TMED10"" mice. Again,
137  combined IL-1RA treatment in Lyz2—cre TMED10" mice did not further improve metabolic
138  parameters (Extended Data Fig. 3b-g). A similar protective effect of IL-1RA against
139 hyperglycermia was also reported before, supporting our conclusion®.

140 Together, these findings demonstrate that TMED10-mediated IL-1p release is a principal
141 contributor to HFD-induced metabolic inflammation and associated metabolic defects in our
142 system.

143 Coupling of lipid uptake, sphingomyelin metabolism, and IL-1p release in a specialized
144 macrophage subtype

145 Given that the metabolically detrimental effects of macrophage TMED10 were most evident in
146 obesity, we asked whether TMED10 participates in the metabolic rewiring of ATMs upon HFD
147  feeding, particularly with respect to lipid metabolism. As expected, multiple lipid metabolic
148 pathways were substantially altered in ATMs from mice under varying durations of HFD feeding,
149 based on previously published single-cell transcriptomic data'' (Fig. 2a and Extended Data Fig.
150 4a-c). Genesinvolved in fatty acid, triglyceride, and general lipid metabolism were progressively
151 upregulated with increasing HFD exposure (Fig. 2a). Notably, sphingolipid and
152 glycosphingolipid metabolism in ATMs were markedly amplified in ATMs from long-term HFD-
153 fed mice, whereas pathways related to overall phospholipid metabolism showed the opposite
154  trend (Fig. 2a), suggesting a specific contribution of sphingolipid pathways to metabolic
155  dysfunction. Remarkably, genes linked to sphingomyelin (SM, a major sphingolipid) metabolism,
156 lipid uptake, and TMED10-regulated unconventional secretion (including Tmed10, Rab1a,
157 Rab1b, and Rab2a?) exhibited strong co-upregulation in adipose macrophages following HFD
158  treatment (Fig. 2b), indicating functional interplay between SM metabolism and TMED10
159  activity in inflammatory ATMs. We next focused on sphingolipid metabolism, as
160  glycosphingolipid pathways were later found not to influence IL-18 release (see below).

161  Although a growing body of work has connected lipid metabolic rewiring to functional
162  remodeling of heterogenous ATMs in the context of obesity'-'8%6, the mechnistic link between
163 lipid metabolism and macrophage activation, particularly inflammatory responses, remains
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164 unclear. To address this, we examined macrophage heterogeneity in lean and obese adipose
165  tissue, and identified four major subtypes (Cluster 1-4) in eWAT based on transcriptomic
166  features (Fig. 2c-g and Extended Data Fig. 4d, e). Cluster 1 corresponds to a resident
167 macrophage population enriched for phagocytic markers (e.g., Lyz2) and exhibiting
168 intermediate expression of lipid-uptake genes such as Cd36 and Trem2 (Fig. 2g and Extended
169  Data Fig. 4d) suggesting a lipid-associated macrophage (LAM)-like subset. Cluster 2 comprises
170  a perivascular macrophage population characterized by high expression of Lyve? and
171  Cd163'*% (Extended Data Fig. 4d). Cluster 3 represents a LAM subset with elevated
172 expression of lipid-metabolic genes (e.g., Fabp4, Fabp5b) together with the highest levels of
173 lipid-uptake markers (Cd36, Trem2)" (Fig. 2g and Extended Data Fig. 4d). Cluster 4 defines a
174 proliferative macrophage population marked by robust Mki67 expression (Extended Data Fig.
175  4d). Importantly, Cluster 3--predominantly detected in eWAT after long-term HFD feeding--
176 exhibited co-enrichment of SM metabolism, lipid uptake, and TMED10-pathway genes,
177 accompanied by a pronounced inflammatory gene signature (Fig. 2d-g and Extended Data Fig.
178  4e). Spatial transcriptomic analysis'? further revealed that Cluster 3 macrophages localized
179 primarily proximal to CLSs in adipose tissue (Fig. 2h), reinforcing their identity as a lipid-laden,
180  pro-inflammatory cells. Collectively, these data indicate that Cluster 3 macrophages represent
181 a LAM subtype that mediates lipid uptake and drives metabolic inflammation, which we term
182 metabolic inflammation macrophages (MIM). Importantly, consistent with the observations in
183 mouse, we identified an analogous MIM cluster in obese human visceral adipose tissue'®,
184  characterized by elevated inflammatory signatures and co-upregulation of SM metabolism, lipid
185 uptake, and TMED10-pathway genes (Fig. 2i-m and Extended Data Fig. 4f-i), suggesting
186 conservation of this macrophage subtype across species.

187  Sphingomyelin regulates TMED10-dependent IL-1$ release

188 Our above findings reveal a coordinated link among SM metabolism, lipid uptake, and TMED10-
189 dependent IL-1f secretion within a specific inflammatory macrophage subtype, highlighting a
190 potential mechanistic axis underlying metabolic inflammation.

191  To investigate the role of lipid uptake and SM metabolism in TMED10-mediated IL-18 release,
192  we treated peritoneal macrophages with palmitic acid (PA) to mimic lipid uptake—induced
193  inflammation in vivo3"3°. PA stimulation induced IL-1B release, which was markedly reduced in
194  TMED10-deficient macrophages but not in GSDMD-deficient cells, indicating that TMED10,
195  rather than GSDMD, mediates PA-induced IL-1B secretion (Fig. 3a-d).

196  We next examined the role of SM biosynthesis using pharmacological inhibitors and genetic
197  approaches (Fig. 3e)**3. In macrophages, inhibition of SM synthase (by Malabaricone C, Mal
198 C) or ceramide transport protein CERT (by HPA-12) efficiently suppressed PA-induced IL-13
199  release, comparable to inhibition of the inflammasome (by MCC950%4) or caspase-1 (by Ac-
200  YVAD-cmk)* (Fig. 3f). Although TMED10 deficiency already reduced IL-1B secretion, SM
201 pathway inhibitors further decreased cytokine release (Fig. 3f), likely reflecting incomplete
202  depletion of TMED10 in these cells (Fig. 3a). To clarify whether SM synthesis and TMED10 act
203 in the same pathway, we generated TMED10-knockout THP-1 cells. In this model, SM synthesis
204 inhibitors still blocked IL-18 release, but no further reduction was observed in TMED10-deficient
205 cells, confirming that SM metabolism and TMED10 function within the same regulatory axis
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206  (Fig. 3g-i). In contrast, inhibition of glycosphingolipid synthesis with Eliglustat*® had no effect,
207  excluding glycosphingolipids from this process (Fig. 3j).

208 IL-1B release involves two steps: inflammasome-dependent maturation and subsequent
209 transport for secretion*’. To test whether SM acts directly in the transport phase, we used a
210 previously established HEK293T IL-1B secretion assay, in which mature IL-1B is expressed
211 independently of inflammasome activation, allowing specific assessment of TMED10-
212 dependent trafficking?®2°48, Exogenous SM treatment elevated cellular SM levels and
213  significantly enhanced IL-1P release (Fig. 3k,l), whereas SM synthesis inhibitors (Mal C and
214  HPA-12) but not glycosphingolipid synthesis inhibitor Eliglustat suppressed TMED10-mediated
215  secretion (Fig. 3m,n).

216  Consistently, blocking SM degradation with the sphingomyelinase (SMPD2) inhibitor GW48694°
217 increased both SM levels and IL-1B release (Fig. 30,p). Genetic knockdown of SMPD2
218  produced similar results, while depletion of SGMS1, SGMS2, or CERT lowered SM levels and
219 attenuated IL-1B secretion (Fig. 3g-s). Conversely, overexpression of SGMS1 or SMPD2
220 respectively increased or decreased SM abundance, leading to corresponding changes in IL-
221 1B release (Fig. 3t,u).

222 Together, these findings demonstrate that SM is a key regulator of TMED10-dependent IL-1(3
223 secretion, acting downstream of inflammasome activation to control the transport and release
224 of mature IL-1B.

225  TMED10 functions as a metabolic sensor activated by medium-chain sphingomyelin

226  To determine whether SM directly activates TMED10, we employed an established in vitro
227 translocation assay?® using TMED10-reconstituted proteoliposomes composed of
228 phosphatidylcholine supplemented with various lipids (Fig. 4a). Among all lipids tested, only SM
229 markedly enhanced TMED10-mediated IL-1f translocation (Fig. 4b,c and Extended Data Fig.
230  5a-e). In contrast, ceramide, a biosynthetic precursor of SM, inhibited TMED10 activity (Fig. 4c
231 and Extended Data Fig. 5e). Consistently, hydrolysis of SM by sphingomyelinase abolished its
232 enhancing effect (Fig. 4d,e). Furthermore, substitution of the choline head group with
233 ethanolamine (ceramide phosphoethanolamine, CPE®®) dramatically reduced TMED10 activity,
234  demonstrating that TMED10 specifically responds to SM to promote protein translocation (Fig.
235  4f and Extended Data Fig. 5f).

236 Lipidomic profiling of adipose tissue macrophages from ND and HFD feeding mice revealed
237  that phosphatidylglycerol and triglycerides increased as expected, whereas total SM level was
238 unexpectly slightly decreased (Fig. 4g,h and Supplementary Table 4). However, a compositional
239  shift was observed within the SM pool: medium-chain SM species (C16:0, C18:0) were elevated,
240  whereas long-chain SM (C24:0) declined (Fig. 4i and Supplementary Table 4). Importantly,
241  functional analysis of SM species in the in vitro translocation assay showed that medium-chain
242 SM specifically activated TMED10, with an ECso of approximately 0.5% and maximal activation
243 near 1% (Fig. 4j-m and Extended Data Fig. 5g,h). These results indicate TMED10 as a highly
244  sensitive and specific sensor of medium-chain SM, linking lipid remodeling under HFD
245 conditions to TMED10 activation and IL-1f release in metabolic inflammation.

246  Sphingomyelin activates TMED10 through direct binding and oligomerization
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247 To elucidate how SM activates TMED10, we first examined TMED10 homo-oligomerization, a
248  hallmark of its translocator activity?®. In a proximity ligation assay, overexpression of SGMS1
249 (an SM synthase) enhanced TMED10 self-association, whereas SMPD2 (a sphingomyelinase)
250 reduced it, indicating a positive correlation between SM levels and TMED10 oligomerization
251  (Fig. 5a,b). Consistently, cross-linking experiments revealed that SGMS1 increased, while
252 SMPD2 decreased, the formation of high—molecular weight TMED10 complexes (Fig. 5c,d).
253 Reconstitution experiments further demonstrated that the presence of SM in TMED10
254 proteoliposomes promoted oligomerization, which was reversed by sphingomyelinase
255  treatment, indicating a direct role of SM on TMED10 activation (Fig. 5e,f).

256 In vivo, adipose tissue macrophages from HFD—fed mice displayed elevated TMED10 oligomer
257 levels, consistent with increased activation (Fig. 5g,h). Similarly, PA treatment enhanced
258 TMED10 oligomerization in macrophages, which was abolished by SM synthesis inhibition (Fig.
259  5ij). These findings demonstrate that SM activates TMED10 by promoting its oligomer
260 formation into an active translocator complex.

261 To assess whether SM directly interacts with TMED10, we performed lipid—protein pull-down
262 assays and detected a specific association between TMED10 and SM (Fig. 5k). To define the
263 interaction residues, we carried out molecular dynamics simulations using the TMED10
264  transmembrane domain (TMD) embedded in an SM-containing lipid bilayer (Supplementary
265  Video 1). These simulations identified three residues—L197, L200, and Q204—as recurrent
266  contact points for SM (Fig. 51,m). Functional mutagenesis demonstrated that Q204, rather than
267 L197 or L200, is essential for SM-dependent regulation of IL-13 secretion (Fig. 5n,0). We
268  therefore selected the Q204L mutant for further analysis. Although Q204L did not alter TMED10
269 localization (Extended Data Fig. 6a), it abolished SM binding (Fig. 5p) and eliminated SM-
270 induced oligomerization (Fig. 5q,r) and IL-1f translocation activity (Fig. 5s,t). These results
271 indicate that Q204 plays a direct and indispensable role in sphingomyelin binding.

272 TMED10 sphingomyelin sensing governs metabolic inflammation

273  To investigate the physiological significance of TMED10-mediated SM sensing, we generated
274  TMED109204/0204L knock-in mice (Extended Data Fig. 6b), in which a single amino acid
275 substitution disrupts SM binding without altering TMED10 expression or its localization to the
276 ERGIC in macrophages (Extended Data Fig. 6c,d). Despite normal localization, macrophages
277  from TMED10%204/Q204 mice displayed a dramatic reduction in PA-induced IL-1B release,
278  comparable to that observed in TMED10-deficient (Lyz2-Cre TMED10"") macrophages (Fig.
279  6a). These findings underscore the critical role of SM sensing in TMED10-dependent IL-1(3
280 secretion.

281  To further assess the in vivo relevance, we performed bone marrow transplantation (BMT)
282  experiments using WT, myeloid TMED10-KO (Lyz2-Cre TMED10""), and TMED10-Q204L
283  knock-in (TMED10%204/Q204L) donor cells, followed by HFD treatment of irradiated myeloid
284  TMED10-KO recipient mice (Fig. 6b,c). Notably, mice reconstituted with TMED10-Q204L
285 knock-in bone marrow phenocopied TMED10-KO recipients, exhibiting significantly lower
286 plasma IL-1PB levels, reduced adipose tissue inflammation as shown by histological analysis
287  and inflammatory gene expression (Fig. 6d-i, Extended Data Fig. 7a and Supplementary Table
288 5). Correspondingly, metabolic elastic genes as well as genes for adipogenesis and fatty acid
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289 metabolism were increased (Fig. 6h,i, Extended Data Fig. 7b and Supplementary Table 5).
290  Adipose insulin signaling is improved as indicated by enhanced Akt phosphorylation (Fig. 6j).
291 In addition, the TMED10-Q204L transplants also phenocopied TMED10-KO recipients with
292 increased insulin signaling and reduced lipid accumulation in liver (Extended Data Fig. 7c-e).
293 Consistent with reduced metabolic inflammation, TMED10-Q204L bone marrow—transplanted
294 mice showed improved systemic glucose tolerance (GTT) and insulin sensitivity (ITT)
295  comparable to TMED10-KO transplants (Fig. 6k).

296 Together, these results demonstrate that sphingomyelin sensing by TMED10 is essential for
297 macrophage-mediated metabolic inflammation, and that disruption of this lipid—protein
298 interaction confers protection against HFD-induced inflammatory and metabolic dysfunction.

299 Discussion

300 It has been shown that ATMs gradually transition into a metabolically activated state during
301  obesity®'53, These metabolically activated macrophages—Iargely corresponding to LAMs—
302 accumulate lipids from diverse sources, including free lipids®* 5, exosomes®, and dying
303 adipocytes®. LAMs exert dual functions in obese adipose tissue. On one hand, they mediate
304 lipid uptake, storage, and hydrolysis, thereby acting as a lipid-buffering system that helps
305 maintain adipose tissue homeostasis'%8%, On the other hand, LAMs can acquire pro-
306 inflammatory features that contribute to insulin resistance'?'316, Consistent with their
307 homeostatic role, global deletion of Trem2, a central lipid receptor in LAMs, largely abolishes
308 LAM function by impairing lipid uptake, leading to adipocyte hypotrophy and exacerbated
309 metabolic dysfunction'%860 These findings suggest that, rather than eliminating LAMs,
310  selectively inhibiting their pro-inflammatory activation may offer a more rational therapeutic
311  strategy for ameliorating metabolic disease.

312 Our study identifies a TMED10-SM lipid-sensing pathway that governs metabolic inflammation
313 in a specific LAM subset—MIM—which is a key driver of metabolic syndrome in obesity. In
314 contrast to the canonical GSDMD-dependent inflammasome pathway that triggers acute, high-
315 amplitude IL-1P release via pore formation, the TMED10-SM axis mediates a chronic, low-
316 grade IL-1B secretion through the THU unconventional secretion pathway likely followed by
317 GRASP55-mediated trafficking®!. This mechanism is tightly coupled to lipid remodeling under
318  metabolic stress, which generates bioactive SM species that directly bind TMED10 and initiate
319  persistent inflammatory signaling (Fig. 6l).

320 The exceptional sensitivity of TMED10 to SM (ECso0 ~0.5%) is physiologically significant. Given
321  that most SM is synthesized in the Golgi®?, while the ERGIC, the site of TMED10 activity,
322 contains minimal SM, this system allows precise detection of subtle fluctuations in local lipid
323 composition. This principle is reminiscent of cholesterol sensing in the ER, where cholesterol
324  level is low and ~5% cholesterol is the threshold to control SCAP-SREBP trafficking®364,
325 highlighting a broader paradigm of highly sensitive lipid-sensing systems within the secretory
326 pathway.

327  Notably, the SM-sensing glutamine (Q) residue is conserved across TMED family members®,
328  suggesting that TMED10’s mechanism may extend to other TMED-mediated unconventional
329 secretion pathways, consistent with reports of TMED2 binding SM®. Functionally, TMED10-SM
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330 sensing acts as a molecular hub initiating chronic metabolic inflammation, with broader
331 implications for disorders associated with lipid accumulation or sphingolipid dysregulation,
332  including neurodegeneration, atherosclerosis, cancer, and metabolic dysfunction-associated
333  steatohepatitis (MASH)257-%%, These findings raise the intriguing possibility that targeting the
334 TMED10-SM axis could modulate chronic inflammatory states more selectively than
335 conventional anti-inflammatory approaches, offering a novel therapeutic avenue for metabolic
336  and lipid-associated diseases.
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630 Methods
631 Mice

632  The mice experiments were approved by the Institutional Animal Care and Use Committees at
633  Tsinghua University. Mice were housed in ventilated cages in a temperature and light regulated
634  room in a SPF facility and received food and water ad libitum. TMED10" mice (C57BL/6J)%°
635 and TMED710%04/Q204L knock-in mice (C57BL/6J) were created using CRISPR-Cas9-mdiated
636  targeting by GemPharmatech Co. Ltd, China. GSDMD"" mice were originated from Dr. Feng
637  Shao as previously described?®. Mice with myeloid cell lineage-specific GSDMD or TMED10
638  deletion were generated via crossbreeding with Lyz2-Cre mice (C57BL/6J)"°, a kind gift from
639 Dr. Xiaoyu Hu lab at Tsinghua University. The genotyping primers were listed in Extended
640 Data Table 1. TMED10-Q204L mutation was validated by DNA sequencing. Metabolic
641  challenges were initiated in 6- to 8-week-old mice. Mice were fed either a standard chow diet
642  (10% kcal from fat) or a high-fat diet (HFD, 60% kcal from fat; Research Diets D12492) for up
643  to 20 weeks. Sepsis was induced in C57BL/6 male mice (8-12 weeks old) by intraperitoneal
644  injection of 25 mg/kg LPS?"7'. IL-1B in plasma and peritoneal lavage were measured by ELISA
645 12 hours after LPS challenge.

646 Cells

647  HEK293T, HelLa, U20S cells (from Dr. Randy Schekman) were maintained in Dulbecco’s
648  modified Eagle’s medium (DMEM) supplemented with 10% FBS at 37°C in 5% CO2. THP-1
649  cells (from Dr. Gong Cheng) and primary peritoneal macrophages were maintained in RPMI-
650 1640 supplemented with 10% FBS at 37°C in 5% CO2. TMED10-KO HEK293T, TMED10-KO
651  Hela and TMED10-KO THP-1 cells were generated using CRISPR-cas9 system as reported
652  previously?>"2. For protein purification in mammalian cells, 293F cells (from Dr. Shan Sun and
653  Dr. Sen-Fang Sui) were cultured in SMM293-TII (Sino Biological) at 37°C, 110 rpm with 5%
654 CO:a.

655  Reagents and antibodies

656  We obtained proteinase K (P8044), Anti-FLAG agarose (A2220) and LPS (L4130, from
657 Escherichia coli O111:B4) from sigma; protease inhibitor cocktail (11836145001) from Roche;
658 Phorbol 12-myristate 13-acetate (PMA, HY-18739), MCC950 (HY-12815), Ac-YVAD-cmk (HY-
659 16990) and Malabaricone C (Mal C, HY-N8518) from MCE; HPA-12 (H1553) from TCI;
660  Eliglustat (S7852) and GW4869 (S7609) from Selleck; Tert-Butyl methyl ether (MTBE,
661 B802535) from Macklin; Phenylmethylsulfonyl fluoride (PMSF; ST505) and BCA Protein Assay
662  Kit (P0012S) from Beyotime; DDM (1758-1350) from Inalco; 3xFLAG peptide from GL Biochem;
663 Optiprep (AS1114542) from Axis-Shield and DSS (21555) from Thermo. We purchased Ni NTA
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664  Beads 6FF (SA005500) and Glutathione Beads 4FF (SA010500) from Smart-Lifesciences;
665 Mouse IL-1B Precoated ELISA Kit (1210122), Human IL-13 Precoated ELISA Kit (1110122)
666  from Dakewe Biotech; Mouse IL-1 beta ELISA Kit (KE10003) from proteintech.

667  We purchased mouse anti-V5 antibody (V8012; IF, 1:500) and mouse anti-FLAG antibody
668 (F3165; WB, 1:5,000) from Sigma; rabbit anti-TMED10 antibody (15199-1-AP; WB, 1:2,000),
669  mouse anti-TMED10 antibody (67876-1-1g; IF, 1:200), rabbit anti-ERGIC53 antibody (13364-1-
670  AP; IF, 1:200) and rabbit anti-CERT antibody (15191-1-AP; WB, 1:2,000) from Proteintech;
671  rabbit anti-GSDMD antibody (Ab219800; WB, 1:2000), rat anti-F4/80 antibody (ab6640; ICC,
672 1:200; IF, 1:500) from Abcam; rabbit anti-AKT antibody (4691S, WB, 1:2000), rabbit anti
673 phospho-Akt (Ser473) antibody (4060S, WB, 1:2000), rabbit anti-V5 antibody (13202; IF, 1:500;
674  WB, 1:5,000), rabbit anti-HA antibody (3724; IF, 1:500; WB, 1:5,000) and mouse anti-GST
675  antibody (2624; WB, 1:10,000) from CST; rat anti-HA from Chromotek (7C9; IF, 1:500); mouse
676  anti-tubulin antibody (200608; WB, 1:10,000) and mouse anti-actin antibody (200068-8F10; WB,
677 1:5,000) from Zen Bioscience; mouse anti-ERGIC53 antibody (ENZ-ABS300-0100; WB,
678 1:4,000) from Enzo and mouse anti-T7 antibody (69522; WB, 1:5,000) from Novagen. Rabbit
679  anti-TMED10 antibody (for endogenous TMED10 detection in DSS crosslink assay; WB,
680 1:2,000) were purified by ABclonal. Rabbit anti-RPN1 antibody (WB, 1:5,000) were originated

681  from Dr. Randy Schekman and described previously?®73.
682 Primary peritoneal macrophages separation

683 Primary peritoneal macrophages were separated as described previously’. In brief, mice were
684  injected intraperitoneally with 2 mL of 4% thioglycollate broth medium (BD BBL, 211716). Three
685  days later, peritoneal cells were collected in PBS containing 10% FBS. The collected cells were
686  cultured in RPMI-1640 supplemented with 10% FBS, 100 units/ml penicillin, and 100 pg/ml
687 streptomycin for 3 hours. Non-adherent cells were gently washed away with PBS. The adherent
688 peritoneal macrophages were used for further experiments including IL-1f secretion detection

689  or immunofluorescence analysis.
690 Isolation of stromal vascular fractions (SVF) and macrophages from eWAT

691 Epididymal white adipose tissues were collected and digested with DMEM/F12 (HYCLONE,
692  sh30023.01) containing 1% BSA (Biodee, 100g-0332) and 1% collagenase | (Thermo,
693 17100017) at 37°C with shaking at 120 rpm for 30 min. After centrifugation at 500 x g for 10
694 min at 4°C, the SVF pellets were collected, filtered with 70 pm cell strainer, subjected to red
695 blood cell lysis and resuspended in PBS containing 2% FBS and 2 mM EDTA for further
696  experiments. To isolate adipose tissue macrophages (ATMs), F4/80+ macrophages were
697 separated from the SVF with a MagniSort Mouse F4/80 Positive Selection Kit (Thermo, 8802-

698  6863-74) according to the manufacturer’s instructions.
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699 Flow cytometry analysis

700  Cell suspensions prepared from the SVF were stained with indicated fluorescent-conjugated
701 antibodies for 30 min at 4°C in the dark. The antibodies used for macrophage analysis included:
702 F4/80-PE (CST, 64763S, 1:200), CD11b-eFluor 610 (eBioscience, 61-0112-80, 1:200) and
703  Zombie NIR™ Fixable Viability Kit (BioLegend, 423105, 1:500). Samples were then subjected
704  to flow cytometry analysis with BD LSRFortessa SORP (BD Biosciences). Data were analyzed
705 using the FlowJo V10.8.1 software.

706 Lipidomics analysis

707 ATMs were prepared as above. To obtain similar cell numbers, ATMs from 6 mice on ND or 1
708 mouse on HFD for 12 weeks were pooled for one sample. For lipid extraction from ATMs, we
709 used a modified methyl-tert-butyl ether (MTBE)/methanol method’. Briefly, cells were
710 resuspended in 300 pL methanol and vortexed for 1 min. Then 1 mL MTBE was added and
711 vortexed for 1 min. Then 250 pL H20 was added and vortexed for 1 min. The mixture was
712 allowed to stand for 5 min and vortex for 1min, which is repeated for 3 times. Then samples
713 were centrifuged at 8,000 rpm for 15 min. The upper layer was collected and dried by nitrogen.
714 Lipid samples were stored in —80°C freezer as dry pellets. Lipid pellets were re-dissolved in
715 150 pL dichloromethane/methanol (v:v=2:1) for LC-MS/MS.

716  LC-MS/MS method for lipid analysis was described previously’®’” and performed at facility
717 center of metabolomics and lipidomics in Tsinghua University. Briely, reverse phase
718  chromatography was selected for LC separation using Cortecs C18 column (2.1*100 mm,
719 2.7um, Waters). Mobile phase A was made by mixing 400 mL of HPLC-grade water containing
720  0.395 g of ammonium bicarbonate with 600 mL of HPLC-grade acetonitrile. Mobile phase B
721 contained 10% ACN and 90% IPA (v/v). Gradient elution was performed at a flow rate of 0.28
722 mL/min, and the column oven temperature was set to 40°C. The gradient was as follow: 0 min,
723 30%B; 3.0 min, 30% B; 4.5 min, 33% B; 7.0 min, 45% B; 8.0 min, 52% B; 11.0 min, 58% B;
724 14.0 min, 66% B; 17.0 min, 70% B; 21.0 min, 75% B; 23.0 min, 98% B; 30.0 min, 98% B; 30.5
725 min, 30% B; 35.0 min, 30% B. Data was acquired using Orbitrap Exploris 240 mass
726  spectrometer (Thermo, CA) coupled with UHPLC system Vanquish (Thermo, CA). The detailed
727 mass spectrometer parameters were as follows: spray voltage, 3.2 kV for positive and 2.8 kV
728  for negative; capillary temperature, 320 °C; sheath gas flow rate (arb),35; aux gas flow rate
729  (arb),10; mass range(m/z), 240-2000 for positive and 200-2000 for negative. Full MS
730  resolution, 60,000; MS/MS resolution, 15,000; NCE,15/30/45; duty cycle,1s.

731 For lipid identification, lipids were identified and quantified using LipidSearch 5.0 (Thermo
732 Fisher, USA). Lipid Search v5.0 contains 18 lipid species and more than 1,500,000 fragment

733  ions in the database. It allows lipid identification based on MS/MS match. Mass tolerance for
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734 precursor and fragment was set to 8 ppm and 10 ppm respectively. The displayed m-score
735  threshold was selected as 5 and grades A, B, C, D were all used for ID quality filter. All lipid
736  classes in database including 71 sub-species were chosen for identification. Adducts of +H,
737  +NH4 were applied for positive mode search and —H, +HCO3 were selected for negative mode
738 since ammonium bicarbonate was used in mobile phases. Only the lipids with chromatographic
739  area >5EG6 were considered as confident identification. 0.25 min retention time shift was allowed

740  for quantitation. The protein quantification of each sample was used for normalization.
741 Glucose and insulin tolerance test

742 For glucose tolerance test (GTT), the mice were fasted for 14 hours and intraperitoneally
743  injected with 1g/kg glucose solution. For the insulin-tolerance test (ITT), the mice were fasted
744  for 5 h and intraperitoneally injected with 0.8 U/kg insulin solution (Beyotime, P3376). Blood
745  samples for glucose measurement were collected from the tail vein at the indicated time points.

746  Glucose levels were assessed using a Sinocare Glucose Monitoring Kit.
747  Histological analysis

748 For hematoxylin and eosin (H&E) or immunohistochemistry (IHC) analysis, liver and adipose
749  tissues were dissected, fixed in 4% PFA, embedded in paraffin and sectioned (5 pm). For IHC
750  of adipose tissue, rehydrated sections were stained following Two-Step HRP Polymer Anti-Rat
751 IHC Detection Kit (ZSGB-BIO, PV-9004). Briefly, the slides were placed into sodium citrate
752  buffer (pH=6.0) and boiled for 15min at 98°C and washed with PBS three times. Next,
753 peroxidase was inactivated with 3% H202 for 10 min and washed with PBS three times. The
754 samples were blocked with 3% BSA for 30 min at room temperature, then the samples were
755 covered with the primary antibody at the indicated concentration overnight at 4°C. The next day,
756  the slides were washed with PBS three times, and incubated with secondary antibody for 1 h
757 at room temperature. Then the DAB Substrate Kit (ZSGB-BIO, ZL1-9017), was used for staining.
758 Hematoxylin was used for nuclear staining for 15 s. Finally, the samples were rinsed with
759  running water and put into the 75%, 85%, 95% and 100% ethanol for 10 s, sequentially washed
760  with 100% ethanol for dehydration. Samples were then rinsed in xylene for 1 min twice,

761 mounted with a coverslip and imaged. The quantification was performed using ImageJ.

762  For Oil Red O staining, liver tissues were dissected, fixed in 4% PFA, dehydrated in 30%
763  sucrose, embedded in OCT and sectioned (8 um). Then frozen liver sections were washed with
764 PBS and rinsed with 60% isopropanol for 1 min, stained in working Oil Red O solution for 10
765 min, and rinsed with 60% isopropanol for 1 min. Then slides were covered with aqueous

766  mounting gel and imaged. The quantification was performed using ImageJ.

767 Bone Marrow Transplantation
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768 Bone marrow transplantation was performed as previously described”. Briefly, to generate
769 irradiated chimeras, 5 weeks old Lyz2-Cre TMED10"" recipient mice received a lethal dose of
770 8 Gy radiation, followed by tail vein injection of 2 x 10 bone marrow cells from WT (TMED10""),
771 myeloid TMED10-KO (Lyz2-Cre TMED10") or TMED10-Q204L knock-in (TMED10%204L/Q204L)
772 mice. After 3 weeks of bone marrow transplantation (BMT), all mice were subjected to HFD

773  feeding for an additional 20 weeks.
774 RNA sequencing and data analysis

775 Liver and eWAT tissues were subjected to total RNA extraction and enrichment of mRNA, and
776 the library construction was carried out using an VAHTS® Universal V8 RNA-seq Library Prep
777  Kit. After quality control of the library, lllumina sequencing was carried out in illumina NovaSeq
778 X Plus 25B platform and high-quality reads were aligned via Hisat2 (v2.2.1). The expression
779 levels of individual genes were normalized to the fragments per kilobase million (FPKM) values
780  via HTSeq (v0.6.1). PCA (principal component analysis) were performed using Pcomp and

781 visualized with FactoMine in R.

782 Differential expression analysis of bulk RNA-seq count matrices was performed using DESeq2
783 in R. Raw gene-level counts were first filtered to remove lowly expressed genes (row sums <
784 10 across all samples), normalized using the median-of-ratios method, and fitted with a
785  negative binomial generalized linear model. Wald tests were used to estimate log, fold-changes
786 between conditions, with shrinkage estimation applied to dispersions and effect sizes according
787  to the DESeq2 workflow. For each pairwise comparison between experimental groups, we
788  generated a pre-ranked gene list by ordering all expressed genes according to the DESeq2

789  log; fold-change.

790  Gene set enrichment analysis (GSEA) was carried out on these pre-ranked lists following the
791  original GSEA framework’ using the GSEA implementation in the clusterProfiler package®.
792  Hallmark gene sets for Mus musculus (category “H”) were obtained from the Molecular
793  Signatures Database (MSigDB) via the msigdbr package®'. Only gene sets with sizes between
794 5 and 500 members were retained for analysis. Nominal P values were estimated by
795 permutation and adjusted for multiple testing using the Benjamini—Hochberg procedure; gene
796  sets with a false discovery rate (FDR) < 0.25 were considered significantly enriched, in

797 accordance with the original GSEA recommendations.

798  For gene set scoring and visualization, the inflammatory response gene set comprised //1b,
799  Il1a, II6, 1118, Tnf, Cd80, Cd68, Cd40, Ccl2, Ccl3, Ccl4, Ccl6, Cxcl2 and Cxcl1. The metabolic
800 elastic gene set comprised Angptl8, Irf4, Lep, Pnpla3, Dgat2, Thrsp, Acly, Pdk4, Fasn, Depp1,
801 Rbp7, Thbs1, Peg3, Gm5460, Scd2, Igfals, Mycl, Ptges, Trp53inp1 and Gpd1. For each bulk

802  RNA-seq sample, variance-stabilized counts obtained from DESeq2 were used as input to the
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803 GSVA R package to compute sample-wise enrichment scores for each gene set. Heatmaps
804  depict Z score—scaled expression values of individual genes within each set across samples.
805  Violin plots display the distribution of gene set scores for each experimental group. Statistical
806  comparisons of gene-set scores between groups were performed using two-sided Wilcoxon

807 rank-sum tests.
808 Single-cell RNA-seq data processing and analysis

809 Raw FASTQ files from single-cell RNA sequencing were processed using Cell Ranger (10x
810 Genomics) to generate gene—cell expression count matrices for each sample®2. The
811  resulting matrices were analyzed in R (version 4.3.2) using the Seurat package (version
812  4.2.1)88 Cells with fewer than 200 detected genes or more than 20% of reads mapping
813  to mitochondrial genes were excluded, and genes detected in fewer than 3 cells were
814 removed from the dataset. Putative doublets were identified and removed using the
815  DoubletFinder package (version 2.0.3)%° in combination with manual inspection of cluster-
816  specific expression profiles. After quality control and doublet removal, cells from all dietary
817  conditions (chow and different durations of high-fat diet feeding) were retained for
818  downstream analysis. Publicly available human adipose tissue single-cell datasets
819 (GSE156110)"® and mouse adipose tissue single-cell datasets (GSE128518)"" were

820  processed using the same pipeline and quality-control criteria.

821  Gene expression counts were normalized using log-normalization with a scale factor of
822 10,000, and the top 2,000 highly variable genes were identified for each sample using the
823  variance-stabilizing transformation implemented in Seurat. Datasets from different
824  samples and experimental conditions were then integrated using the canonical correlation
825  analysis—based integration framework to correct for batch effects®*. Principal component
826 analysis was performed on the integrated Seurat object, and the top 30 principal
827 components were used for dimensionality reduction and clustering. Unsupervised
828  clustering was carried out using a shared nearest-neighbor graph and the Louvain
829  algorithm, and the results were visualized using Uniform Manifold Approximation and
830  Projection (UMAP)®.

831  Cell clusters were annotated to major stromal and immune cell types (B cells, NK/T cells,
832  macrophages, dendritic cells (DCs), mast cells, neutrophils, fibro-adipogenic progenitors
833  (FAPs), and endothelial cells) using canonical marker genes and differentially expressed
834 genes (DEGs) identified by Seurat’s FindAllMarkers function. For focused analyses of

835  myeloid cells, macrophages were subsetted based on marker expression and reclustered.

836  Spatial transcriptomics dataset and label transfer
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837  Spatial transcriptomic data of gonadal WAT from mice subjected to diet-induced obesity
838  were obtained from publicy datasets (GSE198012)'2. Spot—gene count matrices and the
839  corresponding histology images were downloaded from the public repository and
840  processed using the Seurat workflow. Low-quality spots with low total UMI counts, low
841  numbers of detected genes or high mitochondrial transcript fractions were excluded based
842  on the distribution of these metrics. The remaining spots were log-normalized in the same

843  manner as the single-cell RNA-seq data.

844  To map ATM states onto the spatial transcriptomic data, we used our integrated mouse
845 scRNA-seq dataset as a reference and performed anchor-based label transfer using
846  Seurat package (FindTransferAnchors/TransferData). ATMs from the reference object
847  were used to identify transfer anchors with spatial spots enriched for myeloid signatures,
848  and predicted ATM cluster labels and associated module scores were obtained for each
849  spot. Crown-like structures (CLSs) were identified on the matched H&E-stained images
850 based on characteristic adipocyte morphology and dense macrophage aggregates, and
851  were manually annotated by an observer blinded to the transferred cluster labels. For each
852  ATM-labeled spot, the euclidean distance to the nearest CLS was calculated from the spot
853  coordinates and the centroid of the annotated CLS and converted to micrometres using
854  the array-specific scale factor. Distances were then grouped by ATM cluster to quantify the

855  spatial enrichment of macrophage subsets.
856  Metabolic pathway activity analysis

857  For the quantification of metabolic pathway activity at single-cell resolution, we used the
858  scMetabolism R package on the integrated Seurat objects (scMetabolism)®’. Pathway
859  activity scores for KEGG metabolic pathways were calculated for each cell using the
860  sc.metabolism. Seurat function with default parameters, starting from the normalized
861  Seurat object. This function returns the same Seurat object with an additional assay named
862  “METABOLISM”, in which the pathway activity matrix (cells x pathways) is stored. For
863  downstream analyses and visualization, pathway activity scores were extracted from the
864  METABOLISM assay and summarized by group (dietary condition or ATM cluster). In the
865  bubble plots, bubble color represents the mean normalized pathway activity for a given
866  pathway within each group, and bubble size indicates the proportion of cells in that group

867  with non-zero activity.
868 Inflammatory-response gene-set scoring

869  For the quantification of inflammatory activity at the single-cell resolution, we constructed
870 an inflammatory-response gene set based on KEGG pathway annotations
871  HALLMARK_INFLAMMATORY_ RESPONSE)®'¢ and the full gene list is provided in
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872  Supplementary Table 6). Differentially expressed genes among ATM clusters were first
873  identified using Seurat’s FindMarkers/FindAllMarkers functions, and KEGG pathway
874  enrichment analysis was performed using the KEGG database®. Per-cell enrichment
875  scores for the inflammatory gene set were then calculated using the AddModuleScore
876  function in Seurat, which summarizes the relative expression of genes in the module

877  compared with control genes of matched expression levels.
878  Gene set variation analysis (GSVA) / single-sample GSEA

879  For the evaluation of coordinated changes in metabolic and inflammatory pathways across
880  ATM clusters, we performed single-sample gene set enrichment analysis using the GSVA
881  R/Bioconductor package®. Log-normalized expression values from the integrated Seurat
882  object were used as input for the gsva function (method = "ssgsea"), thereby computing
883  an enrichment score for each gene set in each cell. Gene sets were curated mainly from
884  the MSigDB Hallmark collection, including fatty acid metabolism, cholesterol homeostasis,
885  oxidative phosphorylation, glycolysis, IFNa response, IFNy response, IL2—STAT5 signaling,

79,81 For

886  TNFa signaling via NFkB, lipid transport, and lipid metabolic process terms
887  visualization, single-cell enrichment scores were normalized within ATM clusters to obtain
888  cluster-level enrichment scores, and then displayed using heatmaps in which color

889  represents the mean enrichment score per pathway and cluster.
890 Plasmids and shRNA oligos

891  The TMED10, mlIL-1B expression and purification plasmids were described previously?®. The
892  TMED10 mutations were generated by mutagenesis PCR. SGMS1 and SMPD2 were PCR
893 amplified from cDNA and inserted into FUGW vectors with a HA tag at the C-terminus for
894  mammalian cell expression. Sphingomyelinase was PCR amplified from the Staphylococcus
895  aureus genome which was a gift from Dr. Jing-Ren Zhang (Tsinghua University) and was
896 inserted into the pET28a vector. pET28a-Eqt-SM was a gift from Dr. Yong-Qiang Deng
897  (Southern Medical University).

898  For shRNAs, the plasmids (pLKO.1 lentivirus vector as a backbone) were purchased from the
899 Center of Biomedical Analysis, Tsinghua University. The targeting sequences of these shRNAs

900 were shown in the Extended Data Table 2.
901 Transfection and lentiviral transduction

902  Transfection of plasmids into cells was performed using polyethylenimine (PEI) (Polysciences,
903 Inc.) for HEK293T and NEOFECT (Neofect (Beijing) biotech Co. Ltd.) or X-tremeGENE HP
904  (Roche) or Sage LipoPlus (Sage (Beijing) Chemical Co. Ltd.) for U20S and HelLa according to

905 the manufacture's protocols. For lentiviral transduction, pLKO.1 plasmids carrying Control,
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906 SMPD2, SGMS1, SGMS2 or CERT target sequence was transfected into HEK293T cells along
907  with lentiviral packaging plasmids pMD2.G and psPAX2 (Addgene) using PEI to produce
908 lentiviral particles to infect HEK293T cells.

909 Preparation of PA-BSA and SM-BSA complexes

910 For PA-BSA complex preparation, fatty-acid-free BSA (yeasen, 36104ES25) was dissolved in
911  PBS to 200 mg/ml. 20 mM palmitic acid (PA, sigma, P0500) was dissolved and saponified in
912 0.1 M NaOH at 70°C, and then mixed with an equal volume of BSA solution at 55°C with shaking
913  for 1 h to allow for complex formation. The final PA-BSA solution is clear and the molar ratio of
914 PA:BSA is approximately 6:1. For the preparation of SM-BSA complex®', fatty-acid-free BSA
915  was dissolved in PBS to 1 mM. A solution of 10 mg/ml of SM (the molar ratio of SM to BSA was
916 1:1) in absolute ethanol was added in small aliquots to a stirred solution of 1 mM BSA at 37°C
917 until a clear solution was achieved. The PA-BSA and SM-BSA complexes were filtered through
918  0.22 pm syringe filters (Pall Corporation) and replenished in culture medium at the indicated

919 concentration and time durations, with an equal concentration of BSA solution as vehicle control.
920 Secretion and serum lipid determination

921 For determination of mIL-1B secretion in HEK293T cells?®, cell culture medium was replaced
922  with DMEM containing indicated drugs for 1.5 hours. The medium was collected and
923  concentrated (20-fold) by a 10 kDa Amicon filter (Millipore). Cells were lysed in SDS-PAGE
924 loading buffer. Immunoblot was performed to determine the amounts of cargoes in the medium

925 and cell lysate.

926  The IL-1PB secretion in THP-1 cells, peritoneal macrophages or mice plasma were detected
927  using the ELISA kit. For the detection of IL-18 secretion in WT and TMED10-KO THP-1 cells,
928  THP-1 cells were first differentiated by incubation with 50 nM PMA for 20 h, and then treated
929 with 50-150 yM PA-BSA and 5 yM MCC950, 9 uyM Ac-YVAD-cmk, 10 yM Mal C or 10 uyM
930 Eliglustat in complete medium for 16 h. For the detection of IL-1B secretion in peritoneal
931 macrophages, cells were induced with 100 ng/ml LPS in RPMI-1640 plus 10% FBS followed
932 by 5 uM Nigericin or 2 mM ATP treatment for 60 min in complete medium. Alternatively, the
933 peritoneal macrophages were treated with PA-BSA and other drugs at indicated concentration
934 and time durations. The medium from THP-1 cells or peritoneal macrophages were collected

935  for IL-1B concentration determination using ELISA kit.

936  Plasma glycerol (APPLYGEN, E1002-125), plasma NEFA (Nanjing Jiancheng, A042-2-1) and
937  hepatic ftriglyceride (Nanjing Jiancheng, A110-1-1) were measured according to the

938 manufacturer’s instructions.

939 Immunofluorescence
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940 Immunofluorescence was described previously?®. Briefly, cells were washed twice with PBS
941 and then fixed with 4% paraformaldehyde at room temperature for 20 min (for general staining)
942  or cold methanol at -20°C for 8 min (for endogenous TMED10 and ERGIC53 staining). The
943 cells were washed twice with PBS and permeabilized with 0.2% Triton X-100 diluted in PBS for
944 3 min. After washing with PBS three times, cells were blocked by 10% FBS diluted in PBS at
945 room temperature for 1 h and followed by primary antibody incubation at room temperature for
946 2 h or 4°C overnight. Cells were washed with PBS three times and followed by secondary
947 antibody incubation at room temperature for 1 h. Fluorescence images were acquired at room
948 temperature using the Olympus FV3000 laser scanning confocal microscope equipped with a

949 1.3 NA 60x oil-immersion objective and FV31S acquisition software.
950 In situ Duolink

951  Duolink PLA kit was purchased from sigma (DU092002, DUO92004, DU092014) and the
952 assay was performed according to the product manual. For self-interactions of TMED10
953  detection, equal amounts of TMED10-V5 and TMED10-3*FLAG were co-expressed without or
954  with SGMS1-HA or SMPD2-HA in U20S cells. After 24 h transfection, the cells were washed
955 twice with PBS and then incubated with 4% cold paraformaldehyde at room temperature for 20
956 min. The cells were washed twice with PBS and permeabilized with 0.2% Triton X-100 diluted
957 in PBS for 3 min. The cells were blocked, incubated with primary antibodies and PLA probes
958 followed by ligation and amplification using the recommended conditions according to the
959 manual. The anti-rat secondary antibodies (for HA tag staining) were added during the ligation
960  step. Images were acquired using the Nikon AX confocal microscope and quantification was

961 performed using ImageJ.
962 Protein expression and purification

963 For the expression of GST-tagged TMED10, his-tagged T7-mIL-1B-FLAG, mIL-1RA,
964  sphingomyelinase, Eqt-SM, the constructs were transformed into the E.coli strain BL21 (DE3)
965  plysS. After transformation, a single colony was picked and grown in 600 yL LB medium at
966  37°C with shaking at 220 rpm for approximately 6 hours. The pre-culture was further expanded
967 to 50 mL and incubated overnight under the same conditions. The next day this culture was
968  scaled up to 1 L LB medium followed by incubating at 37°C with shaking at 220 rpm until the
969 ODeoo reached 0.6-0.8. A final 100 uM IPTG was added to the culture and the protein
970 expression was induced at 16°C with shaking at 160 rpm overnight. After expression, the

971 bacterial pellets were collected and stored at -80°C for subsequent purification.

972 For the expression of FLAG-tagged TMED10, the protein was expressed in HEK293F
973 suspension cells (from Dr. Shan Sun and Dr. Sen-Fang Sui). The encoding DNA of TMED10
974  was cloned into a vector pCMV-3*FLAG containing an N-terminal 3*FLAG tag after the signal
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975  sequence. When the density of HEK293F cells reached 2.0 x 10° cells/ mL, the cells were
976  transfected with the expression plasmids using PEI. 1.5 mg of plasmids and 3 mg of PEI, each
977 in 25 mL of fresh medium, were premixed for 30 min, and then 50 mL of the mixture was added

978  to 800 mL of cell cultures. The transfected cells were grown for 48 hours and then harvested.

979 For purification of GST-tagged TMED10, cell pellets were lysed in lysis buffer (50 mM Tris 8.0,
980 5 mM EDTA,150 mM NaCl,10% glycerol, 0.5 mg/mL lysozyme, 0.3 mM DTT and 1 mM PMSF)
981  and then rotated at 4°C for 0.5 h. Triton X-100 was added to achieve 1% final concentration
982 and incubated for an additional 10 minutes. The lysates were sonicated and then centrifuged
983 at 20,000 rpm for 1 h. The supernatant was collected and incubated with 0.5 mL of Glutathione
984  Sepharose 4FF beads at 4°C for 2 h. After incubation, the beads were washed with 15 bed
985  volumes of wash buffer (PBS with 0.1% Triton X-100). The proteins were eluted with elution
986 buffer (50 mM Tris 8.0, 250 mM KCI, 25 mM glutathione, and 0.1% Triton X-100), concentrated
987 by Amicon® Ultra Filters (Merck) and further purified by size-exclusion chromatography (SEC)
988  on a Superose 6 increase column (Cytiva) in SEC buffer (PBS with 0.1% TritonX-100). The

989 proteins were snap-frozen by liquid nitrogen and stored at -80°C.

990 For purification of his-tagged mIL-1RA, mIL-1B, Eqt-SM and sphingomyelinase, cell pellets
991  were lysed in lysis buffer (2 x PBS, 10 mM imidazole, 0.5 mg/mL lysozyme, 0.3 mM DTT and
992 1 mM PMSF) and then rotated at 4°C for 0.5 h. The lysates were sonicated and centrifuged at
993 20,000 rpm for 1 h. The supernatant was incubated with 0.5 mL Ni-NTA agarose at 4°C for 2
994  h. The agarose was washed with 10 bed volumes of wash buffer containing 0.1% Tween20 and
995  wash buffer (2 x PBS, 25 mM imidazole) followed. The proteins were eluted with elution buffer
996 (2 x PBS, 250 mM imidazole). The proteins were concentrated by Amicon® Ultra Filters (Merck)
997  and desalted by PD MiniTrap G-25 (Cytiva). For his-tagged mIL-1RA and his-tagged mIL-1p,
998 the endotoxin was removed by incubating purified proteins with endotoxin removal resin
999  (Thermo, Cat#88274) overnight at 4°C. The proteins were snap-frozen by liquid nitrogen and
1000  stored at -80°C. To test biological activity, HEK-Blue™ IL-13 cells (InvivoGen) were treated
1001  with 5 pg/ml his-tagged mIL-1RA, 0.1 pug/ml his-tagged miL-18, or both, and SEAP activity in
1002 medium was detected using QUANTI-Blue™ Solution (InvivoGen, rep-gbs).

1003 For purification of FLAG-tagged TMED10, collected cells were solubilized in lysis buffer (20 mM
1004 HEPES (pH = 7.4), 150 mM NaCl, 1% DDM, and 1 mM PMSF) at 4°C for 1 h. After
1005  centrifugation at 35,000 rpm at 4°C for 1 h, the supernatant was collected and incubated with
1006  FLAG affinity resin (Sigma-Aldrich) at 4°C for 1 h. Then the resin was washed with 15 bed
1007  volumes of wash buffer (20 mM HEPES (pH = 7.4), 150 mM NaCl, 0.02% DDM). The protein
1008  was eluted using elution buffer (20 mM HEPES (pH = 7.4), 150 mM NaCl, 0.02% DDM, and 0.1
1009 mg/mL 3xFLAG peptide). The eluted proteins were concentrated using Amicon® Ultra Filters

1010  (Merck) and further purified by size-exclusion chromatography (SEC) on a Superose 6 Increase
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1011  Column (Cytiva) in SEC buffer (20 mM HEPES (pH = 7.4), 150 mM NacCl, 0.02% DDM). Finally,

1012  the proteins were snap-frozen by liquid nitrogen and stored at -80°C.
1013 Lipid preparation for proteoliposome reconstitution

1014 DOPC (1,2-dioleoyl-sn-glycero-3-phosphocholine, Cat# 850375P), DOPE (1,2-dioleoyl-sn-
1015  glycero-3-phosphoethanolamine, Cat# 850725P), Liver PI (L-a-phosphatidylinositol, Cat#
1016  840042P), Lyso PC (1-oleoyl-2-hydroxy-sn-glycero-3-phosphocholine, Cat# 840072P), Brain
1017  SM (Brain, Porcine, Cat# 860062P), Cholesterol (ovine, Cat# 700000P), Ceramide (Brain,
1018 Porcine, Cat# 860052P), Cardiolipin (1',3-bis[1,2-dioleoyl-sn-glycero-3-phospho]-glycerol
1019  (sodium salt), Cat# 710335P), 18:0 CPE (Ceramide phosphoethanolamine, Cat# 860066P),
1020 16:0 SM (d18:1/16:0, Cat# 860584P), 18:0 SM (d18:1/18:0, Cat# 860586P), 24:1 SM
1021  (d18:1/24:1, Cat# 860593P)-d9 were purchased from Avanti Polar Lipids. 20:0 SM (d18:1/20:0,
1022  Cat# 24450) and 22:0 SM (d18:1/22:0, Cat# 24451) were purchased from Cayman Chemical.

1023 Lipids were initially dissolved in chloroform at specific concentration. Then, the lipids were
1024 mixed with specific molar concentration as indicated. The mixtures were dried with a nitrogen
1025 stream and further dried at 37°C for 1 h. The lipid films were hydrated in HEPES-KAc buffer
1026 (20 mM HEPES (pH 7.2), 150 mM potassium acetate) and incubated at 220 rpm at 37°C for 1
1027  htoresuspend thoroughly. The hydrated lipids could be aliquoted and stored at -80°C for further
1028 use.

1029 In vitro translocation and protease K protection assay

1030 Proteoliposome reconstitution was performed according to a previous study with minor
1031 modifications?®. 1 mg lipids for each reaction tube were frozen in liquid nitrogen and thawed in
1032  a 42°C water bath alternately for 10 times. Triton X-100 was added to achieve a final
1033 concentration of 0.05%, and the mixture was rotated at 4°C for approximately 30 minutes. Next,
1034 10 ug recombinant proteins (GST-TMED10) were added to the lipid solution (10 ug recombinant
1035 proteins, 1 mg lipids, and 0.05% Triton X-100 in 400 uL solution) and the mixture was rotated
1036  at4°C for 1 h. Each solution was incubated with 6-8 mg Bio-Beads SM2 Resin (Bio-Rad) which
1037  was pre-equilibrium by HEPES-KACc reaction buffer to remove the detergent and rotated at 4°C
1038  for approximately 1 h. This step was repeated 5 times (10 mg beads used during the third
1039 incubation, which was extended overnight). The Bio-Beads were removed by 1,500 x g
1040 centrifugation at 4°C each step and after the last time, the liposome solution were froze in liquid
1041  nitrogen and thawed in a 42°C water bath alternately for 5 times. To remove the free proteins,
1042 a membrane flotation step was performed. For each 350 uL solution, 350 yL 50% OptiPrep
1043 (diluted in HEPES-KACc buffer) was added. The mixture was overlaid with 560 yL 20% OptiPrep
1044  and 105 uL HEPES-KACc buffer, centrifuged at 100,000 x g for 2 h and the top 200 pL fraction
1045 was collected and diluted with 100 uL HEPES-KAc buffer as proteoliposome solution.
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1046 For the in vitro protein translocation, 10 pg cargo proteins (T7-mIL-1B-FLAG) were pretreated
1047  with 4 M urea for at least 30 min and diluted into proteoliposome solution (150 pL system) and
1048 then incubated at 30°C for 1 h. After incubation, 5 pL reaction buffer was taken as input and
1049  the left was added 150 pyL 50% OptiPrep (diluted in HEPES-KAc buffer). The mixture was
1050 overlaid with 240 uL 20% OptiPrep and 45 yL HEPES-KAc buffer, centrifuged at 45,000 rpm
1051  for 2 h and the 90 L top fraction was collected and aliquoted into 3 fractions. All fractions were
1052 loaded to 50 uL. The first fraction was a control, the second and the third fractions were digested
1053 by 10 ug/ml protease K without or with 0.1% Triton X-100 for 20 min on ice. The reactions were
1054  stopped by 1 mM PMSF and incubated for 10 min on ice. Finally, 2 x SDS loading buffer was

1055  added and the samples were heated at 100°C for 10 min followed by immunoblot analysis.
1056  Analysis of gene expression level

1057 Gene expression was determined by qRT-PCR. Total RNA was isolated using Trizol (Beyotime)
1058  and cDNA was generated using ABScript Il RT Master Mix for gqPCR (ABclonal) according to
1059  the manufacturer’s protocols. The samples were amplified using a CFX-96 machine (Bio-Rad)
1060 and SYBR Green T5 Fast gPCR mix (TSINGKE, China) according to the manufacturer’s
1061 instructions. Data were normalized to the Actin control. The sequences of the primers were

1062 listed in the Extended Data Table 3.
1063  Lipid extraction and dot blot of sphingomyelin

1064  Total cell lipids were extracted as previously reported?®. Detailly, cells were collected and
1065 washed with PBS. After centrifugation at 600 x g for 5 min, the cell pellets were resuspended
1066  in PBS (cell pellets: PBS =1: 1). Then, chloroform/methanol solution was added to the cell
1067 suspension (chloroform: methanol: cell suspension = 8: 4: 3) and vortexed for 30 s. The
1068 mixtures were shaken for 0.5 h at 37°C. The chloroform phase was collected and evaporated
1069 by a stream of nitrogen gas over the lipid solution and further dried at room temperature for 0.5
1070 h. Dried lipid was dissolved in ethanol. The phosphatidylcholine content of the lipid solution was
1071 measured by a standard kit (Wako) to normalize lipid concentration. Equal amounts of lipids
1072  were spotted on the nitrocellulose membrane and dried at room temperature for 0.5 h. The blot
1073  was first blocked for 2 h in 4% (w/v) fatty-acid-free bovine serum albumin (BSA) dissolved in
1074  TBS (20 mM Tris-HCI, 150 mM NaCl, pH 7.6), and then incubated with Flag-tagged equinatoxin
1075 Il (Eqt-SM)®? at final 2.5 pg/ml concentration, anti-Flag primary antibodies and secondary
1076  antibodies conjugated with horseradish peroxidase for 2 h in 4% BSA dissolved in TBST (TBS-
1077  0.1% Tween-20). The membrane was finally washed with TBST for three times (each times for

1078 10 min).

1079 Crosslink assay
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1080 DSS was dissolved in DMSO before use. The in vivo DSS crosslink assay was described
1081 previously?®. Peritoneal macrophages and adipose tissue macrophages were isolated as
1082  described above. The macrophages or TMED10-KO HEK293T cells were washed with PBS
1083 (pH = 8.0) three times and then suspended in PBS (pH = 8.0) with the indicated concentration
1084  of DSS at room temperature for 30 min. Then the reactions were quenched by 20 mM Tris (pH
1085 =7.5) at room temperature for 15 min followed by sample preparation for immunoblot analysis.
1086  For in vitro DSS crosslink assay, the lipid mixtures were generated with PC, or PC
1087 supplemented with 10% SM which was treated with or without 0.5 uM sphingomyelinase when
1088 recombinant protein added. The indicated concentration of DSS was added to the

1089 proteoliposomes and the following steps were done as stated above.
1090 Biotin sphingomyelin pulldown

1091 Biotin sphingomyelin pulldown was performed according to a previous report with minor
1092 modifications®. 5 ug recombinant proteins and 2 uM biotin sphingomyelin (Echelon, S-400B)
1093  was incubated in pulldown buffer (50 mM Tris 7.4, 1 mM EDTA,150 mM NacCl, 0.2% Triton X-
1094 100, 1 mM PMSF) and rotated at 4°C for 2 h. Streptavidin sepharose beads (Cytiva, 17511301)
1095  were blocked with 10% FBS diluted in pulldown buffer for 1 h and then the beads were added
1096  to the pulldown system and further rotated at 4°C for 3 h. The samples were centrifuged at
1097 1,000 x g for 1 min at 4°C, and the beads pellets were washed four times with pulldown buffer.

1098  After washing, the pellets were treated with SDS loading buffer followed by immunoblot analysis.
1099  All-atom molecular dynamics (MD) simulations

1100  The structure of TMED10-TMD with adjacent sequences of luminal and cytosolic regions
1101  (sequence: RDTNESTNTRVLYFSIFSMFCLIGLATWQVFYLRRFFKAKK, TMD is underlined)

1102  was truncated from full-length TMED10 in AlphaFold protein structure database®. In order to
1103 study the interactions between TMED10-TMD and sphingomyelin, we set up the system where
1104  TMED10-TMD was inserted in the lipid bilayer with 90% POPC (1-palmitoyl-2-oleoyl-sn-
1105  glycero-3-phosphocholine) and 10% SSM (stearoyl sphingomyelin) solvated in water with
1106  0.15M NaCl. For the MD simulation, the CHARMM36m all-atom force field®® and GROMACS
1107  software® (version 2019.4) were used to run for 100 ns with the time step of 2 fs. Nose-Hoover
1108  heat bath®"®® of 310 K (coupling constant T = 1 ps) and semi-isotropic Parrinello-Rahman
1109 pressure bath® of 1 bar (coupling constant T = 5 ps and compressibility = 4.5 x 10 bars™ for
1110  all dimensions). All system snapshots and movies were rendered by VMD'®, The contacts
1111 between TMED10-TMD and SM was calculated using GROMACS tool gmx mindist®.

1112  Quantification and statistical analysis
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1113 For the quantification of cargoes secretion, the relative level of cargoes in medium were
1114 normalized to cargoes and TMED10 expression level in corresponding cell lysate. For the
1115  quantification of in vitro translocation, the relative cargoes translocation efficiency were
1116 normalized to TMED10 level on proteoliposomes. For the quantification of homo-oligomer ratio
1117 in the crosslink assay, the level of homo-oligomers were normalized to the level of
1118 corresponding monomer. The immunoblotting images were acquired using ChemiDoc Imaging
1119  System (Bio-Rad). The analysis and quantification of bands were performed using Image Lab
1120  and ImageJ software. The statistical information of each experiment, including the statistical
1121 methods, the P-values, and numbers (n), were shown in the figures and corresponding legends.

1122 Statistical analyses were performed using GraphPad Prism.
1123 Data availability

1124  All data are available in the paper or the supplementary materials. Further information and
1125 requests for reagents should be directed to Lead Contact, Liang Ge
1126  (liangge@mail.tsinghua.edu.cn). Plasmids and cell lines generated in this study will be made
1127 available upon request. We may require a payment and/or a completed Materials Transfer
1128  Agreement in case there is potential for commercial application. Source data are provided with

1129 this paper.
1130  Code availability

1131 All code reported in this manuscript are available on request.
1132
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1133 Extended Data Table 1. List of genotyping primers used in this study.

Gene Sequence
Lyz2-Cre(F) GCTGCCAGAATTTCTCTCATCAC
Lyz2-Cre(R) ACATGTCCATCAGGTTCTTGCG
Lyz2-CreWT(F) GAAGCCATTATTTCACAGCAGCA
Lyz2-CreWT(R) CTGTCCCTGTTCTGAGCGATT
Tmed10 flox(F) TGTCAGGAAGCGACTCCTTTT
Tmed10 flox(R) CCAGCTTAAAGGGGATCTCAG
Gsdmd flox(F) TTCCCTCCAGCCCTACTTGC
Gsdmd flox(R) TGAGCATCCTTCCCAACCTG
Tmed10-Q204L(F) AGACCTATGGACAGAATGAGGCTAAC
Tmed10-Q204L(R) AAGGACTTCAAGCAGTTGAGCACA

1134

1135 Extended Data Table 2. List of shRNAs used in this study.

shRNA Target sequences
Control shRNA CGTGATCTTCACCGACAAGAT
SGMS1 shRNA-1 GCGTTGGACAACAATAAAGAA
SGMS1 shRNA-2 GCGAAGAATAATGAAGCTCAT
SGMS1 shRNA-3 CCTCAGTAGGCAAGTTAAATA
SGMS2 shRNA-1 GCTGTAACCAAAGGTATAGTT
SGMS2 shRNA-2 CCAGTGATCCTACGAACACTT
CERT shRNA-1 GCAAAGCGAGAGTATCCTAAA
CERT shRNA-2 GCAACACTTTCTCATTGTATT
SMPD2 shRNA-1 CGACAGAAGGACATCTACCTA
SMPD2 shRNA-2 CAGGAGGTCAATGGCTTATAT
1136
1137 Extended Data Table 3. List of qPCR primers used in this study.
Gene Sequence
Actin(F) CATGTACGTTGCTATCCAGGC
Actin(R) CTCCTTAATGTCACGCACGAT
SGMS1(F) TGTGCCGAGTCTCCTCTGA
SGMS1(R) CCGTTCTTGTGTGCTTCCAAA
SGMS2(F) TCCTACGAACACTTATGCAAGAC
SGMS2(R) CCGGGTACTTTTTGGTGCCT
CERT(F) AAAGGCCACAGTTTACGTGAG
CERT(R) CTTCTGTAGCGTGTCAACTTGT
SMPD2(F) TCAATGGCTACCCCTACATGA
SMPD2(R) ATGCCACTTAGATGGAGCACC

1138
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Fig. 1 | TMED10, but not GSDMD, mediates HFD-induced metabolic inflammation and
dysfunction. a, ELISA analysis of IL-1B secretion in LPS-primed (50 ng/mL) peritoneal
macrophages following treatment with Nigericin (5 uM, 1 h) or ATP (2 mM, 1 h). b, IL-1B in
plasma and peritoneal lavage measured by ELISA 12 h after LPS challenge (25 mg/kg, male)
(n=5). ¢, Survival curves after LPS challenge (n=8). d, GSDMD"" mice and Lyz2-cre GSDMD"!
mice (male) were fed on ND or HFD for 12 weeks. Plasma IL-13 was determined by ELISA
(n=6). e, H&E staining of eWAT for quantification of adipocyte size and crown-like structure
(CLS) percentage (n=8). f, Heatmap analysis of genes involved in inflammatory response in
eWAT. g, gene-set score of (f). h, GTT(n=7-9) and ITT (n=6-8) in mice of ND or HFD. i,
TMED10" mice and Lyz2-cre TMED10"" mice (male) were fed on ND or HFD for 12 weeks.
Plasma IL-1B was determined by ELISA (n=6). j, H&E staining of eWAT for quantification of
adipocyte size and crown-like structure (CLS) percentage (n=5-8). k, IHC for F4/80*
macrophages in eWAT (n=6). I, Flow cytometric analysis of F4/80* CD11b* macrophages in
eWAT (ATM). m, PCA of eWAT from RNA-seq. n-q, Heatmap analysis of genes involved in
inflammatory response (n) or metabolic elastic genes (p) with corresponding gene-set score in
eWAT (o, q). r, Western blot analysis of pAKT (S473) and quantification in e WAT after insulin
administration for 15 min (n=7-8). s, Plasma glycerol and NEFA levels in mice fasting for 16 h
(n=8-9). t, GTT (n=7-8) and ITT (n=6-7) in mice of ND or HFD. NS, non-significant; *P < 0.05;
**P < 0.01; **P < 0.001; ****P < 0.0001. All values are presented as mean * s.e.m. P values
were calculated by unpaired two-tailed Student's t-test (a, b, d, e, i, k, I, r, s), two-sided
Wilcoxon rank-sum test (g, o, q), one-way ANOVA followed by Tukey'’s test (h, j, t) or log-rank
(Mantel-Cox) test (c).
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Fig. 2 | TMED10 couples sphingomyelin metabolism to the emergence of metabolically
inflammatory macrophages in obese adipose tissue. a, Bubble plot showing lipid
metabolism pathway activity in eWAT adipose tissue macrophages (ATMs) from mice fed chow
(0 weeks) or a high-fat diet (HFD) for 6, 12, or 18 weeks. Circle size indicates the proportion of
cells with pathway activity, and color indicates mean pathway activity. b, Dot plot depicting
expression of gene modules associated with IL-1B release, lipid uptake, and sphingomyelin
metabolism in eWAT ATMs at the indicated HFD durations. Dot size represents the fraction of
expressing cells, and color indicates scaled average expression. ¢, UMAP visualization of
mouse eWAT ATMs, colored by four transcriptionally defined clusters (ATM clusters 1-4). d,
Bar graph showing relative frequency of each ATM cluster among total ATMs over the course
of HFD feeding. e, Violin plots of an inflammatory-response gene-signature score in ATM
clusters 1—4. f, Bubble plot showing lipid metabolism pathway activity in each ATM cluster;
circle size indicates the proportion of cells with pathway activity, and color indicates mean
pathway activity. g, Dot plot depicting expression of gene modules associated with IL-13
release, lipid uptake, and sphingomyelin metabolism in ATM clusters 1—4. Dot size represents
the fraction of expressing cells, and color indicates scaled average expression. h, Spatial
transcriptomics of eWAT from long-term HFD-fed mice showing the spatial distribution of ATM
clusters relative to crown-like structures (CLSs; left), and violin plots quantifying the distance
from each ATM to the nearest CLS (right). i, UMAP plots of human adipose tissue macrophages
from metabolically normal and obese individuals, colored by four transcriptionally defined
clusters (ATM clusters 1-4). j, Bar graph showing relative frequency of human ATM clusters in
normal versus obese visceral adipose tissue. k, Violin plots of inflammatory-response gene-set
scores in human ATM clusters 1-4. |, Bubble plot showing lipid metabolism pathway activity in
each human ATM cluster; circle size indicates the proportion of cells with pathway activity, and
color indicates mean pathway activity. m, Dot plot depicting expression of gene modules
associated with IL-1B release, lipid uptake, and sphingomyelin metabolism in human ATM
clusters. Dot size represents the fraction of expressing cells, and color indicates scaled average
expression. Statistical tests were performed using two-sided Wilcoxon rank-sum tests (e, h, k).
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Fig. 3 | Sphingomyelin enhances TMED10-mediated IL-1B secretion. a, The TMED10
protein level in macrophages from TMED 10" and Lyz2-cre TMED10"" mice. b, ELISA analysis
of IL-1B secretion following 150 pM PA stimulation for 24 h in peritoneal macrophages of
TMED10" and Lyz2-cre TMED 10" mice mice. ¢, The GSDMD protein level in macrophages
from GSDMD" and Lyz2-cre GSDMD™ mice. d, ELISA analysis of IL-1B secretion following
150 uM PA stimulation for 24 h in peritoneal macrophages of GSDMD"" and Lyz2-cre
GSDMD"™ mice. e, Schematic diagram of the sphingomyelin metabolism pathway with
inhibitors of key processes labeled. f, ELISA analysis of IL-1B secretion following 150 uM PA
stimulation for 24 h in peritoneal macrophages of TMED10" and Lyz2-cre TMED10"" mice.
The macrophages were treated without or with 10 yM Malabaricone C (Mal C), 20 uM HPA-12,
5 yM MCC950 or 10 pg/ml Ac-YVAD-cmk for 24 h. g, The TMED10 protein level in WT and
TMED10 KO THP-1 cells. h, ELISA analysis of IL-1§ secretion following 50 uM PA stimulation
for 16 h in WT or TMED10 KO THP-1 cells treated without or with 10 yM Mal C. i, ELISA
analysis of IL-1B secretion following 50 uM PA stimulation for 16 h in WT or TMED10 KO THP-
1 cells treated without or with 5 pM MCC950 or 9 yM Ac-YVAD-cmk. j, ELISA analysis of IL-1(3
secretion following 150 uM PA stimulation for 16 h in WT THP-1 cells treated without or with 10
MM Mal C or 10 uM Eliglustat. k, Secretion of mIL-1 in HEK293T cells treated with 20 yM BSA
(control) or 20 uM BSA-SM complex for 16 h. SM in these cells was determined by the SM
probe Eqt-SM using a dot blot assay (bottom). I, Quantification of mIL-1B secretion from (k) (n
= 3). m, Secretion of mIL-1f in HEK293T cells without or with TMED10-V5 expression. The
cells were treated without or with 10 yM Malabaricone C (Mal C), 5 yM HPA-12 or 10 uM
Eliglustat for 16 h. n, Quantification of mIL-1§ secretion from (m) (n = 3). o, Secretion of mIL-
1B in HEK293T cells treated without or with 5 yM GW4869 for 16 h. SM was determined by
Eqt-SM (bottom). p, Quantification of mIL-1f secretion from (o) (n = 3). q, HEK293T cells with
mIL-1 expression were infected by lentiviral particles packaged with indicated shRNA vectors.
96 hours post infection, mIL-1B secretion was analyzed. SM was determined by Eqt-SM
(bottom). r, Quantification of secretion from (q) (n = 3). s, QPCR analysis of gene knockdown
efficiency from (q) (n = 3). t, Secretion of mIL-13 in HEK293T with control, SGMS1 or SMPD2
expression to modulate the cellular SM level. SM was determined by Eqt-SM (bottom). u,
Quantification of secretion from (t) (n = 3). All values are plotted as mean * s.e.m. P values
were calculated by two-tailed Student’s t-test (b, d, f, j, I, p, u), one-way RM-ANOVA with
Fisher’s test (n, r) or two-way ANOVA with Tukey’s test (h, i).
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Fig. 4 | TMED10 responds to medium chain SM. a, A schematic diagram showing the
proteoliposomes with specific lipid composition were generated for the in vitro miL-13
translocation assay. b, In vitro mIL-13 translocation assay using control or GST-TMED10
proteoliposomes of PC, or PC plus 10% SM. ¢, Quantification of the mIL-13 translocation
efficiency (mean + s.e.m.) in GST-TMED10 proteoliposomes of PC, or PC plus other lipids as
shown in (b) and (Extended Data Fig. 5b-e). P values were calculated by one-way ANOVA (n
= 4). Chol: cholesterol; LPC: lyso PC; CL: cardiolipin; Cer: ceramide. d, In vitro mIL-13
translocation assay using control or GST-TMED10 proteoliposomes of PC, PC plus SM, or PC
plus SM treated with sphingomyelinase. e, Quantification of the miL-1[ translocation efficiency
(mean £ s.e.m.) from (d). P values were calculated by one-way ANOVA (n = 5). f, Quantification
of the miL-1B translocation efficiency (mean + s.e.m.) in GST-TMED10 proteoliposomes
generated with PC (Ctr), PC plus 1% SM (C18:0) or 1% CPE (C18:0) as shown in (Extended
Data Fig. 5f). P values were calculated by one-way ANOVA (n = 4). g, The workflow of ATMs
separation and lipidomics analysis using ND and HFD mice. h, The relative intensity of different
classes of lipids in ATMs from ND and HFD mice. The corresponding full name of these lipids
are shown in Supplementary Table 4. i, The relative intensity of different subtypes of SM in
ATMs from ND and HFD mice. j, In vitro mIL-1f translocation assay using GST-TMED10
proteoliposomes generated with PC (Ctr) or PC plus 1% SM with different length of acetyl fatty
acid chains. k, Quantification of mIL-1f translocation efficiency (mean = s.e.m.) from (j). P
values were calculated by one-way ANOVA (n = 4). I, m, The dose response of TMED10-
mediated mlL-1( translocation activated by C16:0 (I) or C18:0 (m) SM as shown in (Extended
Data Fig. 5g) and (Extended Data Fig. 5h), respectively. Data are plotted as the mean £ s.e.m.
from four independent experiments. The curve is typically fitted using the Four-parameter
logistic equation with EC50 (the half-way response concentration) and Hill slope (a parameter
describing the steepness of the curve) indicated.
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Fig. 5| SM binds and increases TMED10 oligomerization. a, Duolink PLA assay performed
with U20S cells co-expressing TMED10-V5, and TMED10-3*FLAG, without or with SGMS1-
HA or SMPD2-HA to test the self-interaction of TMED10. Scale bar, 10 um. b, Quantification of
the percentage of duolink signal area to cell area (mean + s.e.m.). P values were calculated by
one-way ANOVA (> 50 cells from three independent experiments). ¢, Crosslink assay
performed in HEK293T cells co-expressing HA-TMED10 without or with SGMS1-V5, or
SMPD2-V5. d, Quantification of the ratio of TMED10 oligomers to its monomer from (c) (mean
+ s.e.m.). P values were calculated by one-way ANOVA (n = 4). e, Crosslink assay performed
in 3*FLAG-TMED10 proteoliposomes generated with PC, PC plus SM, or PC plus SM treated
with sphingomyelinase. 3*FLAG-TMED10 was purified using the 293F expression system. f,
Quantification of the ratio of TMED10 oligomers to its monomer from (e) (mean + s.e.m.). P
values were calculated by one-way ANOVA (n = 3). g, Crosslink assay using adipose tissue
macrophages separated from ND and HFD mice. h, Quantification of the ratio of TMED10
oligomers to its monomer from (g) (mean £ s.e.m.). P value was calculated by two-tailed t test
(n = 3). i, Crosslink assay using peritoneal macrophages treated without or with 200 uM PA or
200 pM PA plus 10 yM Malabaricone C (Mal C) for 16 h. j, Quantification of the ratio of TMED10
oligomers to its monomer from (i) (mean * s.e.m.). P values were calculated by one-way
ANOVA (n = 3). k, Pull-down assay performed between biotin-SM and GST or GST-TMED10.
The data are representative of three independent experiments. I, Molecular dynamics
simulations showing the interaction between the TMED10 transmembrane domain (TMD) and
SM at three representative time points with Q204 highlighted. The corresponding video is
shown in (Supplementary Video 1). m, Quantification of contact scores between TMED10
transmembrane domain residues and SM from (l). n, Secretion of mIL-13 in TMED10-KO
HEK293T cells co-expressing control, TMED10-WT or mutants without or with SGMS1-HA. o,
Quantification of mIL-1f secretion from (n) (mean + s.e.m.). P values were calculated by one-
way ANOVA (n = 4). p, Pull-down assay performed using biotin-SM and GST, GST-TMED10,
or GST-TMED10-Q204L. The data are representative of three independent experiments. q,
Crosslink assay performed in TMED10-KO HEK293T cells co-expressing HA-TMED10 or HA-
TMED10-Q204L, without or with SGMS1-V5. r, Quantification of ratio of TMED10 oligomers to
its monomer from (q) (mean % s.e.m.). P values were calculated by one-way ANOVA (n = 5).
s, In vitro mIL-1B translocation assay using control, GST-TMED10 or GST-TMED10-Q204L
proteoliposomes generated with PC, or PC plus 10% SM respectively. t, Quantification of the
relative translocation efficiency of mIL-13 from (s) (mean £ s.e.m.). P values were calculated
by one-way ANOVA (n = 4).
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Fig. 6 | TMED10-Q204L mutant alleviates HFD-induced metabolic inflammation and
dysfunction. a, ELISA analysis of IL-1(3 secretion in peritoneal macrophages following 150 uM
PA stimulation for 24 h from WT (TMED10"), KO (Lyz2-cre TMED10"") or TMED10-Q204L
knock-in (TMED 109204L/Q204L) mice. b,c, Scheme of bone marrow transplantation (BMT) assay.
d, ELISA analysis of plasma IL-1B (n=11) from KO (Lyz2-cre TMED10"") mice transplanted
with bone marrows of WT (TMED10"), KO (Lyz2-cre TMED10"") or Q204L knock-in
(TMED109204/Q204L) mice after HFD. e, H&E staining of eWAT for quantification of adipocyte
size and CLS percentage (n=8-10). f, IHC for F4/80+ macrophages in eWAT (n=7). g, PCA of
eWAT from RNA-seq. h,i, Heatmap analysis (h) of genes involved in inflammatory response or
metabolic elastic genes with corresponding gene-set score (i) in eWAT. j, Western blot analysis
of pAKT (S473) and quantification in e WAT after insulin administration for 15 min (n=3). k, GTT
(n=6) and ITT (n=6-8) of indicated BMT mice fed with HFD. NS, non-significant; */# P < 0.05;
**[H# P < (0.01; ***/#* P < 0.001; ****/## P < 0.0001. All values are presented as mean * s.e.m.
P values were calculated by one-way ANOVA followed by Tukey'’s test (a, d, e, f, j, k), or two-
sided Wilcoxon rank-sum test (i). I, A model comparing GSDMD-mediated acute inflammation
with TMED10-mediated chronic metabolic inflammation. During bacterial infection, acute
inflammation is driven by the rapid release of IL-1B from macrophages, a process triggered by
gasdermin-D—mediated pore formation. In contrast, metabolic inflammation is characterized by
a chronic, low-grade inflammatory response in which macrophages accumulate lipids, resulting
in altered sphingomyelin composition. Specifically, an increase in medium-chain SM species
promotes TMED10 oligomerization and activation—likely occurring at the ERGIC—which in
turn enables a slow, sustained release of IL-1B. This mechanism underlies the persistent
inflammatory tone associated with metabolic disease.
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Extended Data Fig. 1 | Myeloid TMED10 deficiency mitigates HFD-induced metabolic
inflammation and metabolic dysfunction independent of body or WAT weights. Male
TMED10" mice and Lyz2-cre TMED10"" mice were fed on HFD for 12 weeks. The following
analyses were performed, including: a, Body weights (n=6); b, Fat mass content (n=8); ¢, H&E
staining of SWAT; d, eWAT and sWAT weights(n=6); e, Percentage of white blood cells (n=3);
f, g, GSEA analysis of indicated biological processes from bulk RNA-seq of eWAT shown in
(Fig. 1m-q). All values are presented as mean + s.e.m. P values were calculated by unpaired
two-tailed Student’s t-test (b, d) or permutation testing adjusted for multiple comparisons using
the Benjamini-Hochberg procedure (f, g).
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Extended Data Fig. 2 | Myeloid TMED10 deficiency alleviates HFD-induced hepatic lipid
accumulation and metabolic function. Male TMED 10" mice and Lyz2-cre TMED 10" mice
were fed on ND or HFD for 12 weeks. The following analyses were performed, including: a,
Liver weight (n=5-6). b, H&E staining of liver. ¢, Liver TG (n=6-9). d, Oil Red O staining of liver
(n=5-7). e, PCA of liver from RNA-seq. f, g, Heatmap analysis (f) of genes involved in
inflammatory response or metabolic elastic genes with corresponding gene-set score (g) in liver.
h, Western blot analysis of pAKT (S473) and quantification in liver after insulin administration
for 15 min (n=6). All values are presented as mean + s.e.m. P values were calculated by
unpaired two-tailed Student’s t-test (d, h), two-sided Wilcoxon rank-sum test (g), or one-way
ANOVA followed by Tukey’s test (a, c).
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Extended Data Fig. 3 | IL-1B is the major pro-inflammatory cytokine accounting for the
effect of TMED10 deficiency. Male TMED 10" mice and Lyz2-cre TMED10"" mice were fed
on HFD for 4 weeks, then mice were intraperitoneally injected with 10 mg/kg IL-1RA or PBS
every other day for 8 weeks. The following analyses were performed, including: a, H&E staining
of eWAT for quantification of adipocyte size and crown-like structure (CLS) percentage (n=6-
7). b, c, Western blot analysis of pAKT (S473) and quantification in eWAT (b) and liver (c) after
insulin administration for 15 min (n=3). d, H&E staining of liver. e, Liver TG (n=5-7). f, Oil Red
O staining of liver (n=7-9). g, GTT (n=9) and ITT (n=7). NS, non-significant; */*/* P < 0.05;
**HSS P < 0.01; ***/##538 P < 0.001; ****/###/3%5% P < 0.0001. All values are presented as mean
+ s.e.m. P values were calculated by one-way ANOVA followed by Tukey’s test (a-c, e-g).
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Extended Data Fig. 4 | Single-cell definition of adipose stromal cell populations and
conserved ATM subsets in mouse and human adipose tissue. a, UMAP visualization of
stromal vascular cells from mouse eWAT colored by major cell types (B cells, NK/T cells,
macrophages, dendritic cells (DCs), mast cells, neutrophils, fibro-adipogenic progenitors (FAP),
and endothelial cells) identified by canonical markers. b, Dot plot of representative marker
genes for each stromal cell type shown in (a); dot size indicates the percentage of cells
expressing the gene, and color denotes scaled average expression. ¢, Bar graph showing the
relative frequency of each stromal cell type in eWAT across increasing durations of HFD
feeding (0, 6, 12, and 18 weeks). d, Dot plot of marker genes defining four transcriptionally
distinct ATM clusters (1-4) in mouse eWAT shown in (Fig. 2c-g). Dot size indicates the
percentage of cells expressing the gene, and color denotes scaled average expression. e,
Heatmap of enrichment scores for lipid metabolic and inflammatory pathways (lipid transport,
fatty acid metabolism, cholesterol homeostasis, peroxisome, oxidative phosphorylation,
glycolysis, IFNa/IFNy responses, IL-2—STAT5 signaling, and TNFa—NFkB signaling) in mouse
ATM clusters 1-4. f, UMAP visualization of myeloid populations from human adipose tissue,
showing neutrophils, macrophages, monocytes, and three DC subsets (DC_1-3). g, Dot plot
of representative marker genes for human neutrophil, macrophage, monocyte, and DC subsets
shown in (f); dot size indicates the percentage of cells expressing the gene, and color denotes
scaled average expression. h, Dot plot of representative marker genes for human ATMs
clusters (1-4) shown in (Fig. 2i-m); dot size indicates the percentage of cells expressing the
gene, and color denotes scaled average expression. i, Heatmap of enrichment scores for lipid
metabolic and inflammatory pathways (lipid transport, fatty acid metabolism, cholesterol
homeostasis, peroxisome, oxidative phosphorylation, glycolysis, IFNa/IFNy responses, 1L-2—
STATS signaling, and TNFa—NFkB signaling) in human ATM clusters 1-4.
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Extended Data Fig. 5 | Protein purification and effect of lipids for TMED10-mediated IL-
1B translocation. a, Coomassie blue staining of GST-TMED10, GST-TMED10-Q204L,
Sphingomyelinase (SMase), Equinatoxin 1l (Eqt-SM) and T7-mIL-1B-FLAG purified from E. coli
expression system; and 3*FLAG-TMED10 purified using the 293F mammalian expression
system. b-e, In vitro miL-18 translocation assay using control or GST-TMED10
proteoliposomes generated with PC, or PC plus 10% other lipids (PI, SM, PE, Cholesterol, lyso
PC, cardiolipin and ceramide). Chol: cholesterol; LPC: lyso PC; CL: cardiolipin; Cer: ceramide.
f, In vitro mIL-1p translocation assay using control or GST-TMED10 proteoliposomes generated
with PC (Ctr), PC plus 1% SM (C18:0) or 1% CPE (C18:0). g, h, In vitro mIL-1( translocation
assay using GST-TMED10 proteoliposomes generated with PC, or PC plus indicated
concentration of C16:0 (g) or C18:0 (h) SM.
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Extended Data Fig. 6 | Localization and expression of TMED10-Q204L mutant. a,
Immunofluorescence of TMED10 KO HelLa cells co-expressing EGFP-ERGIC-53 with
TMED10-WT or Q204L mutant using anti-V5 antibodies. Scale bar, 10 ym. b, Scheme of
TMED10-Q204L knock-in mice generation. ¢, d, The protein level (c) and localization (d) of
endogenous TMED10 and Q204L mutant in peritoneal macrophages separated from WT and
TMED10-Q204L knock-in mice.
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Extended Data Fig. 7 | TMED10-Q204L mutant alleviates HFD-induced adipose tissue
inflammation and metabolic dysfunction, and hepatic metabolic dysfunction. a, b, GSEA
analysis of indicated pathways from bulk RNA-seq of eWAT from bone marrow transplantation
mice as shown in (Fig. 6g-i). c, Western blot analysis of pAKT (S473) and quantification in liver
after insulin administration for 15 min (n=3). d, H&E staining of liver. e, Oil Red O staining of
liver (n=6). All values are presented as mean * s.e.m. P values were calculated by permutation
testing adjusted for multiple comparisons using the Benjamini—-Hochberg procedure (a, b), or
one-way ANOVA followed by Tukey’s test (c, e).



