

1 A Sphingomyelin-Sensing Pathway Governing Metabolic Inflammation

2 Authors

3 Jianfei Zheng^{1†}, Chunling Xu^{2†}, Zhuo Wang^{2†}, Tao Yao^{3,4†}, Haodong Wang^{1,5†}, Xubo Lin⁶,
4 Kangling Zhu^{1,7}, Yurong Liu¹, Dong Peng², Fengwu Chen¹, Zhewen Qin^{3,4}, Min Zhang^{2*}, Bo
5 Shan^{3,4*}, and Liang Ge^{1*}

6 Affiliation

7 ¹State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences,
8 Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua
9 University, Beijing, 100084, China.

10 ²School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China.

11 ³Zhejiang Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang Key
12 Laboratory of Frontier Medical Research on Cancer Metabolism, and Institute of Translational
13 Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310029, China.

14 ⁴Institute of Fundamental and Transdisciplinary Research, Cancer Center, Zhejiang
15 University, Hangzhou, Zhejiang, China.

16 ⁵Department of Biochemistry and Biophysics, Weill Cornell Medical College, 1300 York Ave,
17 New York, NY 10065, USA

18 ⁶Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing
19 100191, China

20 ⁷Academy for Advanced Interdisciplinary Studies, Beijing, Peking University, 100871, China.

21 *Corresponding author. Email: zhangmin143@mail.tsinghua.edu.cn; boshan@zju.edu.cn;
22 liangge@mail.tsinghua.edu.cn

23 †These authors contributed equally to this work.

24 Abstract

25 Obesity-associated metabolic inflammation is driven by lipid-laden macrophages that release
26 proinflammatory cytokines such as interleukin-1 β , yet how macrophages sense lipid overload
27 to trigger inflammation remains unclear. Here, we identify sphingomyelin sensing as a key
28 mechanism linking lipid metabolism to inflammatory activation. We show that macrophages
29 detect specific sphingomyelin species to induce metabolic inflammation through the TMED10-
30 channeled unconventional secretion (THU) pathway, a recently discovered non-lytic route for
31 cytokine release distinct from GSDMD-dependent pyroptosis. Single-cell transcriptomic
32 profiling revealed a metabolic inflammation macrophage subset with enhanced lipid uptake,
33 active sphingomyelin metabolism, and elevated TMED10 expression, marking a population
34 tuned to metabolic stress and inflammation. A high-fat diet feeding induced a shift toward
35 medium-chain sphingomyelin species in the adipose tissue macrophages, which potently
36 activated TMED10 and promoted IL-1 β secretion via the THU pathway. TMED10 directly binds
37 sphingomyelin through its transmembrane domain, with residue Q204 being essential for this
38 interaction. TMED10 displays high sensitivity to medium-chain sphingomyelin ($EC_{50} \approx 0.5\%$),
39 underscoring its role as a precise lipid sensor. Mutation of Q204 disrupted sphingomyelin

40 binding, impaired IL-1 β release, and protected mice from metabolic inflammation. Together,
41 these findings establish a TMED10-sphingomyelin axis as a molecular circuit that senses lipid
42 composition to drive chronic inflammation, revealing new therapeutic opportunities for obesity
43 and other lipid-associated inflammatory disorders.

44

45 **Main**

46 Obesity, affecting over one billion individuals worldwide, lies at the core of the global metabolic
47 disease epidemic¹. A major pathological consequence of obesity is chronic, low-grade
48 inflammation—referred to as metabolic inflammation—driven by lipid-engorged macrophages
49 within adipose tissue that secrete proinflammatory cytokines such as interleukin-1 β (IL-1 β)²⁻⁷.
50 The persistent production of these cytokines leads to systemic metabolic dysfunction, including
51 insulin resistance and dyslipidemia⁸⁻¹⁰. A substantial body of evidence links lipid metabolic
52 rewiring to the functional remodeling of heterogeneous adipose tissue macrophages (ATMs)
53 during obesity¹¹⁻¹⁸; however, the mechanistic connections between lipid metabolism and
54 macrophage activation—particularly their inflammatory responses leading to metabolic
55 inflammation—remain poorly defined.

56 In contrast to the limited understanding of chronic inflammation in obesity, bacteria-induced
57 acute inflammation is well characterized and is predominantly mediated by Gasdermin D
58 (GSDMD)—dependent pore formation in macrophages, a process that typically culminates in
59 pyroptotic cell death and drives the rapid release of proinflammatory cytokines such as IL-1 β ¹⁹⁻²². Notably, obesity-associated chronic inflammatory states and GSDMD-mediated acute
60 inflammation share several upstream signaling modules, including Toll-like receptor
61 engagement, inflammasome activation, and caspase-dependent processing²³⁻²⁵. The
62 convergence of these pathways prompted us to investigate whether GSDMD also contributes
63 to cytokine release in macrophages experiencing metabolic stress-induced chronic
64 inflammation.

65 **GSDMD is dispensable for high-fat diet–induced metabolic inflammation**

66 To assess the role of macrophage GSDMD in metabolic inflammation, we generated *Lyz2*–cre
67 *GSDMD*^{fl/fl} mice, in which GSDMD is specifically deleted in myeloid lineage cells, including
68 macrophages. Consistent with previous reports¹⁹⁻²¹, GSDMD-deficient macrophages exhibited
69 markedly reduced IL-1 β release in response to LPS plus nigericin or ATP stimulation (Fig. 1a),
70 recapitulating acute inflammatory conditions. *In vivo*, GSDMD myeloid cell lineage-specific
71 knockout significantly decreased IL-1 β levels in both plasma and peritoneal fluid following LPS
72 challenge and prolonged the survival of LPS-treated mice (Fig. 1b,c), confirming the
73 established role of GSDMD in acute inflammation^{19,26,27}.

74 We next examined whether GSDMD in macrophages contributes to obesity–induced chronic
75 metabolic inflammation. Surprisingly, plasma IL-1 β levels were comparable between control
76 (*GSDMD*^{fl/fl}) and *Lyz2*–cre *GSDMD*^{fl/fl} mice after long-term high-fat diet (HFD) feeding (Fig. 1d).
77 Loss of macrophage GSDMD didn't alter adipocyte hypotrophy or crown-like structure (CLS)
78 formation in epididymal white adipose tissue (eWAT) (Fig. 1e). In agreement, transcriptomic
79 profiling revealed no significant changes in inflammatory gene expression in GSDMD-deficient

81 mice (Fig. 1f,g and Supplementary Table 1). Furthermore, systemic metabolic testing showed
82 that *Lyz2*-cre *GSDMD*^{f/f} and control mice displayed comparable glucose tolerance and insulin
83 sensitivity under both normal chow diet (ND) and HFD feeding, as determined by glucose
84 tolerance tests (GTT) and insulin tolerance tests (ITT) (Fig. 1h). Collectively, these findings
85 indicate that GSDMD-mediated inflammatory cytokine release, which drives acute inflammation,
86 is not required for HFD-induced metabolic inflammation, suggesting the involvement of
87 alternative macrophage secretory mechanisms.

88 **TMED10 regulates HFD-induced metabolic inflammation**

89 Our previous work identified a non-lytic IL-1 β release pathway, termed TMED10-channeled
90 unconventional secretion (THU), in which TMED10 forms a protein translocator that mediates
91 IL-1 β transport into the ER–Golgi intermediate compartment for vesicular secretion^{28,29}. To
92 explore its role in metabolic inflammation, we generated *Lyz2*-cre *TMED10*^{f/f} mice with myeloid
93 lineage–specific TMED10 deletion and subjected them to HFD feeding to induce obesity
94 (Extended Data Fig. 1a). Notably, despite comparable body weight gain and fat mass between
95 TMED10-deficient and control (*TMED10*^{f/f}) mice (Extended Data Fig. 1a,b), macrophage
96 TMED10 depletion resulted in an approximately 50% reduction in plasma IL-1 β levels following
97 HFD-induced obesity (Fig. 1i). HFD-driven macrophage accumulation in eWAT was markedly
98 attenuated in TMED10-deficient mice, as evidenced by fewer CLSs and reduced adipose tissue
99 macrophages detected by immunostaining and flow cytometric analysis (Fig. 1j-l). Importantly,
100 these changes occurred independently of total fat mass, adipose depot distribution, adipocyte
101 hypertrophy and white blood cell constitution (Extended Data Fig. 1b-e), highlighting a specific
102 role of TMED10 in regulating the inflammatory response of ATMs during obesity. Consistently,
103 transcriptomic profiling of obese adipose tissue further confirmed that macrophage TMED10
104 depletion resulted in substantially altered adipose transcriptome (Fig. 1m), with a pronounced
105 repression of inflammatory gene expression (Fig. 1n,o, Extended Data Fig. 1f and
106 Supplementary Table 2).

107 Of note, genes involved in adipose metabolic elasticity³⁰, adipogenesis, and fatty acid
108 metabolism were upregulated in eWAT (Fig. 1p,q, Extended Data Fig. 1g and Supplementary
109 Table 2), suggesting a metabolically healthier phenotype in obese TMED10-deficient mice. In
110 agreement, insulin signaling was more robustly activated in obese eWAT of TMED10-deficient
111 mice (Fig. 1r). Beyond adipose tissue, livers of obese TMED10-deficient mice exhibited reduced
112 weight, alleviated hepatic steatosis, and diminished lipid accumulation (Extended Data Fig. 2a-d). Liver
113 transcriptomic profiling revealed broad alterations, including downregulation of genes
114 associated with inflammation and lipid synthesis (Extended Data Fig. 2e-g and Supplementary
115 Table 3), alongside enhanced Akt phosphorylation in response to insulin stimulation (Extended
116 Data Fig. 2h).

117 Relative to controls, HFD-fed *Lyz2*-cre *TMED10*^{f/f} mice displayed reduced plasma glycerol and
118 non-esterified fatty acid levels (Fig. 1s), as well as improved glucose tolerance and insulin
119 sensitivity (Fig. 1t), reflecting enhanced systemic metabolic health upon macrophage TMED10
120 deficiency. Together, these findings demonstrate that myeloid lineage TMED10 promotes HFD-
121 induced metabolic inflammation and systemic metabolic dysfunction, whereas its loss confers
122 both metabolic and inflammatory protection.

123 **IL-1 β is the major pro-inflammatory cytokine accounting for the effect of TMED10
124 deficiency**

125 IL-1 β is a key pro-inflammatory cytokine produced by macrophages, and its release is regulated
126 by TMED10^{29,31}. Previous work indicated a direct involvement of IL-1 β in insulin resistance^{32,33}.
127 Pharmacological inhibition of IL-1 β signaling in control (*TMED10*^{f/f}) mice using the IL-1 receptor
128 antagonist (IL-1RA)³⁴ resulted in a comparable reduction of macrophage infiltration and CLSs
129 in adipose tissue after HFD treatment as observed in *Lyz2*-cre *TMED10*^{f/f} mice (Extended Data
130 Fig. 3a). Moreover, the combination of IL-1RA treatment and TMED10 deficiency did not
131 produce additional effects, indicating that TMED10 and IL-1 β act within the same inflammatory
132 pathway (Extended Data Fig. 3a).

133 Consistently, IL-1RA administration in control mice enhanced Akt phosphorylation in both
134 adipose tissue and liver (Extended Data Fig. 3b,c), reduced hepatic lipid accumulation
135 (Extended Data Fig. 3d-f), and improved systemic glucose metabolism as assessed by GTT
136 and ITT (Extended Data Fig. 3g), to a similar extent as in *Lyz2*-cre *TMED10*^{f/f} mice. Again,
137 combined IL-1RA treatment in *Lyz2*-cre *TMED10*^{f/f} mice did not further improve metabolic
138 parameters (Extended Data Fig. 3b-g). A similar protective effect of IL-1RA against
139 hyperglycemia was also reported before, supporting our conclusion³⁵.

140 Together, these findings demonstrate that TMED10-mediated IL-1 β release is a principal
141 contributor to HFD-induced metabolic inflammation and associated metabolic defects in our
142 system.

143 **Coupling of lipid uptake, sphingomyelin metabolism, and IL-1 β release in a specialized
144 macrophage subtype**

145 Given that the metabolically detrimental effects of macrophage TMED10 were most evident in
146 obesity, we asked whether TMED10 participates in the metabolic rewiring of ATMs upon HFD
147 feeding, particularly with respect to lipid metabolism. As expected, multiple lipid metabolic
148 pathways were substantially altered in ATMs from mice under varying durations of HFD feeding,
149 based on previously published single-cell transcriptomic data¹¹ (Fig. 2a and Extended Data Fig.
150 4a-c). Genes involved in fatty acid, triglyceride, and general lipid metabolism were progressively
151 upregulated with increasing HFD exposure (Fig. 2a). Notably, sphingolipid and
152 glycosphingolipid metabolism in ATMs were markedly amplified in ATMs from long-term HFD-
153 fed mice, whereas pathways related to overall phospholipid metabolism showed the opposite
154 trend (Fig. 2a), suggesting a specific contribution of sphingolipid pathways to metabolic
155 dysfunction. Remarkably, genes linked to sphingomyelin (SM, a major sphingolipid) metabolism,
156 lipid uptake, and TMED10-regulated unconventional secretion (including *Tmed10*, *Rab1a*,
157 *Rab1b*, and *Rab2a*²⁸) exhibited strong co-upregulation in adipose macrophages following HFD
158 treatment (Fig. 2b), indicating functional interplay between SM metabolism and TMED10
159 activity in inflammatory ATMs. We next focused on sphingolipid metabolism, as
160 glycosphingolipid pathways were later found not to influence IL-1 β release (see below).

161 Although a growing body of work has connected lipid metabolic rewiring to functional
162 remodeling of heterogeneous ATMs in the context of obesity^{11-18,36}, the mechanistic link between
163 lipid metabolism and macrophage activation, particularly inflammatory responses, remains

164 unclear. To address this, we examined macrophage heterogeneity in lean and obese adipose
165 tissue, and identified four major subtypes (Cluster 1-4) in eWAT based on transcriptomic
166 features (Fig. 2c-g and Extended Data Fig. 4d, e). Cluster 1 corresponds to a resident
167 macrophage population enriched for phagocytic markers (e.g., *Lyz2*) and exhibiting
168 intermediate expression of lipid-uptake genes such as *Cd36* and *Trem2* (Fig. 2g and Extended
169 Data Fig. 4d) suggesting a lipid-associated macrophage (LAM)-like subset. Cluster 2 comprises
170 a perivascular macrophage population characterized by high expression of *Lyve1* and
171 *Cd163*^{13,36} (Extended Data Fig. 4d). Cluster 3 represents a LAM subset with elevated
172 expression of lipid-metabolic genes (e.g., *Fabp4*, *Fabp5*) together with the highest levels of
173 lipid-uptake markers (*Cd36*, *Trem2*)¹¹ (Fig. 2g and Extended Data Fig. 4d). Cluster 4 defines a
174 proliferative macrophage population marked by robust *Mki67* expression (Extended Data Fig.
175 4d). Importantly, Cluster 3--predominantly detected in eWAT after long-term HFD feeding--
176 exhibited co-enrichment of SM metabolism, lipid uptake, and TMED10-pathway genes,
177 accompanied by a pronounced inflammatory gene signature (Fig. 2d-g and Extended Data Fig.
178 4e). Spatial transcriptomic analysis¹² further revealed that Cluster 3 macrophages localized
179 primarily proximal to CLSs in adipose tissue (Fig. 2h), reinforcing their identity as a lipid-laden,
180 pro-inflammatory cells. Collectively, these data indicate that Cluster 3 macrophages represent
181 a LAM subtype that mediates lipid uptake and drives metabolic inflammation, which we term
182 metabolic inflammation macrophages (MIM). Importantly, consistent with the observations in
183 mouse, we identified an analogous MIM cluster in obese human visceral adipose tissue¹³,
184 characterized by elevated inflammatory signatures and co-upregulation of SM metabolism, lipid
185 uptake, and TMED10-pathway genes (Fig. 2i-m and Extended Data Fig. 4f-i), suggesting
186 conservation of this macrophage subtype across species.

187 **Sphingomyelin regulates TMED10-dependent IL-1 β release**

188 Our above findings reveal a coordinated link among SM metabolism, lipid uptake, and TMED10-
189 dependent IL-1 β secretion within a specific inflammatory macrophage subtype, highlighting a
190 potential mechanistic axis underlying metabolic inflammation.

191 To investigate the role of lipid uptake and SM metabolism in TMED10-mediated IL-1 β release,
192 we treated peritoneal macrophages with palmitic acid (PA) to mimic lipid uptake-induced
193 inflammation *in vivo*³⁷⁻³⁹. PA stimulation induced IL-1 β release, which was markedly reduced in
194 TMED10-deficient macrophages but not in GSDMD-deficient cells, indicating that TMED10,
195 rather than GSDMD, mediates PA-induced IL-1 β secretion (Fig. 3a-d).

196 We next examined the role of SM biosynthesis using pharmacological inhibitors and genetic
197 approaches (Fig. 3e)⁴⁰⁻⁴³. In macrophages, inhibition of SM synthase (by Malabaricone C, Mal
198 C) or ceramide transport protein CERT (by HPA-12) efficiently suppressed PA-induced IL-1 β
199 release, comparable to inhibition of the inflammasome (by MCC950⁴⁴) or caspase-1 (by Ac-
200 YVAD-cmk)⁴⁵ (Fig. 3f). Although TMED10 deficiency already reduced IL-1 β secretion, SM
201 pathway inhibitors further decreased cytokine release (Fig. 3f), likely reflecting incomplete
202 depletion of TMED10 in these cells (Fig. 3a). To clarify whether SM synthesis and TMED10 act
203 in the same pathway, we generated TMED10-knockout THP-1 cells. In this model, SM synthesis
204 inhibitors still blocked IL-1 β release, but no further reduction was observed in TMED10-deficient
205 cells, confirming that SM metabolism and TMED10 function within the same regulatory axis

206 (Fig. 3g-i). In contrast, inhibition of glycosphingolipid synthesis with Elaglustat⁴⁶ had no effect,
207 excluding glycosphingolipids from this process (Fig. 3j).

208 IL-1 β release involves two steps: inflammasome-dependent maturation and subsequent
209 transport for secretion⁴⁷. To test whether SM acts directly in the transport phase, we used a
210 previously established HEK293T IL-1 β secretion assay, in which mature IL-1 β is expressed
211 independently of inflammasome activation, allowing specific assessment of TMED10-
212 dependent trafficking^{28,29,48}. Exogenous SM treatment elevated cellular SM levels and
213 significantly enhanced IL-1 β release (Fig. 3k,l), whereas SM synthesis inhibitors (Mal C and
214 HPA-12) but not glycosphingolipid synthesis inhibitor Elaglustat suppressed TMED10-mediated
215 secretion (Fig. 3m,n).

216 Consistently, blocking SM degradation with the sphingomyelinase (SMPD2) inhibitor GW4869⁴⁹
217 increased both SM levels and IL-1 β release (Fig. 3o,p). Genetic knockdown of SMPD2
218 produced similar results, while depletion of SGMS1, SGMS2, or CERT lowered SM levels and
219 attenuated IL-1 β secretion (Fig. 3q-s). Conversely, overexpression of SGMS1 or SMPD2
220 respectively increased or decreased SM abundance, leading to corresponding changes in IL-
221 1 β release (Fig. 3t,u).

222 Together, these findings demonstrate that SM is a key regulator of TMED10-dependent IL-1 β
223 secretion, acting downstream of inflammasome activation to control the transport and release
224 of mature IL-1 β .

225 **TMED10 functions as a metabolic sensor activated by medium-chain sphingomyelin**

226 To determine whether SM directly activates TMED10, we employed an established *in vitro*
227 translocation assay²⁹ using TMED10-reconstituted proteoliposomes composed of
228 phosphatidylcholine supplemented with various lipids (Fig. 4a). Among all lipids tested, only SM
229 markedly enhanced TMED10-mediated IL-1 β translocation (Fig. 4b,c and Extended Data Fig.
230 5a-e). In contrast, ceramide, a biosynthetic precursor of SM, inhibited TMED10 activity (Fig. 4c
231 and Extended Data Fig. 5e). Consistently, hydrolysis of SM by sphingomyelinase abolished its
232 enhancing effect (Fig. 4d,e). Furthermore, substitution of the choline head group with
233 ethanolamine (ceramide phosphoethanolamine, CPE⁵⁰) dramatically reduced TMED10 activity,
234 demonstrating that TMED10 specifically responds to SM to promote protein translocation (Fig.
235 4f and Extended Data Fig. 5f).

236 Lipidomic profiling of adipose tissue macrophages from ND and HFD feeding mice revealed
237 that phosphatidylglycerol and triglycerides increased as expected, whereas total SM level was
238 unexpectedly slightly decreased (Fig. 4g,h and Supplementary Table 4). However, a compositional
239 shift was observed within the SM pool: medium-chain SM species (C16:0, C18:0) were elevated,
240 whereas long-chain SM (C24:0) declined (Fig. 4i and Supplementary Table 4). Importantly,
241 functional analysis of SM species in the *in vitro* translocation assay showed that medium-chain
242 SM specifically activated TMED10, with an EC₅₀ of approximately 0.5% and maximal activation
243 near 1% (Fig. 4j-m and Extended Data Fig. 5g,h). These results indicate TMED10 as a highly
244 sensitive and specific sensor of medium-chain SM, linking lipid remodeling under HFD
245 conditions to TMED10 activation and IL-1 β release in metabolic inflammation.

246 **Sphingomyelin activates TMED10 through direct binding and oligomerization**

247 To elucidate how SM activates TMED10, we first examined TMED10 homo-oligomerization, a
248 hallmark of its translocator activity²⁹. In a proximity ligation assay, overexpression of SGMS1
249 (an SM synthase) enhanced TMED10 self-association, whereas SMPD2 (a sphingomyelinase)
250 reduced it, indicating a positive correlation between SM levels and TMED10 oligomerization
251 (Fig. 5a,b). Consistently, cross-linking experiments revealed that SGMS1 increased, while
252 SMPD2 decreased, the formation of high-molecular weight TMED10 complexes (Fig. 5c,d).
253 Reconstitution experiments further demonstrated that the presence of SM in TMED10
254 proteoliposomes promoted oligomerization, which was reversed by sphingomyelinase
255 treatment, indicating a direct role of SM on TMED10 activation (Fig. 5e,f).

256 In vivo, adipose tissue macrophages from HFD-fed mice displayed elevated TMED10 oligomer
257 levels, consistent with increased activation (Fig. 5g,h). Similarly, PA treatment enhanced
258 TMED10 oligomerization in macrophages, which was abolished by SM synthesis inhibition (Fig.
259 5i,j). These findings demonstrate that SM activates TMED10 by promoting its oligomer
260 formation into an active translocator complex.

261 To assess whether SM directly interacts with TMED10, we performed lipid–protein pull-down
262 assays and detected a specific association between TMED10 and SM (Fig. 5k). To define the
263 interaction residues, we carried out molecular dynamics simulations using the TMED10
264 transmembrane domain (TMD) embedded in an SM-containing lipid bilayer (Supplementary
265 Video 1). These simulations identified three residues—L197, L200, and Q204—as recurrent
266 contact points for SM (Fig. 5l,m). Functional mutagenesis demonstrated that Q204, rather than
267 L197 or L200, is essential for SM-dependent regulation of IL-1 β secretion (Fig. 5n,o). We
268 therefore selected the Q204L mutant for further analysis. Although Q204L did not alter TMED10
269 localization (Extended Data Fig. 6a), it abolished SM binding (Fig. 5p) and eliminated SM-
270 induced oligomerization (Fig. 5q,r) and IL-1 β translocation activity (Fig. 5s,t). These results
271 indicate that Q204 plays a direct and indispensable role in sphingomyelin binding.

272 **TMED10 sphingomyelin sensing governs metabolic inflammation**

273 To investigate the physiological significance of TMED10-mediated SM sensing, we generated
274 *TMED10^{Q204L/Q204L}* knock-in mice (Extended Data Fig. 6b), in which a single amino acid
275 substitution disrupts SM binding without altering TMED10 expression or its localization to the
276 ERGIC in macrophages (Extended Data Fig. 6c,d). Despite normal localization, macrophages
277 from *TMED10^{Q204L/Q204L}* mice displayed a dramatic reduction in PA-induced IL-1 β release,
278 comparable to that observed in TMED10-deficient (*Lyz2-Cre TMED10^{fl/fl}*) macrophages (Fig.
279 6a). These findings underscore the critical role of SM sensing in TMED10-dependent IL-1 β
280 secretion.

281 To further assess the in vivo relevance, we performed bone marrow transplantation (BMT)
282 experiments using WT, myeloid TMED10-KO (*Lyz2-Cre TMED10^{fl/fl}*), and TMED10-Q204L
283 knock-in (*TMED10^{Q204L/Q204L}*) donor cells, followed by HFD treatment of irradiated myeloid
284 TMED10-KO recipient mice (Fig. 6b,c). Notably, mice reconstituted with TMED10-Q204L
285 knock-in bone marrow phenocopied TMED10-KO recipients, exhibiting significantly lower
286 plasma IL-1 β levels, reduced adipose tissue inflammation as shown by histological analysis
287 and inflammatory gene expression (Fig. 6d-i, Extended Data Fig. 7a and Supplementary Table
288 5). Correspondingly, metabolic elastic genes as well as genes for adipogenesis and fatty acid

289 metabolism were increased (Fig. 6h,i, Extended Data Fig. 7b and Supplementary Table 5).
290 Adipose insulin signaling is improved as indicated by enhanced Akt phosphorylation (Fig. 6j).
291 In addition, the TMED10-Q204L transplants also phenocopied TMED10-KO recipients with
292 increased insulin signaling and reduced lipid accumulation in liver (Extended Data Fig. 7c-e).
293 Consistent with reduced metabolic inflammation, TMED10-Q204L bone marrow-transplanted
294 mice showed improved systemic glucose tolerance (GTT) and insulin sensitivity (ITT)
295 comparable to TMED10-KO transplants (Fig. 6k).

296 Together, these results demonstrate that sphingomyelin sensing by TMED10 is essential for
297 macrophage-mediated metabolic inflammation, and that disruption of this lipid–protein
298 interaction confers protection against HFD-induced inflammatory and metabolic dysfunction.

299 Discussion

300 It has been shown that ATMs gradually transition into a metabolically activated state during
301 obesity^{51–53}. These metabolically activated macrophages—largely corresponding to LAMs—
302 accumulate lipids from diverse sources, including free lipids^{54,55}, exosomes⁵⁶, and dying
303 adipocytes⁵⁷. LAMs exert dual functions in obese adipose tissue. On one hand, they mediate
304 lipid uptake, storage, and hydrolysis, thereby acting as a lipid-buffering system that helps
305 maintain adipose tissue homeostasis^{11,58,59}. On the other hand, LAMs can acquire pro-
306 inflammatory features that contribute to insulin resistance^{12,13,16}. Consistent with their
307 homeostatic role, global deletion of *Trem2*, a central lipid receptor in LAMs, largely abolishes
308 LAM function by impairing lipid uptake, leading to adipocyte hypotrophy and exacerbated
309 metabolic dysfunction^{11,58,60}. These findings suggest that, rather than eliminating LAMs,
310 selectively inhibiting their pro-inflammatory activation may offer a more rational therapeutic
311 strategy for ameliorating metabolic disease.

312 Our study identifies a TMED10–SM lipid-sensing pathway that governs metabolic inflammation
313 in a specific LAM subset—MIM—which is a key driver of metabolic syndrome in obesity. In
314 contrast to the canonical GSDMD-dependent inflammasome pathway that triggers acute, high-
315 amplitude IL-1 β release via pore formation, the TMED10–SM axis mediates a chronic, low-
316 grade IL-1 β secretion through the THU unconventional secretion pathway likely followed by
317 GRASP55-mediated trafficking⁶¹. This mechanism is tightly coupled to lipid remodeling under
318 metabolic stress, which generates bioactive SM species that directly bind TMED10 and initiate
319 persistent inflammatory signaling (Fig. 6l).

320 The exceptional sensitivity of TMED10 to SM ($EC_{50} \sim 0.5\%$) is physiologically significant. Given
321 that most SM is synthesized in the Golgi⁶², while the ERGIC, the site of TMED10 activity,
322 contains minimal SM, this system allows precise detection of subtle fluctuations in local lipid
323 composition. This principle is reminiscent of cholesterol sensing in the ER, where cholesterol
324 level is low and ~5% cholesterol is the threshold to control SCAP–SREBP trafficking^{63,64},
325 highlighting a broader paradigm of highly sensitive lipid-sensing systems within the secretory
326 pathway.

327 Notably, the SM-sensing glutamine (Q) residue is conserved across TMED family members⁶⁵,
328 suggesting that TMED10's mechanism may extend to other TMED-mediated unconventional
329 secretion pathways, consistent with reports of TMED2 binding SM⁶⁶. Functionally, TMED10-SM

330 sensing acts as a molecular hub initiating chronic metabolic inflammation, with broader
331 implications for disorders associated with lipid accumulation or sphingolipid dysregulation,
332 including neurodegeneration, atherosclerosis, cancer, and metabolic dysfunction-associated
333 steatohepatitis (MASH)^{8,67-69}. These findings raise the intriguing possibility that targeting the
334 TMED10–SM axis could modulate chronic inflammatory states more selectively than
335 conventional anti-inflammatory approaches, offering a novel therapeutic avenue for metabolic
336 and lipid-associated diseases.

337 **Acknowledgement**

338 The work is funded by National Natural Science Foundation of China (32225013, 32130023,
339 92254302, 32530024, 32450388, 32370728, 32571287, 82270926, 32241008) to L. Ge, B.
340 Shan and M Zhang, National Key R&D Program of China (2025YFA0923003;
341 2024YFA1802600; 2021YFA0804802; 2022YFA1104102) to L. Ge, B. Shan and M Zhang,
342 Tsinghua University Dushi Program, New Cornerstone Science Foundation.

343 We thank Dr. Feng Shao (National Institute of Biological Sciences, China), Dr. Bao-Liang Song
344 (Wuhan University), Dr. Yong-Qiang Deng (South Medical University, China), Dr. Xiao-Yu Hu,
345 Dr. Jing-Ren Zhang, Dr. Sen-Fang Sui and Dr. Shan Sun, Dr. Hai-Sha Liang (Tsinghua
346 University) for materials and reagents. We thank Dr. Ye-Guang Chen and Dr. Li Yu (Tsinghua
347 University) for helpful suggestions on the study. We thank Li-Na Xu and Yu-Pei Jiao at Facility
348 center of Metabolomics and lipidomics in Tsinghua University for their help with the LC-MS/MS
349 experiments.

350 **Author contributions**

351 M.Z., B.S. and L.G. conceptualized the study. J.Z., C.X., Z.W., T.Y., H.W., M.Z., B.S. and L.G.
352 conceived the experiments and wrote the manuscript. J.Z., H.W. and D.P. carried out the cell
353 biology and biochemistry experiments. C.X., Z.W., K.Z., Y.L. and F.C. performed mouse and
354 primary cell experiments. T.Y. and Z.Q. analyzed and visualized the RNA-seq data. X.L.
355 performed the molecular dynamics simulation assay. M.Z., B.S. and L.G. supervised the project
356 and provided funding.

357 **Competing interests**

358 Authors declare that they have no competing interests.

359 **Supplemental information**

360 Supplementary Table 1. Bulk RNA-seq data of eWAT from *GSDMD*^{fl/fl} and *Lyz2*-cre *GSDMD*^{fl/fl}
361 mice after HFD feeding for 12 weeks.

362 Supplementary Table 2. Bulk RNA-seq data of eWAT from *TMED10*^{fl/fl} and *Lyz2*-cre *TMED10*^{fl/fl}
363 mice after HFD feeding for 12 weeks.

364 Supplementary Table 3. Bulk RNA-seq data of liver from *TMED10*^{fl/fl} and *Lyz2*-cre *TMED10*^{fl/fl}
365 mice after HFD feeding for 12 weeks.

366 Supplementary Table 4. Lipidomics analysis of ATMs from ND and HFD feeding mice.

367 Supplementary Table 5. Bulk RNA-seq data of eWAT from KO (*Lyz2*-cre *TMED10*^{fl/fl}) mice

368 transplanted with bone marrows of WT (*TMED10*^{fl/fl}), KO (Lyz2-cre *TMED10*^{fl/fl}) or Q204L knock-
369 in (*TMED10*^{Q204L/Q204L}) mice after HFD feeding for 20 weeks.

370 Supplementary Table 6. Inflammatory response gene list for the quantification of
371 inflammatory activity at the single-cell resolution.

372 Supplementary Video 1. Association between TMED10-TMD and SM in the lipid bilayer using
373 molecular dynamics simulation. The video shows the movement of SM and TMED10
374 transmembrane region (colored in gray) with Q204 (colored in red) highlighted and PC hidden.
375 SM was colored green (cytoplasmic face) and blue (luminal face) respectively.

376

377 **References**

- 378 1 Lingvay, I., Cohen, R. V., Roux, C. W. L. & Sumithran, P. Obesity in adults. *Lancet* **404**, 972-987,
379 doi:10.1016/S0140-6736(24)01210-8 (2024).
- 380 2 Tilg, H., Ianiro, G., Gasbarrini, A. & Adolph, T. E. Adipokines: masterminds of metabolic
381 inflammation. *Nat Rev Immunol* **25**, 250-265, doi:10.1038/s41577-024-01103-8 (2025).
- 382 3 Chavakis, T., Alexaki, V. I. & Ferrante, A. W., Jr. Macrophage function in adipose tissue
383 homeostasis and metabolic inflammation. *Nat Immunol* **24**, 757-766, doi:10.1038/s41590-023-
384 01479-0 (2023).
- 385 4 Kawai, T., Autieri, M. V. & Scalia, R. Adipose tissue inflammation and metabolic dysfunction in
386 obesity. *Am J Physiol Cell Physiol* **320**, C375-C391, doi:10.1152/ajpcell.00379.2020 (2021).
- 387 5 Cypess, A. M. Reassessing Human Adipose Tissue. *N Engl J Med* **386**, 768-779,
388 doi:10.1056/NEJMra2032804 (2022).
- 389 6 Hotamisligil, G. S. Inflammation, metaflammation and immunometabolic disorders. *Nature*
390 **542**, 177-185, doi:10.1038/nature21363 (2017).
- 391 7 Saltiel, A. R. & Olefsky, J. M. Inflammatory mechanisms linking obesity and metabolic disease.
392 *J Clin Invest* **127**, 1-4, doi:10.1172/JCI92035 (2017).
- 393 8 Hagberg, C. E. & Spalding, K. L. White adipocyte dysfunction and obesity-associated
394 pathologies in humans. *Nat Rev Mol Cell Biol* **25**, 270-289, doi:10.1038/s41580-023-00680-1
395 (2024).
- 396 9 Shaikh, S. R., Beck, M. A., Alwarawrah, Y. & MacIver, N. J. Emerging mechanisms of obesity-
397 associated immune dysfunction. *Nat Rev Endocrinol* **20**, 136-148, doi:10.1038/s41574-023-
398 00932-2 (2024).
- 399 10 Crewe, C., An, Y. A. & Scherer, P. E. The ominous triad of adipose tissue dysfunction:
400 inflammation, fibrosis, and impaired angiogenesis. *J Clin Invest* **127**, 74-82,
401 doi:10.1172/JCI88883 (2017).
- 402 11 Jaitin, D. A. *et al.* Lipid-Associated Macrophages Control Metabolic Homeostasis in a Trem2-
403 Dependent Manner. *Cell* **178**, 686-698 e614, doi:10.1016/j.cell.2019.05.054 (2019).
- 404 12 Stansbury, C. M. *et al.* A lipid-associated macrophage lineage rewrites the spatial landscape of
405 adipose tissue in early obesity. *JCI Insight* **8**, doi:10.1172/jci.insight.171701 (2023).
- 406 13 Hildreth, A. D. *et al.* Single-cell sequencing of human white adipose tissue identifies new cell
407 states in health and obesity. *Nat Immunol* **22**, 639-653, doi:10.1038/s41590-021-00922-4
408 (2021).
- 409 14 Coats, B. R. *et al.* Metabolically Activated Adipose Tissue Macrophages Perform Detimental

410 and Beneficial Functions during Diet-Induced Obesity. *Cell Rep* **20**, 3149-3161,
411 doi:10.1016/j.celrep.2017.08.096 (2017).

412 15 Dib, L. *et al.* Lipid-associated macrophages transition to an inflammatory state in human
413 atherosclerosis increasing the risk of cerebrovascular complications. *Nat Cardiovasc Res* **2**, 656-
414 672, doi:10.1038/s44161-023-00295-x (2023).

415 16 Dahik, V. D. *et al.* ABCG1 orchestrates adipose tissue macrophage plasticity and insulin
416 resistance in obesity by rewiring saturated fatty acid pools. *Sci Transl Med* **16**, eadi6682,
417 doi:10.1126/scitranslmed.adi6682 (2024).

418 17 Miranda, A. M. A. *et al.* Selective remodelling of the adipose niche in obesity and weight loss.
419 *Nature* **644**, 769-779, doi:10.1038/s41586-025-09233-2 (2025).

420 18 Hill, D. A. *et al.* Distinct macrophage populations direct inflammatory versus physiological
421 changes in adipose tissue. *Proc Natl Acad Sci U S A* **115**, E5096-E5105,
422 doi:10.1073/pnas.1802611115 (2018).

423 19 Kayagaki, N. *et al.* Caspase-11 cleaves gasdermin D for non-canonical inflammasome signalling.
424 *Nature* **526**, 666-671, doi:10.1038/nature15541 (2015).

425 20 Shi, J. *et al.* Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death.
426 *Nature* **526**, 660-665, doi:10.1038/nature15514 (2015).

427 21 Evavold, C. L. *et al.* The Pore-Forming Protein Gasdermin D Regulates Interleukin-1 Secretion
428 from Living Macrophages. *Immunity* **48**, 35-44 e36, doi:10.1016/j.jimmuni.2017.11.013 (2018).

429 22 Ding, J. *et al.* Pore-forming activity and structural autoinhibition of the gasdermin family.
430 *Nature* **535**, 111-116, doi:10.1038/nature18590 (2016).

431 23 Stienstra, R. *et al.* The inflammasome-mediated caspase-1 activation controls adipocyte
432 differentiation and insulin sensitivity. *Cell Metab* **12**, 593-605, doi:10.1016/j.cmet.2010.11.011
433 (2010).

434 24 Vandamagsar, B. *et al.* The NLRP3 inflammasome instigates obesity-induced inflammation
435 and insulin resistance. *Nat Med* **17**, 179-188, doi:10.1038/nm.2279 (2011).

436 25 Saberi, M. *et al.* Hematopoietic cell-specific deletion of toll-like receptor 4 ameliorates hepatic
437 and adipose tissue insulin resistance in high-fat-fed mice. *Cell Metab* **10**, 419-429,
438 doi:10.1016/j.cmet.2009.09.006 (2009).

439 26 Rathkey, J. K. *et al.* Chemical disruption of the pyroptotic pore-forming protein gasdermin D
440 inhibits inflammatory cell death and sepsis. *Sci Immunol* **3**, doi:10.1126/sciimmunol.aat2738
441 (2018).

442 27 Hu, J. J. *et al.* FDA-approved disulfiram inhibits pyroptosis by blocking gasdermin D pore
443 formation. *Nat Immunol* **21**, 736-745, doi:10.1038/s41590-020-0669-6 (2020).

444 28 Sun, Y. *et al.* A dual role of ERGIC-localized Rabs in TMED10-mediated unconventional protein
445 secretion. *Nat Cell Biol* **26**, 1077-1092, doi:10.1038/s41556-024-01445-4 (2024).

446 29 Zhang, M. *et al.* A Translocation Pathway for Vesicle-Mediated Unconventional Protein
447 Secretion. *Cell* **181**, 637-652 e615, doi:10.1016/j.cell.2020.03.031 (2020).

448 30 Zhou, Q., Yu, L., Cook, J. R., Qiang, L. & Sun, L. Deciphering the decline of metabolic elasticity
449 in aging and obesity. *Cell Metab* **35**, 1661-1671 e1666, doi:10.1016/j.cmet.2023.08.001 (2023).

450 31 Liu, L. *et al.* Coronavirus envelope protein activates TMED10-mediated unconventional
451 secretion of inflammatory factors. *Nat Commun* **15**, 8708, doi:10.1038/s41467-024-52818-0
452 (2024).

453 32 Jager, J., Gremiaux, T., Cormont, M., Le Marchand-Brustel, Y. & Tanti, J. F. Interleukin-1beta-

454 induced insulin resistance in adipocytes through down-regulation of insulin receptor substrate-
455 1 expression. *Endocrinology* **148**, 241-251, doi:10.1210/en.2006-0692 (2007).

456 33 Lumeng, C. N., Deyoung, S. M. & Saltiel, A. R. Macrophages block insulin action in adipocytes
457 by altering expression of signaling and glucose transport proteins. *Am J Physiol Endocrinol
458 Metab* **292**, E166-174, doi:10.1152/ajpendo.00284.2006 (2007).

459 34 Broderick, L. & Hoffman, H. M. IL-1 and autoinflammatory disease: biology, pathogenesis and
460 therapeutic targeting. *Nat Rev Rheumatol* **18**, 448-463, doi:10.1038/s41584-022-00797-1
461 (2022).

462 35 Sauter, N. S., Schulthess, F. T., Galasso, R., Castellani, L. W. & Maedler, K. The antiinflammatory
463 cytokine interleukin-1 receptor antagonist protects from high-fat diet-induced hyperglycemia.
464 *Endocrinology* **149**, 2208-2218, doi:10.1210/en.2007-1059 (2008).

465 36 Sarvari, A. K. *et al.* Plasticity of Epididymal Adipose Tissue in Response to Diet-Induced Obesity
466 at Single-Nucleus Resolution. *Cell Metab* **33**, 437-453 e435, doi:10.1016/j.cmet.2020.12.004
467 (2021).

468 37 Korbecki, J. & Bajdak-Rusinek, K. The effect of palmitic acid on inflammatory response in
469 macrophages: an overview of molecular mechanisms. *Inflamm Res* **68**, 915-932,
470 doi:10.1007/s00011-019-01273-5 (2019).

471 38 Snodgrass, R. G., Huang, S., Choi, I. W., Rutledge, J. C. & Hwang, D. H. Inflammasome-mediated
472 secretion of IL-1beta in human monocytes through TLR2 activation; modulation by dietary fatty
473 acids. *J Immunol* **191**, 4337-4347, doi:10.4049/jimmunol.1300298 (2013).

474 39 Wen, H. *et al.* Fatty acid-induced NLRP3-ASC inflammasome activation interferes with insulin
475 signaling. *Nat Immunol* **12**, 408-415, doi:10.1038/ni.2022 (2011).

476 40 Quinville, B. M., Deschenes, N. M., Ryckman, A. E. & Walia, J. S. A Comprehensive Review:
477 Sphingolipid Metabolism and Implications of Disruption in Sphingolipid Homeostasis. *Int J Mol
478 Sci* **22**, doi:10.3390/ijms22115793 (2021).

479 41 Adada, M., Luberto, C. & Canals, D. Inhibitors of the sphingomyelin cycle: Sphingomyelin
480 synthases and sphingomyelinases. *Chem Phys Lipids* **197**, 45-59,
481 doi:10.1016/j.chemphyslip.2015.07.008 (2016).

482 42 Othman, M. A. *et al.* Malabaricone C as Natural Sphingomyelin Synthase Inhibitor against Diet-
483 Induced Obesity and Its Lipid Metabolism in Mice. *ACS Med Chem Lett* **10**, 1154-1158,
484 doi:10.1021/acsmedchemlett.9b00171 (2019).

485 43 Hanada, K., Sakai, S. & Kumagai, K. Natural Ligand-Mimetic and Nonmimetic Inhibitors of the
486 Ceramide Transport Protein CERT. *Int J Mol Sci* **23**, doi:10.3390/ijms23042098 (2022).

487 44 Coll, R. C. *et al.* A small-molecule inhibitor of the NLRP3 inflammasome for the treatment of
488 inflammatory diseases. *Nat Med* **21**, 248-255, doi:10.1038/nm.3806 (2015).

489 45 Pan, P. *et al.* SARS-CoV-2 N protein promotes NLRP3 inflammasome activation to induce
490 hyperinflammation. *Nat Commun* **12**, 4664, doi:10.1038/s41467-021-25015-6 (2021).

491 46 Dong, L. *et al.* Inhibition of glycosphingolipid synthesis with eliglustat in combination with
492 immune checkpoint inhibitors in advanced cancers: preclinical evidence and phase I clinical
493 trial. *Nat Commun* **15**, 6970, doi:10.1038/s41467-024-51495-3 (2024).

494 47 Sitia, R. & Rubartelli, A. The unconventional secretion of IL-1beta: Handling a dangerous
495 weapon to optimize inflammatory responses. *Semin Cell Dev Biol* **83**, 12-21,
496 doi:10.1016/j.semcd.2018.03.011 (2018).

497 48 Zhang, M., Kenny, S. J., Ge, L., Xu, K. & Schekman, R. Translocation of interleukin-1beta into a

498 vesicle intermediate in autophagy-mediated secretion. *eLife* **4**, e11205,
499 doi:10.7554/eLife.11205 (2015).

500 49 Menck, K. *et al.* Neutral sphingomyelinases control extracellular vesicles budding from the
501 plasma membrane. *J Extracell Vesicles* **6**, 1378056, doi:10.1080/20013078.2017.1378056
502 (2017).

503 50 Panevska, A., Skocaj, M., Krizaj, I., Macek, P. & Sepcic, K. Ceramide phosphoethanolamine, an
504 enigmatic cellular membrane sphingolipid. *Biochim Biophys Acta Biomembr* **1861**, 1284-1292,
505 doi:10.1016/j.bbamem.2019.05.001 (2019).

506 51 Xu, X. *et al.* Obesity activates a program of lysosomal-dependent lipid metabolism in adipose
507 tissue macrophages independently of classic activation. *Cell Metab* **18**, 816-830,
508 doi:10.1016/j.cmet.2013.11.001 (2013).

509 52 Kratz, M. *et al.* Metabolic dysfunction drives a mechanistically distinct proinflammatory
510 phenotype in adipose tissue macrophages. *Cell Metab* **20**, 614-625,
511 doi:10.1016/j.cmet.2014.08.010 (2014).

512 53 Luo, J. H. *et al.* PDIA3 defines a novel subset of adipose macrophages to exacerbate the
513 development of obesity and metabolic disorders. *Cell Metab* **36**, 2262-2280 e2265,
514 doi:10.1016/j.cmet.2024.08.009 (2024).

515 54 Nicholls, H. T. *et al.* Hematopoietic cell-restricted deletion of CD36 reduces high-fat diet-
516 induced macrophage infiltration and improves insulin signaling in adipose tissue. *Diabetes* **60**,
517 1100-1110, doi:10.2337/db10-1353 (2011).

518 55 Kennedy, D. J. *et al.* A CD36-dependent pathway enhances macrophage and adipose tissue
519 inflammation and impairs insulin signalling. *Cardiovasc Res* **89**, 604-613,
520 doi:10.1093/cvr/cvq360 (2011).

521 56 Flaherty, S. E., 3rd *et al.* A lipase-independent pathway of lipid release and immune modulation
522 by adipocytes. *Science* **363**, 989-993, doi:10.1126/science.aaw2586 (2019).

523 57 Cinti, S. *et al.* Adipocyte death defines macrophage localization and function in adipose tissue
524 of obese mice and humans. *J Lipid Res* **46**, 2347-2355, doi:10.1194/jlr.M500294-JLR200 (2005).

525 58 Winn, N. C., Wolf, E. M., Garcia, J. N. & Hasty, A. H. Exon 2-mediated deletion of Trem2 does
526 not worsen metabolic function in diet-induced obese mice. *J Physiol* **600**, 4485-4501,
527 doi:10.1113/JP283684 (2022).

528 59 Xu, R. *et al.* Lipid-associated macrophages between aggravation and alleviation of metabolic
529 diseases. *Trends Endocrinol Metab* **35**, 981-995, doi:10.1016/j.tem.2024.04.009 (2024).

530 60 Sharif, O. *et al.* Beneficial Metabolic Effects of TREM2 in Obesity Are Uncoupled From Its
531 Expression on Macrophages. *Diabetes* **70**, 2042-2057, doi:10.2337/db20-0572 (2021).

532 61 Chiritoiu, M., Brouwers, N., Turacchio, G., Pirozzi, M. & Malhotra, V. GRASP55 and UPR Control
533 Interleukin-1beta Aggregation and Secretion. *Dev Cell* **49**, 145-155 e144,
534 doi:10.1016/j.devcel.2019.02.011 (2019).

535 62 Yamaji, T. & Hanada, K. Sphingolipid metabolism and interorganellar transport: localization of
536 sphingolipid enzymes and lipid transfer proteins. *Traffic* **16**, 101-122, doi:10.1111/tra.12239
537 (2015).

538 63 Brown, M. S., Radhakrishnan, A. & Goldstein, J. L. Retrospective on Cholesterol Homeostasis:
539 The Central Role of Scap. *Annu Rev Biochem* **87**, 783-807, doi:10.1146/annurev-biochem-
540 062917-011852 (2018).

541 64 Radhakrishnan, A., Goldstein, J. L., McDonald, J. G. & Brown, M. S. Switch-like control of SREBP-

542 2 transport triggered by small changes in ER cholesterol: a delicate balance. *Cell Metab* **8**, 512-
543 521, doi:10.1016/j.cmet.2008.10.008 (2008).

544 65 Pastor-Cantizano, N., Montesinos, J. C., Bernat-Silvestre, C., Marcote, M. J. & Aniento, F. p24
545 family proteins: key players in the regulation of trafficking along the secretory pathway.
546 *Protoplasma* **253**, 967-985, doi:10.1007/s00709-015-0858-6 (2016).

547 66 Contreras, F. X. *et al.* Molecular recognition of a single sphingolipid species by a protein's
548 transmembrane domain. *Nature* **481**, 525-529, doi:10.1038/nature10742 (2012).

549 67 Hannun, Y. A. & Obeid, L. M. Sphingolipids and their metabolism in physiology and disease. *Nat
550 Rev Mol Cell Biol* **19**, 175-191, doi:10.1038/nrm.2017.107 (2018).

551 68 Haney, M. S. *et al.* APOE4/4 is linked to damaging lipid droplets in Alzheimer's disease microglia.
552 *Nature* **628**, 154-161, doi:10.1038/s41586-024-07185-7 (2024).

553 69 Xiong, X. *et al.* Landscape of Intercellular Crosstalk in Healthy and NASH Liver Revealed by
554 Single-Cell Secretome Gene Analysis. *Mol Cell* **75**, 644-660 e645,
555 doi:10.1016/j.molcel.2019.07.028 (2019).

556 70 Ji, L. *et al.* Slc6a8-Mediated Creatine Uptake and Accumulation Reprogram Macrophage
557 Polarization via Regulating Cytokine Responses. *Immunity* **51**, 272-284 e277,
558 doi:10.1016/j.jimmuni.2019.06.007 (2019).

559 71 Xu, J., Pickard, J. M. & Nunez, G. FDA-approved disulfiram inhibits the NLRP3 inflammasome by
560 regulating NLRP3 palmitoylation. *Cell Rep* **43**, 114609, doi:10.1016/j.celrep.2024.114609
561 (2024).

562 72 Zheng, J. *et al.* TMEDs mediate versatile cargo transport in vesicle-dependent unconventional
563 secretion. *J Cell Biol* **225**, doi:10.1083/jcb.202503075 (2026).

564 73 Ma, X. *et al.* CCT2 is an aggrephagy receptor for clearance of solid protein aggregates. *Cell* **185**,
565 1325-1345 e1322, doi:10.1016/j.cell.2022.03.005 (2022).

566 74 Li, X. *et al.* Macrophage HIF-2alpha suppresses NLRP3 inflammasome activation and alleviates
567 insulin resistance. *Cell Rep* **36**, 109607, doi:10.1016/j.celrep.2021.109607 (2021).

568 75 Matyash, V., Liebisch, G., Kurzchalia, T. V., Shevchenko, A. & Schwudke, D. Lipid extraction by
569 methyl-tert-butyl ether for high-throughput lipidomics. *J Lipid Res* **49**, 1137-1146,
570 doi:10.1194/jlr.D700041-JLR200 (2008).

571 76 Tang, H. *et al.* Establishment of local searching methods for orbitrap-based high throughput
572 metabolomics analysis. *Talanta* **156-157**, 163-171, doi:10.1016/j.talanta.2016.04.051 (2016).

573 77 Xu, L., Wang, X., Jiao, Y. & Liu, X. Assessment of potential false positives via orbitrap-based
574 untargeted lipidomics from rat tissues. *Talanta* **178**, 287-293,
575 doi:10.1016/j.talanta.2017.09.046 (2018).

576 78 Ying, W. *et al.* Adipose Tissue Macrophage-Derived Exosomal miRNAs Can Modulate In Vivo
577 and In Vitro Insulin Sensitivity. *Cell* **171**, 372-384 e312, doi:10.1016/j.cell.2017.08.035 (2017).

578 79 Subramanian, A. *et al.* Gene set enrichment analysis: a knowledge-based approach for
579 interpreting genome-wide expression profiles. *Proc Natl Acad Sci U S A* **102**, 15545-15550,
580 doi:10.1073/pnas.0506580102 (2005).

581 80 Yu, G., Wang, L. G., Han, Y. & He, Q. Y. clusterProfiler: an R package for comparing biological
582 themes among gene clusters. *OMICS* **16**, 284-287, doi:10.1089/omi.2011.0118 (2012).

583 81 Liberzon, A. *et al.* The Molecular Signatures Database (MSigDB) hallmark gene set collection.
584 *Cell Syst* **1**, 417-425, doi:10.1016/j.cels.2015.12.004 (2015).

585 82 Zheng, G. X. *et al.* Massively parallel digital transcriptional profiling of single cells. *Nat Commun*

586 83 **8**, 14049, doi:10.1038/ncomms14049 (2017).

587 83 Satija, R., Farrell, J. A., Gennert, D., Schier, A. F. & Regev, A. Spatial reconstruction of single-cell
588 gene expression data. *Nat Biotechnol* **33**, 495-502, doi:10.1038/nbt.3192 (2015).

589 84 Stuart, T. *et al.* Comprehensive Integration of Single-Cell Data. *Cell* **177**, 1888-1902 e1821,
590 doi:10.1016/j.cell.2019.05.031 (2019).

591 85 McGinnis, C. S., Murrow, L. M. & Gartner, Z. J. DoubletFinder: Doublet Detection in Single-Cell
592 RNA Sequencing Data Using Artificial Nearest Neighbors. *Cell Syst* **8**, 329-337 e324,
593 doi:10.1016/j.cels.2019.03.003 (2019).

594 86 Becht, E. *et al.* Dimensionality reduction for visualizing single-cell data using UMAP. *Nat
595 Biotechnol*, doi:10.1038/nbt.4314 (2018).

596 87 Wu, Y. *et al.* Spatiotemporal Immune Landscape of Colorectal Cancer Liver Metastasis at Single-
597 Cell Level. *Cancer Discov* **12**, 134-153, doi:10.1158/2159-8290.CD-21-0316 (2022).

598 88 Liberzon, A. *et al.* Molecular signatures database (MSigDB) 3.0. *Bioinformatics* **27**, 1739-1740,
599 doi:10.1093/bioinformatics/btr260 (2011).

600 89 Kanehisa, M. & Goto, S. KEGG: Kyoto encyclopedia of genes and genomes. *Nucleic Acids Res* **28**,
601 27-30, doi:10.1093/nar/28.1.27 (2000).

602 90 Hanzelmann, S., Castelo, R. & Guinney, J. GSVA: gene set variation analysis for microarray and
603 RNA-seq data. *BMC Bioinformatics* **14**, 7, doi:10.1186/1471-2105-14-7 (2013).

604 91 Liang, H. *et al.* The formation of migrasomes is initiated by the assembly of sphingomyelin
605 synthase 2 foci at the leading edge of migrating cells. *Nat Cell Biol* **25**, 1173-1184,
606 doi:10.1038/s41556-023-01188-8 (2023).

607 92 Deng, Y., Rivera-Molina, F. E., Toomre, D. K. & Burd, C. G. Sphingomyelin is sorted at the trans
608 Golgi network into a distinct class of secretory vesicle. *Proc Natl Acad Sci U S A* **113**, 6677-6682,
609 doi:10.1073/pnas.1602875113 (2016).

610 93 Back, M. J. *et al.* Activation of neutral sphingomyelinase 2 by starvation induces cell-protective
611 autophagy via an increase in Golgi-localized ceramide. *Cell Death Dis* **9**, 670,
612 doi:10.1038/s41419-018-0709-4 (2018).

613 94 Varadi, M. *et al.* AlphaFold Protein Structure Database: massively expanding the structural
614 coverage of protein-sequence space with high-accuracy models. *Nucleic Acids Res* **50**, D439-
615 D444, doi:10.1093/nar/gkab1061 (2022).

616 95 Huang, J. *et al.* CHARMM36m: an improved force field for folded and intrinsically disordered
617 proteins. *Nat Methods* **14**, 71-73, doi:10.1038/nmeth.4067 (2017).

618 96 Abraham, M. J. *et al.* GROMACS: High performance molecular simulations through multi-level
619 parallelism from laptops to supercomputers. *SoftwareX* **1-2**, 19-25,
620 doi:10.1016/j.softx.2015.06.001 (2015).

621 97 Nosé, S. A molecular dynamics method for simulations in the canonical ensemble. *Molecular
622 Physics* **100**, 191-198, doi:10.1080/00268970110089108 (2002).

623 98 Hoover, W. G. Canonical dynamics: Equilibrium phase-space distributions. *Phys Rev A Gen Phys*
624 **31**, 1695-1697, doi:10.1103/physreva.31.1695 (1985).

625 99 Parrinello, M. & Rahman, A. Polymorphic Transitions in Single-Crystals - a New Molecular-
626 Dynamics Method. *Journal of Applied Physics* **52**, 7182-7190, doi:10.1063/1.328693 (1981).

627 100 Humphrey, W., Dalke, A. & Schulter, K. VMD: visual molecular dynamics. *J Mol Graph* **14**, 33-
628 38, 27-38, doi:10.1016/0263-7855(96)00018-5 (1996).

629

630 **Methods**

631 **Mice**

632 The mice experiments were approved by the Institutional Animal Care and Use Committees at
633 Tsinghua University. Mice were housed in ventilated cages in a temperature and light regulated
634 room in a SPF facility and received food and water *ad libitum*. *TMED10*^{f/f} mice (C57BL/6J)²⁹
635 and *TMED10*^{Q204L/Q204L} knock-in mice (C57BL/6J) were created using CRISPR-Cas9-mediated
636 targeting by GemPharmatech Co. Ltd, China. *GSDMD*^{f/f} mice were originated from Dr. Feng
637 Shao as previously described²⁰. Mice with myeloid cell lineage-specific *GSDMD* or *TMED10*
638 deletion were generated via crossbreeding with *Lyz2*-Cre mice (C57BL/6J)⁷⁰, a kind gift from
639 Dr. Xiaoyu Hu lab at Tsinghua University. The genotyping primers were listed in **Extended**
640 **Data Table 1**. *TMED10*-Q204L mutation was validated by DNA sequencing. Metabolic
641 challenges were initiated in 6- to 8-week-old mice. Mice were fed either a standard chow diet
642 (10% kcal from fat) or a high-fat diet (HFD, 60% kcal from fat; Research Diets D12492) for up
643 to 20 weeks. Sepsis was induced in C57BL/6 male mice (8-12 weeks old) by intraperitoneal
644 injection of 25 mg/kg LPS^{27,71}. IL-1 β in plasma and peritoneal lavage were measured by ELISA
645 12 hours after LPS challenge.

646 **Cells**

647 HEK293T, HeLa, U2OS cells (from Dr. Randy Schekman) were maintained in Dulbecco's
648 modified Eagle's medium (DMEM) supplemented with 10% FBS at 37°C in 5% CO₂. THP-1
649 cells (from Dr. Gong Cheng) and primary peritoneal macrophages were maintained in RPMI-
650 1640 supplemented with 10% FBS at 37°C in 5% CO₂. TMED10-KO HEK293T, TMED10-KO
651 HeLa and TMED10-KO THP-1 cells were generated using CRISPR-cas9 system as reported
652 previously^{29,72}. For protein purification in mammalian cells, 293F cells (from Dr. Shan Sun and
653 Dr. Sen-Fang Sui) were cultured in SMM293-TII (Sino Biological) at 37°C, 110 rpm with 5%
654 CO₂.

655 **Reagents and antibodies**

656 We obtained proteinase K (P8044), Anti-FLAG agarose (A2220) and LPS (L4130, from
657 Escherichia coli O111:B4) from sigma; protease inhibitor cocktail (11836145001) from Roche;
658 Phorbol 12-myristate 13-acetate (PMA, HY-18739), MCC950 (HY-12815), Ac-YVAD-cmk (HY-
659 16990) and Malabaricone C (Mal C, HY-N8518) from MCE; HPA-12 (H1553) from TCI;
660 Eliglustat (S7852) and GW4869 (S7609) from Selleck; Tert-Butyl methyl ether (MTBE,
661 B802535) from Macklin; Phenylmethylsulfonyl fluoride (PMSF; ST505) and BCA Protein Assay
662 Kit (P0012S) from Beyotime; DDM (1758-1350) from Inalco; 3×FLAG peptide from GL Biochem;
663 Optiprep (AS1114542) from Axis-Shield and DSS (21555) from Thermo. We purchased Ni NTA

664 Beads 6FF (SA005500) and Glutathione Beads 4FF (SA010500) from Smart-Lifesciences;
665 Mouse IL-1 β Precoated ELISA Kit (1210122), Human IL-1 β Precoated ELISA Kit (1110122)
666 from Dakewe Biotech; Mouse IL-1 beta ELISA Kit (KE10003) from proteintech.

667 We purchased mouse anti-V5 antibody (V8012; IF, 1:500) and mouse anti-FLAG antibody
668 (F3165; WB, 1:5,000) from Sigma; rabbit anti-TMED10 antibody (15199-1-AP; WB, 1:2,000),
669 mouse anti-TMED10 antibody (67876-1-Ig; IF, 1:200), rabbit anti-ERGIC53 antibody (13364-1-
670 AP; IF, 1:200) and rabbit anti-CERT antibody (15191-1-AP; WB, 1:2,000) from Proteintech;
671 rabbit anti-GSDMD antibody (Ab219800; WB, 1:2000), rat anti-F4/80 antibody (ab6640; ICC,
672 1:200; IF, 1:500) from Abcam; rabbit anti-AKT antibody (4691S, WB, 1:2000), rabbit anti
673 phospho-Akt (Ser473) antibody (4060S, WB, 1:2000), rabbit anti-V5 antibody (13202; IF, 1:500;
674 WB, 1:5,000), rabbit anti-HA antibody (3724; IF, 1:500; WB, 1:5,000) and mouse anti-GST
675 antibody (2624; WB, 1:10,000) from CST; rat anti-HA from Chromotek (7C9; IF, 1:500); mouse
676 anti-tubulin antibody (200608; WB, 1:10,000) and mouse anti-actin antibody (200068-8F10; WB,
677 1:5,000) from Zen Bioscience; mouse anti-ERGIC53 antibody (ENZ-ABS300-0100; WB,
678 1:4,000) from Enzo and mouse anti-T7 antibody (69522; WB, 1:5,000) from Novagen. Rabbit
679 anti-TMED10 antibody (for endogenous TMED10 detection in DSS crosslink assay; WB,
680 1:2,000) were purified by ABclonal. Rabbit anti-RPN1 antibody (WB, 1:5,000) were originated
681 from Dr. Randy Schekman and described previously^{29,73}.

682 **Primary peritoneal macrophages separation**

683 Primary peritoneal macrophages were separated as described previously⁷⁴. In brief, mice were
684 injected intraperitoneally with 2 mL of 4% thioglycollate broth medium (BD BBL, 211716). Three
685 days later, peritoneal cells were collected in PBS containing 10% FBS. The collected cells were
686 cultured in RPMI-1640 supplemented with 10% FBS, 100 units/ml penicillin, and 100 μ g/ml
687 streptomycin for 3 hours. Non-adherent cells were gently washed away with PBS. The adherent
688 peritoneal macrophages were used for further experiments including IL-1 β secretion detection
689 or immunofluorescence analysis.

690 **Isolation of stromal vascular fractions (SVF) and macrophages from eWAT**

691 Epididymal white adipose tissues were collected and digested with DMEM/F12 (HYCLONE,
692 sh30023.01) containing 1% BSA (Biodee, 100g-0332) and 1% collagenase I (Thermo,
693 17100017) at 37°C with shaking at 120 rpm for 30 min. After centrifugation at 500 x g for 10
694 min at 4°C, the SVF pellets were collected, filtered with 70 μ m cell strainer, subjected to red
695 blood cell lysis and resuspended in PBS containing 2% FBS and 2 mM EDTA for further
696 experiments. To isolate adipose tissue macrophages (ATMs), F4/80+ macrophages were
697 separated from the SVF with a MagniSort Mouse F4/80 Positive Selection Kit (Thermo, 8802-
698 6863-74) according to the manufacturer's instructions.

699 **Flow cytometry analysis**

700 Cell suspensions prepared from the SVF were stained with indicated fluorescent-conjugated
701 antibodies for 30 min at 4°C in the dark. The antibodies used for macrophage analysis included:
702 F4/80-PE (CST, 64763S, 1:200), CD11b-eFluor 610 (eBioscience, 61-0112-80, 1:200) and
703 Zombie NIR™ Fixable Viability Kit (BioLegend, 423105, 1:500). Samples were then subjected
704 to flow cytometry analysis with BD LSRFortessa SORP (BD Biosciences). Data were analyzed
705 using the FlowJo V10.8.1 software.

706 **Lipidomics analysis**

707 ATMs were prepared as above. To obtain similar cell numbers, ATMs from 6 mice on ND or 1
708 mouse on HFD for 12 weeks were pooled for one sample. For lipid extraction from ATMs, we
709 used a modified methyl-tert-butyl ether (MTBE)/methanol method⁷⁵. Briefly, cells were
710 resuspended in 300 µL methanol and vortexed for 1 min. Then 1 mL MTBE was added and
711 vortexed for 1 min. Then 250 µL H₂O was added and vortexed for 1 min. The mixture was
712 allowed to stand for 5 min and vortex for 1min, which is repeated for 3 times. Then samples
713 were centrifuged at 8,000 rpm for 15 min. The upper layer was collected and dried by nitrogen.
714 Lipid samples were stored in -80°C freezer as dry pellets. Lipid pellets were re-dissolved in
715 150 µL dichloromethane/methanol (v:v=2:1) for LC-MS/MS.

716 LC-MS/MS method for lipid analysis was described previously^{76,77} and performed at facility
717 center of metabolomics and lipidomics in Tsinghua University. Briefly, reverse phase
718 chromatography was selected for LC separation using Cortecs C18 column (2.1*100 mm,
719 2.7µm, Waters). Mobile phase A was made by mixing 400 mL of HPLC-grade water containing
720 0.395 g of ammonium bicarbonate with 600 mL of HPLC-grade acetonitrile. Mobile phase B
721 contained 10% ACN and 90% IPA (v/v). Gradient elution was performed at a flow rate of 0.28
722 mL/min, and the column oven temperature was set to 40°C. The gradient was as follow: 0 min,
723 30% B; 3.0 min, 30% B; 4.5 min, 33% B; 7.0 min, 45% B; 8.0 min, 52% B; 11.0 min, 58% B;
724 14.0 min, 66% B; 17.0 min, 70% B; 21.0 min, 75% B; 23.0 min, 98% B; 30.0 min, 98% B; 30.5
725 min, 30% B; 35.0 min, 30% B. Data was acquired using Orbitrap Exploris 240 mass
726 spectrometer (Thermo, CA) coupled with UHPLC system Vanquish (Thermo, CA). The detailed
727 mass spectrometer parameters were as follows: spray voltage, 3.2 kV for positive and 2.8 kV
728 for negative; capillary temperature, 320 °C; sheath gas flow rate (arb),35; aux gas flow rate
729 (arb),10; mass range(m/z), 240–2000 for positive and 200–2000 for negative. Full MS
730 resolution, 60,000; MS/MS resolution, 15,000; NCE,15/30/45; duty cycle,1s.

731 For lipid identification, lipids were identified and quantified using LipidSearch 5.0 (Thermo
732 Fisher, USA). Lipid Search v5.0 contains 18 lipid species and more than 1,500,000 fragment
733 ions in the database. It allows lipid identification based on MS/MS match. Mass tolerance for

734 precursor and fragment was set to 8 ppm and 10 ppm respectively. The displayed m-score
735 threshold was selected as 5 and grades A, B, C, D were all used for ID quality filter. All lipid
736 classes in database including 71 sub-species were chosen for identification. Adducts of +H,
737 +NH4 were applied for positive mode search and -H, +HCO3 were selected for negative mode
738 since ammonium bicarbonate was used in mobile phases. Only the lipids with chromatographic
739 area >5E6 were considered as confident identification. 0.25 min retention time shift was allowed
740 for quantitation. The protein quantification of each sample was used for normalization.

741 **Glucose and insulin tolerance test**

742 For glucose tolerance test (GTT), the mice were fasted for 14 hours and intraperitoneally
743 injected with 1g/kg glucose solution. For the insulin-tolerance test (ITT), the mice were fasted
744 for 5 h and intraperitoneally injected with 0.8 U/kg insulin solution (Beyotime, P3376). Blood
745 samples for glucose measurement were collected from the tail vein at the indicated time points.
746 Glucose levels were assessed using a Sinocare Glucose Monitoring Kit.

747 **Histological analysis**

748 For hematoxylin and eosin (H&E) or immunohistochemistry (IHC) analysis, liver and adipose
749 tissues were dissected, fixed in 4% PFA, embedded in paraffin and sectioned (5 μ m). For IHC
750 of adipose tissue, rehydrated sections were stained following Two-Step HRP Polymer Anti-Rat
751 IHC Detection Kit (ZSGB-BIO, PV-9004). Briefly, the slides were placed into sodium citrate
752 buffer (pH = 6.0) and boiled for 15 min at 98°C and washed with PBS three times. Next,
753 peroxidase was inactivated with 3% H₂O₂ for 10 min and washed with PBS three times. The
754 samples were blocked with 3% BSA for 30 min at room temperature, then the samples were
755 covered with the primary antibody at the indicated concentration overnight at 4°C. The next day,
756 the slides were washed with PBS three times, and incubated with secondary antibody for 1 h
757 at room temperature. Then the DAB Substrate Kit (ZSGB-BIO, ZLI-9017), was used for staining.
758 Hematoxylin was used for nuclear staining for 15 s. Finally, the samples were rinsed with
759 running water and put into the 75%, 85%, 95% and 100% ethanol for 10 s, sequentially washed
760 with 100% ethanol for dehydration. Samples were then rinsed in xylene for 1 min twice,
761 mounted with a coverslip and imaged. The quantification was performed using ImageJ.

762 For Oil Red O staining, liver tissues were dissected, fixed in 4% PFA, dehydrated in 30%
763 sucrose, embedded in OCT and sectioned (8 μ m). Then frozen liver sections were washed with
764 PBS and rinsed with 60% isopropanol for 1 min, stained in working Oil Red O solution for 10
765 min, and rinsed with 60% isopropanol for 1 min. Then slides were covered with aqueous
766 mounting gel and imaged. The quantification was performed using ImageJ.

767 **Bone Marrow Transplantation**

768 Bone marrow transplantation was performed as previously described⁷⁸. Briefly, to generate
769 irradiated chimeras, 5 weeks old *Lyz2-Cre TMED10^{f/f}* recipient mice received a lethal dose of
770 8 Gy radiation, followed by tail vein injection of 2 x 10⁶ bone marrow cells from WT (*TMED10^{f/f}*),
771 myeloid TMED10-KO (*Lyz2-Cre TMED10^{f/f}*) or TMED10-Q204L knock-in (*TMED10^{Q204L/Q204L}*)
772 mice. After 3 weeks of bone marrow transplantation (BMT), all mice were subjected to HFD
773 feeding for an additional 20 weeks.

774 **RNA sequencing and data analysis**

775 Liver and eWAT tissues were subjected to total RNA extraction and enrichment of mRNA, and
776 the library construction was carried out using an VAHTS® Universal V8 RNA-seq Library Prep
777 Kit. After quality control of the library, Illumina sequencing was carried out in illumina NovaSeq
778 X Plus 25B platform and high-quality reads were aligned via Hisat2 (v2.2.1). The expression
779 levels of individual genes were normalized to the fragments per kilobase million (FPKM) values
780 via HTSeq (v0.6.1). PCA (principal component analysis) were performed using Pcomp and
781 visualized with FactoMine in R.

782 Differential expression analysis of bulk RNA-seq count matrices was performed using DESeq2
783 in R. Raw gene-level counts were first filtered to remove lowly expressed genes (row sums \leq
784 10 across all samples), normalized using the median-of-ratios method, and fitted with a
785 negative binomial generalized linear model. Wald tests were used to estimate \log_2 fold-changes
786 between conditions, with shrinkage estimation applied to dispersions and effect sizes according
787 to the DESeq2 workflow. For each pairwise comparison between experimental groups, we
788 generated a pre-ranked gene list by ordering all expressed genes according to the DESeq2
789 \log_2 fold-change.

790 Gene set enrichment analysis (GSEA) was carried out on these pre-ranked lists following the
791 original GSEA framework⁷⁹ using the GSEA implementation in the clusterProfiler package⁸⁰.
792 Hallmark gene sets for *Mus musculus* (category “H”) were obtained from the Molecular
793 Signatures Database (MSigDB) via the msigdbr package⁸¹. Only gene sets with sizes between
794 5 and 500 members were retained for analysis. Nominal P values were estimated by
795 permutation and adjusted for multiple testing using the Benjamini–Hochberg procedure; gene
796 sets with a false discovery rate (FDR) < 0.25 were considered significantly enriched, in
797 accordance with the original GSEA recommendations.

798 For gene set scoring and visualization, the inflammatory response gene set comprised *Il1b*,
799 *Il1a*, *Il6*, *Il18*, *Tnf*, *Cd80*, *Cd68*, *Cd40*, *Ccl2*, *Ccl3*, *Ccl4*, *Ccl6*, *Cxcl2* and *Cxcl1*. The metabolic
800 elastic gene set comprised *Angptl8*, *Irf4*, *Lep*, *Pnpla3*, *Dgat2*, *Thrsp*, *Acly*, *Pdk4*, *Fasn*, *Depp1*,
801 *Rbp7*, *Thbs1*, *Peg3*, *Gm5460*, *Scd2*, *Igfals*, *Mycl*, *Ptges*, *Trp53inp1* and *Gpd1*. For each bulk
802 RNA-seq sample, variance-stabilized counts obtained from DESeq2 were used as input to the

803 GSVA R package to compute sample-wise enrichment scores for each gene set. Heatmaps
804 depict Z score-scaled expression values of individual genes within each set across samples.
805 Violin plots display the distribution of gene set scores for each experimental group. Statistical
806 comparisons of gene-set scores between groups were performed using two-sided Wilcoxon
807 rank-sum tests.

808 **Single-cell RNA-seq data processing and analysis**

809 Raw FASTQ files from single-cell RNA sequencing were processed using Cell Ranger (10x
810 Genomics) to generate gene-cell expression count matrices for each sample⁸². The
811 resulting matrices were analyzed in R (version 4.3.2) using the Seurat package (version
812 4.2.1)^{83,84}. Cells with fewer than 200 detected genes or more than 20% of reads mapping
813 to mitochondrial genes were excluded, and genes detected in fewer than 3 cells were
814 removed from the dataset. Putative doublets were identified and removed using the
815 DoubletFinder package (version 2.0.3)⁸⁵ in combination with manual inspection of cluster-
816 specific expression profiles. After quality control and doublet removal, cells from all dietary
817 conditions (chow and different durations of high-fat diet feeding) were retained for
818 downstream analysis. Publicly available human adipose tissue single-cell datasets
819 (GSE156110)¹³ and mouse adipose tissue single-cell datasets (GSE128518)¹¹ were
820 processed using the same pipeline and quality-control criteria.

821 Gene expression counts were normalized using log-normalization with a scale factor of
822 10,000, and the top 2,000 highly variable genes were identified for each sample using the
823 variance-stabilizing transformation implemented in Seurat. Datasets from different
824 samples and experimental conditions were then integrated using the canonical correlation
825 analysis-based integration framework to correct for batch effects⁸⁴. Principal component
826 analysis was performed on the integrated Seurat object, and the top 30 principal
827 components were used for dimensionality reduction and clustering. Unsupervised
828 clustering was carried out using a shared nearest-neighbor graph and the Louvain
829 algorithm, and the results were visualized using Uniform Manifold Approximation and
830 Projection (UMAP)⁸⁶.

831 Cell clusters were annotated to major stromal and immune cell types (B cells, NK/T cells,
832 macrophages, dendritic cells (DCs), mast cells, neutrophils, fibro-adipogenic progenitors
833 (FAPs), and endothelial cells) using canonical marker genes and differentially expressed
834 genes (DEGs) identified by Seurat's FindAllMarkers function. For focused analyses of
835 myeloid cells, macrophages were subsetted based on marker expression and reclustered.

836 **Spatial transcriptomics dataset and label transfer**

837 Spatial transcriptomic data of gonadal WAT from mice subjected to diet-induced obesity
838 were obtained from public datasets (GSE198012)¹². Spot–gene count matrices and the
839 corresponding histology images were downloaded from the public repository and
840 processed using the Seurat workflow. Low-quality spots with low total UMI counts, low
841 numbers of detected genes or high mitochondrial transcript fractions were excluded based
842 on the distribution of these metrics. The remaining spots were log-normalized in the same
843 manner as the single-cell RNA-seq data.

844 To map ATM states onto the spatial transcriptomic data, we used our integrated mouse
845 scRNA-seq dataset as a reference and performed anchor-based label transfer using
846 Seurat package (FindTransferAnchors/TransferData). ATMs from the reference object
847 were used to identify transfer anchors with spatial spots enriched for myeloid signatures,
848 and predicted ATM cluster labels and associated module scores were obtained for each
849 spot. Crown-like structures (CLSs) were identified on the matched H&E-stained images
850 based on characteristic adipocyte morphology and dense macrophage aggregates, and
851 were manually annotated by an observer blinded to the transferred cluster labels. For each
852 ATM-labeled spot, the euclidean distance to the nearest CLS was calculated from the spot
853 coordinates and the centroid of the annotated CLS and converted to micrometres using
854 the array-specific scale factor. Distances were then grouped by ATM cluster to quantify the
855 spatial enrichment of macrophage subsets.

856 **Metabolic pathway activity analysis**

857 For the quantification of metabolic pathway activity at single-cell resolution, we used the
858 scMetabolism R package on the integrated Seurat objects (scMetabolism)⁸⁷. Pathway
859 activity scores for KEGG metabolic pathways were calculated for each cell using the
860 sc.metabolism. Seurat function with default parameters, starting from the normalized
861 Seurat object. This function returns the same Seurat object with an additional assay named
862 “METABOLISM”, in which the pathway activity matrix (cells × pathways) is stored. For
863 downstream analyses and visualization, pathway activity scores were extracted from the
864 METABOLISM assay and summarized by group (dietary condition or ATM cluster). In the
865 bubble plots, bubble color represents the mean normalized pathway activity for a given
866 pathway within each group, and bubble size indicates the proportion of cells in that group
867 with non-zero activity.

868 **Inflammatory-response gene-set scoring**

869 For the quantification of inflammatory activity at the single-cell resolution, we constructed
870 an inflammatory-response gene set based on KEGG pathway annotations
871 HALLMARK_INFLAMMATORY_RESPONSE^{81,88}, and the full gene list is provided in

872 **Supplementary Table 6).** Differentially expressed genes among ATM clusters were first
873 identified using Seurat's FindMarkers/FindAllMarkers functions, and KEGG pathway
874 enrichment analysis was performed using the KEGG database⁸⁹. Per-cell enrichment
875 scores for the inflammatory gene set were then calculated using the AddModuleScore
876 function in Seurat, which summarizes the relative expression of genes in the module
877 compared with control genes of matched expression levels.

878 **Gene set variation analysis (GSVA) / single-sample GSEA**

879 For the evaluation of coordinated changes in metabolic and inflammatory pathways across
880 ATM clusters, we performed single-sample gene set enrichment analysis using the GSVA
881 R/Bioconductor package⁹⁰. Log-normalized expression values from the integrated Seurat
882 object were used as input for the gsva function (method = "ssgsea"), thereby computing
883 an enrichment score for each gene set in each cell. Gene sets were curated mainly from
884 the MSigDB Hallmark collection, including fatty acid metabolism, cholesterol homeostasis,
885 oxidative phosphorylation, glycolysis, IFN α response, IFN γ response, IL2-STAT5 signaling,
886 TNF α signaling via NF κ B, lipid transport, and lipid metabolic process terms^{79,81}. For
887 visualization, single-cell enrichment scores were normalized within ATM clusters to obtain
888 cluster-level enrichment scores, and then displayed using heatmaps in which color
889 represents the mean enrichment score per pathway and cluster.

890 **Plasmids and shRNA oligos**

891 The TMED10, mIL-1 β expression and purification plasmids were described previously²⁹. The
892 TMED10 mutations were generated by mutagenesis PCR. SGMS1 and SMPD2 were PCR
893 amplified from cDNA and inserted into FUGW vectors with a HA tag at the C-terminus for
894 mammalian cell expression. Sphingomyelinase was PCR amplified from the *Staphylococcus*
895 *aureus* genome which was a gift from Dr. Jing-Ren Zhang (Tsinghua University) and was
896 inserted into the pET28a vector. pET28a-Eqt-SM was a gift from Dr. Yong-Qiang Deng
897 (Southern Medical University).

898 For shRNAs, the plasmids (pLKO.1 lentivirus vector as a backbone) were purchased from the
899 Center of Biomedical Analysis, Tsinghua University. The targeting sequences of these shRNAs
900 were shown in the **Extended Data Table 2**.

901 **Transfection and lentiviral transduction**

902 Transfection of plasmids into cells was performed using polyethylenimine (PEI) (Polysciences,
903 Inc.) for HEK293T and NEOFECT (Neofect (Beijing) biotech Co. Ltd.) or X-tremeGENE HP
904 (Roche) or Sage LipoPlus (Sage (Beijing) Chemical Co. Ltd.) for U2OS and HeLa according to
905 the manufacturer's protocols. For lentiviral transduction, pLKO.1 plasmids carrying Control,

906 SMPD2, SGMS1, SGMS2 or CERT target sequence was transfected into HEK293T cells along
907 with lentiviral packaging plasmids pMD2.G and psPAX2 (Addgene) using PEI to produce
908 lentiviral particles to infect HEK293T cells.

909 **Preparation of PA-BSA and SM-BSA complexes**

910 For PA-BSA complex preparation, fatty-acid-free BSA (yeasen, 36104ES25) was dissolved in
911 PBS to 200 mg/ml. 20 mM palmitic acid (PA, sigma, P0500) was dissolved and saponified in
912 0.1 M NaOH at 70°C, and then mixed with an equal volume of BSA solution at 55°C with shaking
913 for 1 h to allow for complex formation. The final PA-BSA solution is clear and the molar ratio of
914 PA:BSA is approximately 6:1. For the preparation of SM-BSA complex⁹¹, fatty-acid-free BSA
915 was dissolved in PBS to 1 mM. A solution of 10 mg/ml of SM (the molar ratio of SM to BSA was
916 1:1) in absolute ethanol was added in small aliquots to a stirred solution of 1 mM BSA at 37°C
917 until a clear solution was achieved. The PA-BSA and SM-BSA complexes were filtered through
918 0.22 µm syringe filters (Pall Corporation) and replenished in culture medium at the indicated
919 concentration and time durations, with an equal concentration of BSA solution as vehicle control.

920 **Secretion and serum lipid determination**

921 For determination of mIL-1 β secretion in HEK293T cells²⁹, cell culture medium was replaced
922 with DMEM containing indicated drugs for 1.5 hours. The medium was collected and
923 concentrated (20-fold) by a 10 kDa Amicon filter (Millipore). Cells were lysed in SDS-PAGE
924 loading buffer. Immunoblot was performed to determine the amounts of cargoes in the medium
925 and cell lysate.

926 The IL-1 β secretion in THP-1 cells, peritoneal macrophages or mice plasma were detected
927 using the ELISA kit. For the detection of IL-1 β secretion in WT and TMED10-KO THP-1 cells,
928 THP-1 cells were first differentiated by incubation with 50 nM PMA for 20 h, and then treated
929 with 50-150 µM PA-BSA and 5 µM MCC950, 9 µM Ac-YVAD-cmk, 10 µM Mal C or 10 µM
930 Eliglustat in complete medium for 16 h. For the detection of IL-1 β secretion in peritoneal
931 macrophages, cells were induced with 100 ng/ml LPS in RPMI-1640 plus 10% FBS followed
932 by 5 µM Nigericin or 2 mM ATP treatment for 60 min in complete medium. Alternatively, the
933 peritoneal macrophages were treated with PA-BSA and other drugs at indicated concentration
934 and time durations. The medium from THP-1 cells or peritoneal macrophages were collected
935 for IL-1 β concentration determination using ELISA kit.

936 Plasma glycerol (APPLYGEN, E1002-125), plasma NEFA (Nanjing Jiancheng, A042-2-1) and
937 hepatic triglyceride (Nanjing Jiancheng, A110-1-1) were measured according to the
938 manufacturer's instructions.

939 **Immunofluorescence**

940 Immunofluorescence was described previously²⁹. Briefly, cells were washed twice with PBS
941 and then fixed with 4% paraformaldehyde at room temperature for 20 min (for general staining)
942 or cold methanol at -20°C for 8 min (for endogenous TMED10 and ERGIC53 staining). The
943 cells were washed twice with PBS and permeabilized with 0.2% Triton X-100 diluted in PBS for
944 3 min. After washing with PBS three times, cells were blocked by 10% FBS diluted in PBS at
945 room temperature for 1 h and followed by primary antibody incubation at room temperature for
946 2 h or 4°C overnight. Cells were washed with PBS three times and followed by secondary
947 antibody incubation at room temperature for 1 h. Fluorescence images were acquired at room
948 temperature using the Olympus FV3000 laser scanning confocal microscope equipped with a
949 1.3 NA 60× oil-immersion objective and FV31S acquisition software.

950 **In situ Duolink**

951 Duolink PLA kit was purchased from sigma (DUO92002, DUO92004, DUO92014) and the
952 assay was performed according to the product manual. For self-interactions of TMED10
953 detection, equal amounts of TMED10-V5 and TMED10-3*FLAG were co-expressed without or
954 with SGMS1-HA or SMPD2-HA in U2OS cells. After 24 h transfection, the cells were washed
955 twice with PBS and then incubated with 4% cold paraformaldehyde at room temperature for 20
956 min. The cells were washed twice with PBS and permeabilized with 0.2% Triton X-100 diluted
957 in PBS for 3 min. The cells were blocked, incubated with primary antibodies and PLA probes
958 followed by ligation and amplification using the recommended conditions according to the
959 manual. The anti-rat secondary antibodies (for HA tag staining) were added during the ligation
960 step. Images were acquired using the Nikon AX confocal microscope and quantification was
961 performed using ImageJ.

962 **Protein expression and purification**

963 For the expression of GST-tagged TMED10, his-tagged T7-mIL-1 β -FLAG, mIL-1RA,
964 sphingomyelinase, Eqt-SM, the constructs were transformed into the *E.coli* strain BL21 (DE3)
965 plysS. After transformation, a single colony was picked and grown in 600 μ L LB medium at
966 37°C with shaking at 220 rpm for approximately 6 hours. The pre-culture was further expanded
967 to 50 mL and incubated overnight under the same conditions. The next day this culture was
968 scaled up to 1 L LB medium followed by incubating at 37°C with shaking at 220 rpm until the
969 OD₆₀₀ reached 0.6-0.8. A final 100 μ M IPTG was added to the culture and the protein
970 expression was induced at 16°C with shaking at 160 rpm overnight. After expression, the
971 bacterial pellets were collected and stored at -80°C for subsequent purification.

972 For the expression of FLAG-tagged TMED10, the protein was expressed in HEK293F
973 suspension cells (from Dr. Shan Sun and Dr. Sen-Fang Sui). The encoding DNA of TMED10
974 was cloned into a vector pCMV-3*FLAG containing an N-terminal 3*FLAG tag after the signal

975 sequence. When the density of HEK293F cells reached 2.0×10^6 cells/ mL, the cells were
976 transfected with the expression plasmids using PEI. 1.5 mg of plasmids and 3 mg of PEI, each
977 in 25 mL of fresh medium, were premixed for 30 min, and then 50 mL of the mixture was added
978 to 800 mL of cell cultures. The transfected cells were grown for 48 hours and then harvested.

979 For purification of GST-tagged TMED10, cell pellets were lysed in lysis buffer (50 mM Tris 8.0,
980 5 mM EDTA, 150 mM NaCl, 10% glycerol, 0.5 mg/mL lysozyme, 0.3 mM DTT and 1 mM PMSF)
981 and then rotated at 4°C for 0.5 h. Triton X-100 was added to achieve 1% final concentration
982 and incubated for an additional 10 minutes. The lysates were sonicated and then centrifuged
983 at 20,000 rpm for 1 h. The supernatant was collected and incubated with 0.5 mL of Glutathione
984 Sepharose 4FF beads at 4°C for 2 h. After incubation, the beads were washed with 15 bed
985 volumes of wash buffer (PBS with 0.1% Triton X-100). The proteins were eluted with elution
986 buffer (50 mM Tris 8.0, 250 mM KCl, 25 mM glutathione, and 0.1% Triton X-100), concentrated
987 by Amicon® Ultra Filters (Merck) and further purified by size-exclusion chromatography (SEC)
988 on a Superose 6 increase column (Cytiva) in SEC buffer (PBS with 0.1% TritonX-100). The
989 proteins were snap-frozen by liquid nitrogen and stored at -80°C.

990 For purification of his-tagged mIL-1RA, mIL-1β, Eqt-SM and sphingomyelinase, cell pellets
991 were lysed in lysis buffer (2 x PBS, 10 mM imidazole, 0.5 mg/mL lysozyme, 0.3 mM DTT and
992 1 mM PMSF) and then rotated at 4°C for 0.5 h. The lysates were sonicated and centrifuged at
993 20,000 rpm for 1 h. The supernatant was incubated with 0.5 mL Ni-NTA agarose at 4°C for 2
994 h. The agarose was washed with 10 bed volumes of wash buffer containing 0.1% Tween20 and
995 wash buffer (2 x PBS, 25 mM imidazole) followed. The proteins were eluted with elution buffer
996 (2 x PBS, 250 mM imidazole). The proteins were concentrated by Amicon® Ultra Filters (Merck)
997 and desalting by PD MiniTrap G-25 (Cytiva). For his-tagged mIL-1RA and his-tagged mIL-1β,
998 the endotoxin was removed by incubating purified proteins with endotoxin removal resin
999 (Thermo, Cat#88274) overnight at 4°C. The proteins were snap-frozen by liquid nitrogen and
1000 stored at -80°C. To test biological activity, HEK-Blue™ IL-1β cells (InvivoGen) were treated
1001 with 5 µg/ml his-tagged mIL-1RA, 0.1 µg/ml his-tagged mIL-1β, or both, and SEAP activity in
1002 medium was detected using QUANTI-Blue™ Solution (InvivoGen, rep-qbs).

1003 For purification of FLAG-tagged TMED10, collected cells were solubilized in lysis buffer (20 mM
1004 HEPES (pH = 7.4), 150 mM NaCl, 1% DDM, and 1 mM PMSF) at 4°C for 1 h. After
1005 centrifugation at 35,000 rpm at 4°C for 1 h, the supernatant was collected and incubated with
1006 FLAG affinity resin (Sigma-Aldrich) at 4°C for 1 h. Then the resin was washed with 15 bed
1007 volumes of wash buffer (20 mM HEPES (pH = 7.4), 150 mM NaCl, 0.02% DDM). The protein
1008 was eluted using elution buffer (20 mM HEPES (pH = 7.4), 150 mM NaCl, 0.02% DDM, and 0.1
1009 mg/mL 3×FLAG peptide). The eluted proteins were concentrated using Amicon® Ultra Filters
1010 (Merck) and further purified by size-exclusion chromatography (SEC) on a Superose 6 Increase

1011 Column (Cytiva) in SEC buffer (20 mM HEPES (pH = 7.4), 150 mM NaCl, 0.02% DDM). Finally,
1012 the proteins were snap-frozen by liquid nitrogen and stored at -80°C.

1013 **Lipid preparation for proteoliposome reconstitution**

1014 DOPC (1,2-dioleoyl-sn-glycero-3-phosphocholine, Cat# 850375P), DOPE (1,2-dioleoyl-sn-
1015 glycero-3-phosphoethanolamine, Cat# 850725P), Liver PI (L- α -phosphatidylinositol, Cat#
1016 840042P), Lyso PC (1-oleoyl-2-hydroxy-sn-glycero-3-phosphocholine, Cat# 840072P), Brain
1017 SM (Brain, Porcine, Cat# 860062P), Cholesterol (ovine, Cat# 700000P), Ceramide (Brain,
1018 Porcine, Cat# 860052P), Cardiolipin (1',3'-bis[1,2-dioleoyl-sn-glycero-3-phospho]-glycerol
1019 (sodium salt), Cat# 710335P), 18:0 CPE (Ceramide phosphoethanolamine, Cat# 860066P),
1020 16:0 SM (d18:1/16:0, Cat# 860584P), 18:0 SM (d18:1/18:0, Cat# 860586P), 24:1 SM
1021 (d18:1/24:1, Cat# 860593P)-d9 were purchased from Avanti Polar Lipids. 20:0 SM (d18:1/20:0,
1022 Cat# 24450) and 22:0 SM (d18:1/22:0, Cat# 24451) were purchased from Cayman Chemical.

1023 Lipids were initially dissolved in chloroform at specific concentration. Then, the lipids were
1024 mixed with specific molar concentration as indicated. The mixtures were dried with a nitrogen
1025 stream and further dried at 37°C for 1 h. The lipid films were hydrated in HEPES-KAc buffer
1026 (20 mM HEPES (pH 7.2), 150 mM potassium acetate) and incubated at 220 rpm at 37°C for 1
1027 h to resuspend thoroughly. The hydrated lipids could be aliquoted and stored at -80°C for further
1028 use.

1029 **In vitro translocation and protease K protection assay**

1030 Proteoliposome reconstitution was performed according to a previous study with minor
1031 modifications²⁹. 1 mg lipids for each reaction tube were frozen in liquid nitrogen and thawed in
1032 a 42°C water bath alternately for 10 times. Triton X-100 was added to achieve a final
1033 concentration of 0.05%, and the mixture was rotated at 4°C for approximately 30 minutes. Next,
1034 10 μ g recombinant proteins (GST-TMED10) were added to the lipid solution (10 μ g recombinant
1035 proteins, 1 mg lipids, and 0.05% Triton X-100 in 400 μ L solution) and the mixture was rotated
1036 at 4°C for 1 h. Each solution was incubated with 6-8 mg Bio-Beads SM2 Resin (Bio-Rad) which
1037 was pre-equilibrium by HEPES-KAc reaction buffer to remove the detergent and rotated at 4°C
1038 for approximately 1 h. This step was repeated 5 times (10 mg beads used during the third
1039 incubation, which was extended overnight). The Bio-Beads were removed by 1,500 \times g
1040 centrifugation at 4°C each step and after the last time, the liposome solution were froze in liquid
1041 nitrogen and thawed in a 42°C water bath alternately for 5 times. To remove the free proteins,
1042 a membrane flotation step was performed. For each 350 μ L solution, 350 μ L 50% OptiPrep
1043 (diluted in HEPES-KAc buffer) was added. The mixture was overlaid with 560 μ L 20% OptiPrep
1044 and 105 μ L HEPES-KAc buffer, centrifuged at 100,000 \times g for 2 h and the top 200 μ L fraction
1045 was collected and diluted with 100 μ L HEPES-KAc buffer as proteoliposome solution.

1046 For the in vitro protein translocation, 10 µg cargo proteins (T7-mIL-1 β -FLAG) were pretreated
1047 with 4 M urea for at least 30 min and diluted into proteoliposome solution (150 µL system) and
1048 then incubated at 30°C for 1 h. After incubation, 5 µL reaction buffer was taken as input and
1049 the left was added 150 µL 50% OptiPrep (diluted in HEPES-KAc buffer). The mixture was
1050 overlaid with 240 µL 20% OptiPrep and 45 µL HEPES-KAc buffer, centrifuged at 45,000 rpm
1051 for 2 h and the 90 µL top fraction was collected and aliquoted into 3 fractions. All fractions were
1052 loaded to 50 µL. The first fraction was a control, the second and the third fractions were digested
1053 by 10 µg/ml protease K without or with 0.1% Triton X-100 for 20 min on ice. The reactions were
1054 stopped by 1 mM PMSF and incubated for 10 min on ice. Finally, 2 × SDS loading buffer was
1055 added and the samples were heated at 100°C for 10 min followed by immunoblot analysis.

1056 **Analysis of gene expression level**

1057 Gene expression was determined by qRT-PCR. Total RNA was isolated using Trizol (Beyotime)
1058 and cDNA was generated using ABScript III RT Master Mix for qPCR (ABclonal) according to
1059 the manufacturer's protocols. The samples were amplified using a CFX-96 machine (Bio-Rad)
1060 and SYBR Green T5 Fast qPCR mix (TSINGKE, China) according to the manufacturer's
1061 instructions. Data were normalized to the Actin control. The sequences of the primers were
1062 listed in the **Extended Data Table 3**.

1063 **Lipid extraction and dot blot of sphingomyelin**

1064 Total cell lipids were extracted as previously reported²⁹. Detailly, cells were collected and
1065 washed with PBS. After centrifugation at 600 × g for 5 min, the cell pellets were resuspended
1066 in PBS (cell pellets: PBS =1: 1). Then, chloroform/methanol solution was added to the cell
1067 suspension (chloroform: methanol: cell suspension = 8: 4: 3) and vortexed for 30 s. The
1068 mixtures were shaken for 0.5 h at 37°C. The chloroform phase was collected and evaporated
1069 by a stream of nitrogen gas over the lipid solution and further dried at room temperature for 0.5
1070 h. Dried lipid was dissolved in ethanol. The phosphatidylcholine content of the lipid solution was
1071 measured by a standard kit (Wako) to normalize lipid concentration. Equal amounts of lipids
1072 were spotted on the nitrocellulose membrane and dried at room temperature for 0.5 h. The blot
1073 was first blocked for 2 h in 4% (w/v) fatty-acid-free bovine serum albumin (BSA) dissolved in
1074 TBS (20 mM Tris-HCl, 150 mM NaCl, pH 7.6), and then incubated with Flag-tagged equinatoxin
1075 II (Eqt-SM)⁹² at final 2.5 µg/ml concentration, anti-Flag primary antibodies and secondary
1076 antibodies conjugated with horseradish peroxidase for 2 h in 4% BSA dissolved in TBST (TBS-
1077 0.1% Tween-20). The membrane was finally washed with TBST for three times (each times for
1078 10 min).

1079 **Crosslink assay**

1080 DSS was dissolved in DMSO before use. The in vivo DSS crosslink assay was described
1081 previously²⁹. Peritoneal macrophages and adipose tissue macrophages were isolated as
1082 described above. The macrophages or TMED10-KO HEK293T cells were washed with PBS
1083 (pH = 8.0) three times and then suspended in PBS (pH = 8.0) with the indicated concentration
1084 of DSS at room temperature for 30 min. Then the reactions were quenched by 20 mM Tris (pH
1085 = 7.5) at room temperature for 15 min followed by sample preparation for immunoblot analysis.
1086 For in vitro DSS crosslink assay, the lipid mixtures were generated with PC, or PC
1087 supplemented with 10% SM which was treated with or without 0.5 μ M sphingomyelinase when
1088 recombinant protein added. The indicated concentration of DSS was added to the
1089 proteoliposomes and the following steps were done as stated above.

1090 **Biotin sphingomyelin pulldown**

1091 Biotin sphingomyelin pulldown was performed according to a previous report with minor
1092 modifications⁹³. 5 μ g recombinant proteins and 2 μ M biotin sphingomyelin (Echelon, S-400B)
1093 was incubated in pulldown buffer (50 mM Tris 7.4, 1 mM EDTA, 150 mM NaCl, 0.2% Triton X-
1094 100, 1 mM PMSF) and rotated at 4°C for 2 h. Streptavidin sepharose beads (Cytiva, 17511301)
1095 were blocked with 10% FBS diluted in pulldown buffer for 1 h and then the beads were added
1096 to the pulldown system and further rotated at 4°C for 3 h. The samples were centrifuged at
1097 1,000 \times g for 1 min at 4°C, and the beads pellets were washed four times with pulldown buffer.
1098 After washing, the pellets were treated with SDS loading buffer followed by immunoblot analysis.

1099 **All-atom molecular dynamics (MD) simulations**

1100 The structure of TMED10-TMD with adjacent sequences of luminal and cytosolic regions
1101 (sequence: RDTNESTNTRVLYFSIFSMFCLIGLATWQVFYLRRFFKAKK, TMD is underlined)
1102 was truncated from full-length TMED10 in AlphaFold protein structure database⁹⁴. In order to
1103 study the interactions between TMED10-TMD and sphingomyelin, we set up the system where
1104 TMED10-TMD was inserted in the lipid bilayer with 90% POPC (1-palmitoyl-2-oleoyl-sn-
1105 glycero-3-phosphocholine) and 10% SSM (stearoyl sphingomyelin) solvated in water with
1106 0.15M NaCl. For the MD simulation, the CHARMM36m all-atom force field⁹⁵ and GROMACS
1107 software⁹⁶ (version 2019.4) were used to run for 100 ns with the time step of 2 fs. Nose-Hoover
1108 heat bath^{97,98} of 310 K (coupling constant τ = 1 ps) and semi-isotropic Parrinello-Rahman
1109 pressure bath⁹⁹ of 1 bar (coupling constant τ = 5 ps and compressibility = 4.5×10^{-5} bars⁻¹ for
1110 all dimensions). All system snapshots and movies were rendered by VMD¹⁰⁰. The contacts
1111 between TMED10-TMD and SM was calculated using GROMACS tool *gmx mindist*⁹⁶.

1112 **Quantification and statistical analysis**

1113 For the quantification of cargoes secretion, the relative level of cargoes in medium were
1114 normalized to cargoes and TMED10 expression level in corresponding cell lysate. For the
1115 quantification of in vitro translocation, the relative cargoes translocation efficiency were
1116 normalized to TMED10 level on proteoliposomes. For the quantification of homo-oligomer ratio
1117 in the crosslink assay, the level of homo-oligomers were normalized to the level of
1118 corresponding monomer. The immunoblotting images were acquired using ChemiDoc Imaging
1119 System (Bio-Rad). The analysis and quantification of bands were performed using Image Lab
1120 and ImageJ software. The statistical information of each experiment, including the statistical
1121 methods, the P-values, and numbers (n), were shown in the figures and corresponding legends.
1122 Statistical analyses were performed using GraphPad Prism.

1123 **Data availability**

1124 All data are available in the paper or the supplementary materials. Further information and
1125 requests for reagents should be directed to Lead Contact, Liang Ge
1126 (liangge@mail.tsinghua.edu.cn). Plasmids and cell lines generated in this study will be made
1127 available upon request. We may require a payment and/or a completed Materials Transfer
1128 Agreement in case there is potential for commercial application. Source data are provided with
1129 this paper.

1130 **Code availability**

1131 All code reported in this manuscript are available on request.

1132

1133 **Extended Data Table 1.** List of genotyping primers used in this study.

Gene	Sequence
<i>Lyz2-Cre</i> (F)	GCTGCCAGAATTCCTCTCATCAC
<i>Lyz2-Cre</i> (R)	ACATGTCCATCAGGTTCTGCG
<i>Lyz2-CreWT</i> (F)	GAAGCCATTATTCACAGCAGCA
<i>Lyz2-CreWT</i> (R)	CTGTCCTGTTCTGAGCGATT
<i>Tmed10 flox</i> (F)	TGTCAGGAAGCGACTCCTTT
<i>Tmed10 flox</i> (R)	CCAGCTTAAAGGGGATCTCAG
<i>Gsdmd flox</i> (F)	TTCCCTCCAGCCCTACTTGC
<i>Gsdmd flox</i> (R)	TGAGCATCCTCCCCAACCTG
<i>Tmed10-Q204L</i> (F)	AGACCTATGGACAGAATGAGGCTAAC
<i>Tmed10-Q204L</i> (R)	AAGGACTTCAAGCAGTTGAGCACA

1134

1135 **Extended Data Table 2.** List of shRNAs used in this study.

shRNA	Target sequences
Control shRNA	CGTGATCTCACCGACAAGAT
<i>SGMS1</i> shRNA-1	GCGTTGGACAACAATAAAGAA
<i>SGMS1</i> shRNA-2	GCGAAGAATAATGAAGCTCAT
<i>SGMS1</i> shRNA-3	CCTCAGTAGGCAAGTAAATA
<i>SGMS2</i> shRNA-1	GCTGTAACCAAAGGTATAGTT
<i>SGMS2</i> shRNA-2	CCAGTGATCCTACGAACACTT
<i>CERT</i> shRNA-1	GCAAAGCGAGAGTATCCTAAA
<i>CERT</i> shRNA-2	GCAACACTTCTCATTGTATT
<i>SMPD2</i> shRNA-1	CGACAGAAGGACATCTACCTA
<i>SMPD2</i> shRNA-2	CAGGAGGTCAATGGCTTATAT

1136

1137 **Extended Data Table 3.** List of qPCR primers used in this study.

Gene	Sequence
<i>Actin</i> (F)	CATGTACGTTGCTATCCAGGC
<i>Actin</i> (R)	CTCCTTAATGTCACGCACGAT
<i>SGMS1</i> (F)	TGTGCCGAGTCTCCTCTGA
<i>SGMS1</i> (R)	CCGTTCTGTGTGCTTCCAAA
<i>SGMS2</i> (F)	TCCTACGAACACTTATGCAAGAC
<i>SGMS2</i> (R)	CCGGGTACTTTGGTGCCT
<i>CERT</i> (F)	AAAGGCCACAGTTACGTGAG
<i>CERT</i> (R)	CTTCTGTAGCGTGTCAACTTGT
<i>SMPD2</i> (F)	TCAATGGCTACCCCTACATGA
<i>SMPD2</i> (R)	ATGCCACTTAGATGGAGCACC

1138

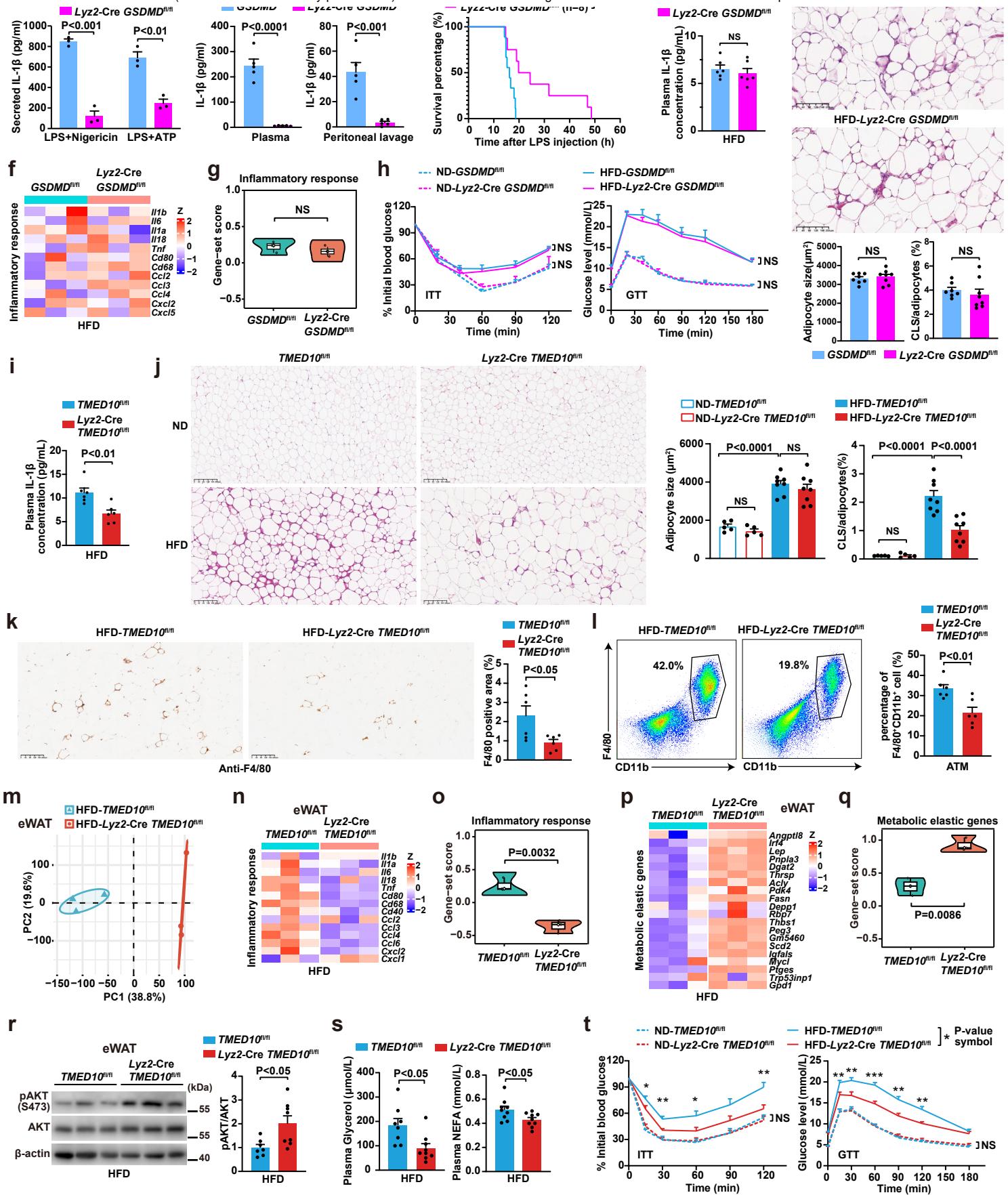


Fig. 1

Fig. 1 | TMED10, but not GSDMD, mediates HFD-induced metabolic inflammation and dysfunction. **a**, ELISA analysis of IL-1 β secretion in LPS-primed (50 ng/mL) peritoneal macrophages following treatment with Nigericin (5 μ M, 1 h) or ATP (2 mM, 1 h). **b**, IL-1 β in plasma and peritoneal lavage measured by ELISA 12 h after LPS challenge (25 mg/kg, male) (n=5). **c**, Survival curves after LPS challenge (n=8). **d**, *GSDMD*^{fl/fl} mice and *Lyz2*-cre *GSDMD*^{fl/fl} mice (male) were fed on ND or HFD for 12 weeks. Plasma IL-1 β was determined by ELISA (n=6). **e**, H&E staining of eWAT for quantification of adipocyte size and crown-like structure (CLS) percentage (n=8). **f**, Heatmap analysis of genes involved in inflammatory response in eWAT. **g**, gene-set score of (f). **h**, GTT (n=7-9) and ITT (n=6-8) in mice of ND or HFD. **i**, *TMED10*^{fl/fl} mice and *Lyz2*-cre *TMED10*^{fl/fl} mice (male) were fed on ND or HFD for 12 weeks. Plasma IL-1 β was determined by ELISA (n=6). **j**, H&E staining of eWAT for quantification of adipocyte size and crown-like structure (CLS) percentage (n=5-8). **k**, IHC for F4/80 $^{+}$ macrophages in eWAT (n=6). **l**, Flow cytometric analysis of F4/80 $^{+}$ CD11b $^{+}$ macrophages in eWAT (ATM). **m**, PCA of eWAT from RNA-seq. **n-q**, Heatmap analysis of genes involved in inflammatory response (**n**) or metabolic elastic genes (**p**) with corresponding gene-set score in eWAT (**o**, **q**). **r**, Western blot analysis of pAKT (S473) and quantification in eWAT after insulin administration for 15 min (n=7-8). **s**, Plasma glycerol and NEFA levels in mice fasting for 16 h (n=8-9). **t**, GTT (n=7-8) and ITT (n=6-7) in mice of ND or HFD. NS, non-significant; *P < 0.05; **P < 0.01; ***P < 0.001; ****P < 0.0001. All values are presented as mean \pm s.e.m. P values were calculated by unpaired two-tailed Student's t-test (**a**, **b**, **d**, **e**, **i**, **k**, **l**, **r**, **s**), two-sided Wilcoxon rank-sum test (**g**, **o**, **q**), one-way ANOVA followed by Tukey's test (**h**, **j**, **t**) or log-rank (Mantel–Cox) test (**c**).

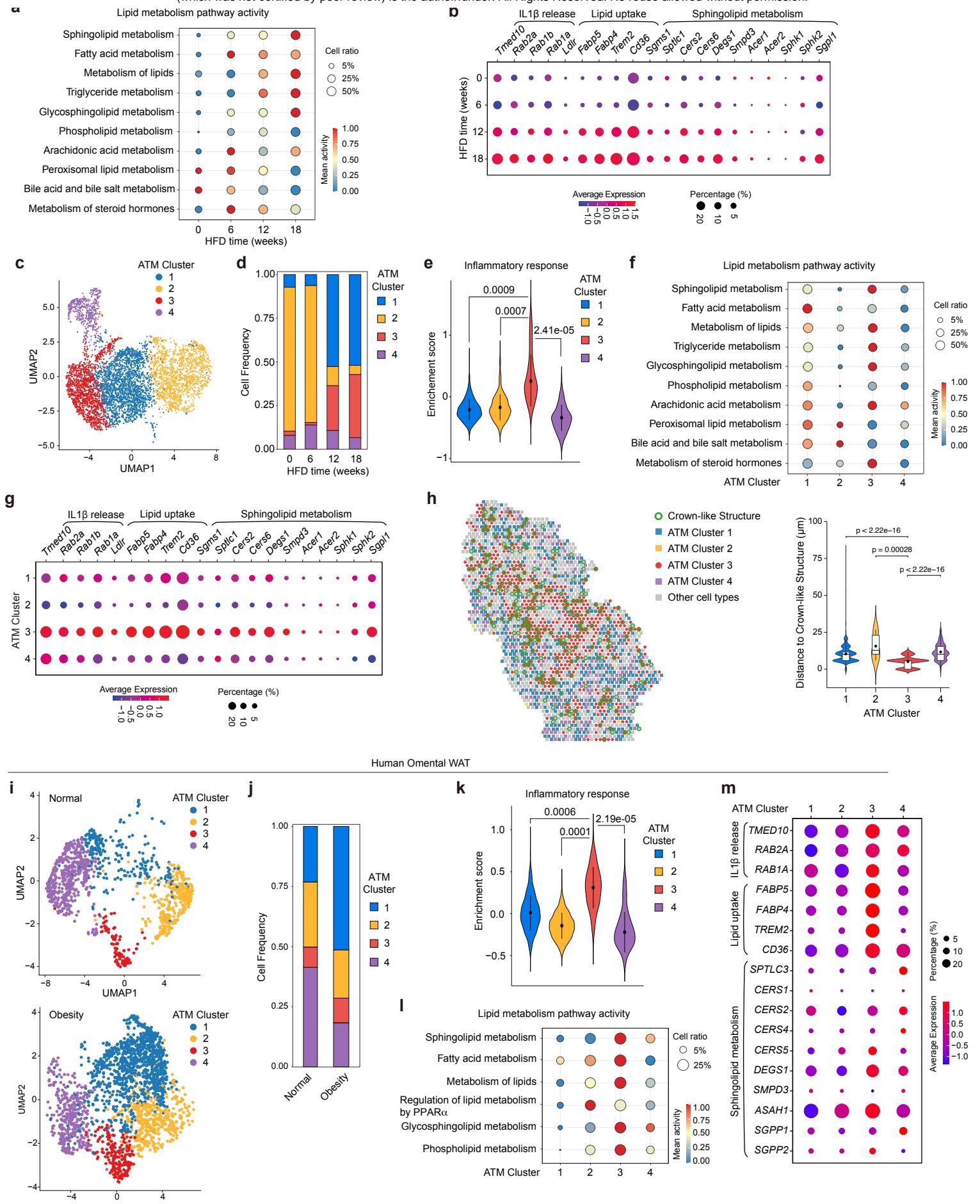


Fig. 2

Fig. 2 | TMED10 couples sphingomyelin metabolism to the emergence of metabolically inflammatory macrophages in obese adipose tissue. **a**, Bubble plot showing lipid metabolism pathway activity in eWAT adipose tissue macrophages (ATMs) from mice fed chow (0 weeks) or a high-fat diet (HFD) for 6, 12, or 18 weeks. Circle size indicates the proportion of cells with pathway activity, and color indicates mean pathway activity. **b**, Dot plot depicting expression of gene modules associated with IL-1 β release, lipid uptake, and sphingomyelin metabolism in eWAT ATMs at the indicated HFD durations. Dot size represents the fraction of expressing cells, and color indicates scaled average expression. **c**, UMAP visualization of mouse eWAT ATMs, colored by four transcriptionally defined clusters (ATM clusters 1–4). **d**, Bar graph showing relative frequency of each ATM cluster among total ATMs over the course of HFD feeding. **e**, Violin plots of an inflammatory-response gene-signature score in ATM clusters 1–4. **f**, Bubble plot showing lipid metabolism pathway activity in each ATM cluster; circle size indicates the proportion of cells with pathway activity, and color indicates mean pathway activity. **g**, Dot plot depicting expression of gene modules associated with IL-1 β release, lipid uptake, and sphingomyelin metabolism in ATM clusters 1–4. Dot size represents the fraction of expressing cells, and color indicates scaled average expression. **h**, Spatial transcriptomics of eWAT from long-term HFD-fed mice showing the spatial distribution of ATM clusters relative to crown-like structures (CLSS; left), and violin plots quantifying the distance from each ATM to the nearest CLS (right). **i**, UMAP plots of human adipose tissue macrophages from metabolically normal and obese individuals, colored by four transcriptionally defined clusters (ATM clusters 1–4). **j**, Bar graph showing relative frequency of human ATM clusters in normal versus obese visceral adipose tissue. **k**, Violin plots of inflammatory-response gene-set scores in human ATM clusters 1–4. **l**, Bubble plot showing lipid metabolism pathway activity in each human ATM cluster; circle size indicates the proportion of cells with pathway activity, and color indicates mean pathway activity. **m**, Dot plot depicting expression of gene modules associated with IL-1 β release, lipid uptake, and sphingomyelin metabolism in human ATM clusters. Dot size represents the fraction of expressing cells, and color indicates scaled average expression. Statistical tests were performed using two-sided Wilcoxon rank-sum tests (**e**, **h**, **k**).

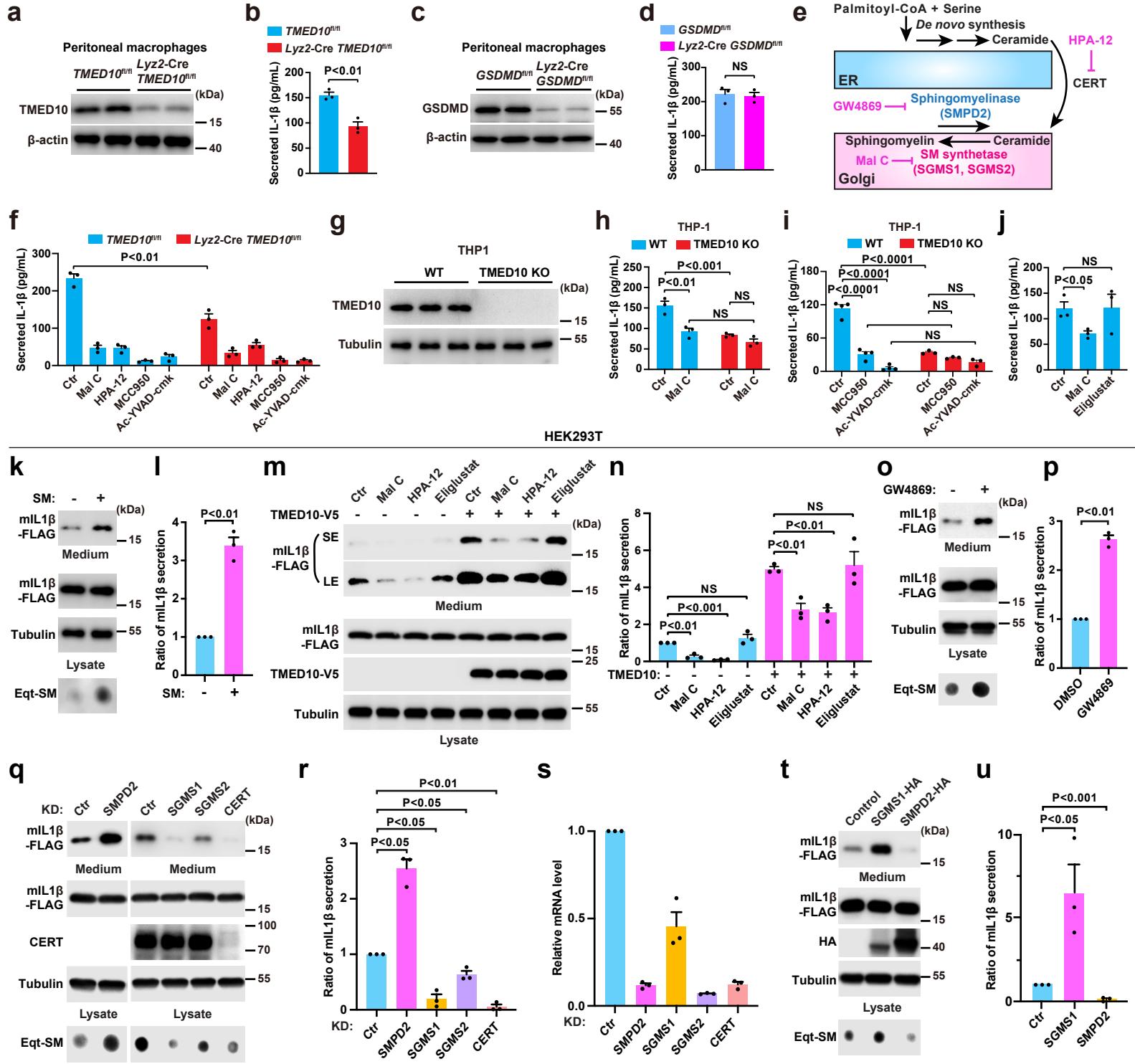


Fig. 3

Fig. 3 | Sphingomyelin enhances TMED10-mediated IL-1 β secretion. **a**, The TMED10 protein level in macrophages from *TMED10*^{fl/fl} and *Lyz2*-cre *TMED10*^{fl/fl} mice. **b**, ELISA analysis of IL-1 β secretion following 150 μ M PA stimulation for 24 h in peritoneal macrophages of *TMED10*^{fl/fl} and *Lyz2*-cre *TMED10*^{fl/fl} mice. **c**, The GSDMD protein level in macrophages from *GSDMD*^{fl/fl} and *Lyz2*-cre *GSDMD*^{fl/fl} mice. **d**, ELISA analysis of IL-1 β secretion following 150 μ M PA stimulation for 24 h in peritoneal macrophages of *GSDMD*^{fl/fl} and *Lyz2*-cre *GSDMD*^{fl/fl} mice. **e**, Schematic diagram of the sphingomyelin metabolism pathway with inhibitors of key processes labeled. **f**, ELISA analysis of IL-1 β secretion following 150 μ M PA stimulation for 24 h in peritoneal macrophages of *TMED10*^{fl/fl} and *Lyz2*-cre *TMED10*^{fl/fl} mice. The macrophages were treated without or with 10 μ M Malabaricone C (Mal C), 20 μ M HPA-12, 5 μ M MCC950 or 10 μ g/ml Ac-YVAD-cmk for 24 h. **g**, The TMED10 protein level in WT and TMED10 KO THP-1 cells. **h**, ELISA analysis of IL-1 β secretion following 50 μ M PA stimulation for 16 h in WT or TMED10 KO THP-1 cells treated without or with 10 μ M Mal C. **i**, ELISA analysis of IL-1 β secretion following 50 μ M PA stimulation for 16 h in WT or TMED10 KO THP-1 cells treated without or with 5 μ M MCC950 or 9 μ M Ac-YVAD-cmk. **j**, ELISA analysis of IL-1 β secretion following 150 μ M PA stimulation for 16 h in WT THP-1 cells treated without or with 10 μ M Mal C or 10 μ M Eliglustat. **k**, Secretion of mIL-1 β in HEK293T cells treated with 20 μ M BSA (control) or 20 μ M BSA-SM complex for 16 h. SM in these cells was determined by the SM probe Eqt-SM using a dot blot assay (bottom). **l**, Quantification of mIL-1 β secretion from (k) (n = 3). **m**, Secretion of mIL-1 β in HEK293T cells without or with TMED10-V5 expression. The cells were treated without or with 10 μ M Malabaricone C (Mal C), 5 μ M HPA-12 or 10 μ M Eliglustat for 16 h. **n**, Quantification of mIL-1 β secretion from (m) (n = 3). **o**, Secretion of mIL-1 β in HEK293T cells treated without or with 5 μ M GW4869 for 16 h. SM was determined by Eqt-SM (bottom). **p**, Quantification of mIL-1 β secretion from (o) (n = 3). **q**, HEK293T cells with mIL-1 β expression were infected by lentiviral particles packaged with indicated shRNA vectors. 96 hours post infection, mIL-1 β secretion was analyzed. SM was determined by Eqt-SM (bottom). **r**, Quantification of secretion from (q) (n = 3). **s**, QPCR analysis of gene knockdown efficiency from (q) (n = 3). **t**, Secretion of mIL-1 β in HEK293T with control, SGMS1 or SMPD2 expression to modulate the cellular SM level. SM was determined by Eqt-SM (bottom). **u**, Quantification of secretion from (t) (n = 3). All values are plotted as mean \pm s.e.m. P values were calculated by two-tailed Student's t-test (b, d, f, j, l, p, u), one-way RM-ANOVA with Fisher's test (n, r) or two-way ANOVA with Tukey's test (h, i).

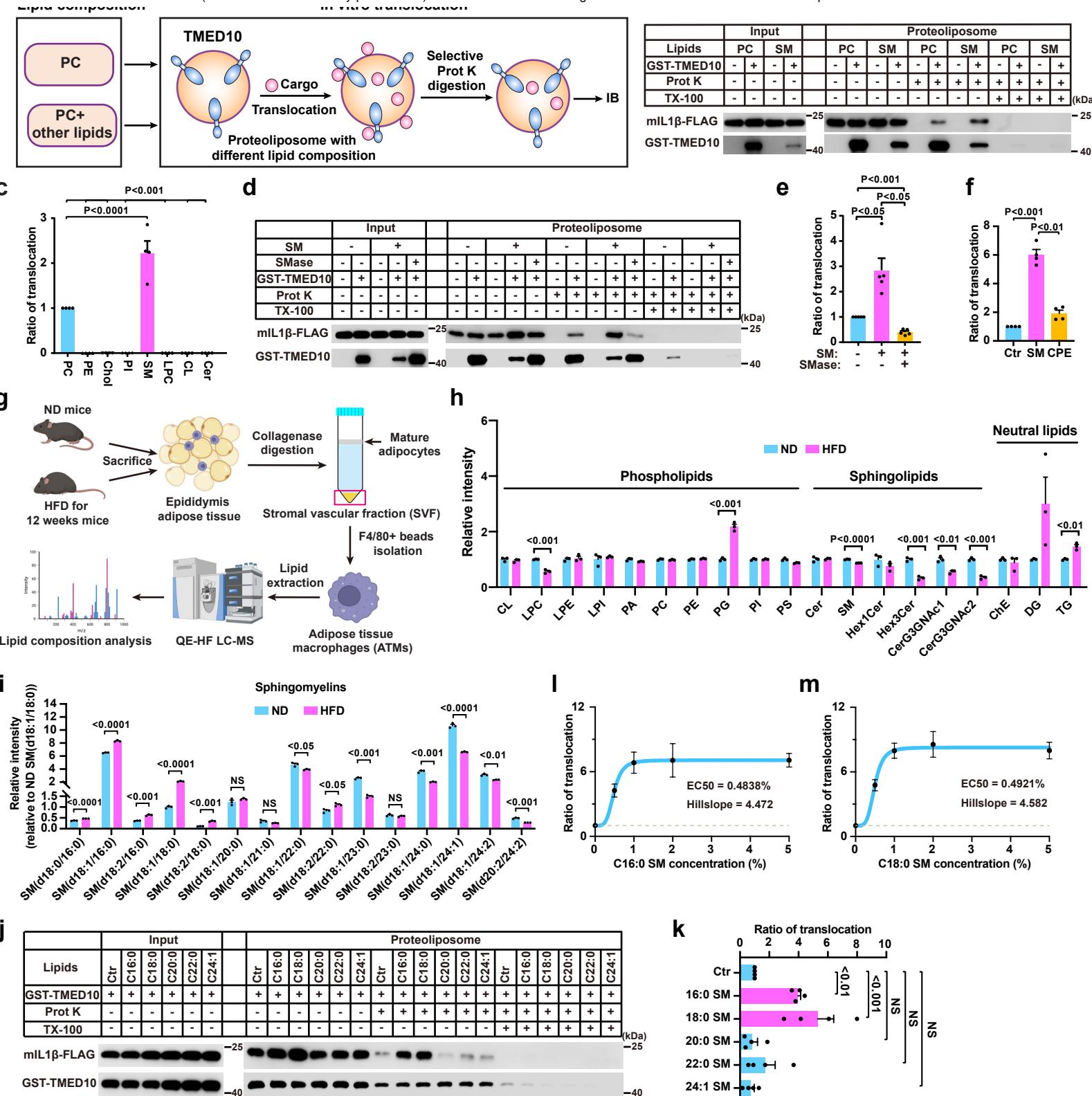


Fig. 4

Fig. 4 | TMED10 responds to medium chain SM. **a**, A schematic diagram showing the proteoliposomes with specific lipid composition were generated for the in vitro mIL-1 β translocation assay. **b**, In vitro mIL-1 β translocation assay using control or GST-TMED10 proteoliposomes of PC, or PC plus 10% SM. **c**, Quantification of the mIL-1 β translocation efficiency (mean \pm s.e.m.) in GST-TMED10 proteoliposomes of PC, or PC plus other lipids as shown in **(b)** and (**Extended Data Fig. 5b-e**). P values were calculated by one-way ANOVA (n = 4). Chol: cholesterol; LPC: lyso PC; CL: cardiolipin; Cer: ceramide. **d**, In vitro mIL-1 β translocation assay using control or GST-TMED10 proteoliposomes of PC, PC plus SM, or PC plus SM treated with sphingomyelinase. **e**, Quantification of the mIL-1 β translocation efficiency (mean \pm s.e.m.) from **(d)**. P values were calculated by one-way ANOVA (n = 5). **f**, Quantification of the mIL-1 β translocation efficiency (mean \pm s.e.m.) in GST-TMED10 proteoliposomes generated with PC (Ctr), PC plus 1% SM (C18:0) or 1% CPE (C18:0) as shown in (**Extended Data Fig. 5f**). P values were calculated by one-way ANOVA (n = 4). **g**, The workflow of ATMs separation and lipidomics analysis using ND and HFD mice. **h**, The relative intensity of different classes of lipids in ATMs from ND and HFD mice. The corresponding full name of these lipids are shown in **Supplementary Table 4**. **i**, The relative intensity of different subtypes of SM in ATMs from ND and HFD mice. **j**, In vitro mIL-1 β translocation assay using GST-TMED10 proteoliposomes generated with PC (Ctr) or PC plus 1% SM with different length of acetyl fatty acid chains. **k**, Quantification of mIL-1 β translocation efficiency (mean \pm s.e.m.) from **(j)**. P values were calculated by one-way ANOVA (n = 4). **l**, **m**, The dose response of TMED10-mediated mIL-1 β translocation activated by C16:0 (**l**) or C18:0 (**m**) SM as shown in (**Extended Data Fig. 5g**) and (**Extended Data Fig. 5h**), respectively. Data are plotted as the mean \pm s.e.m. from four independent experiments. The curve is typically fitted using the Four-parameter logistic equation with EC50 (the half-way response concentration) and Hill slope (a parameter describing the steepness of the curve) indicated.

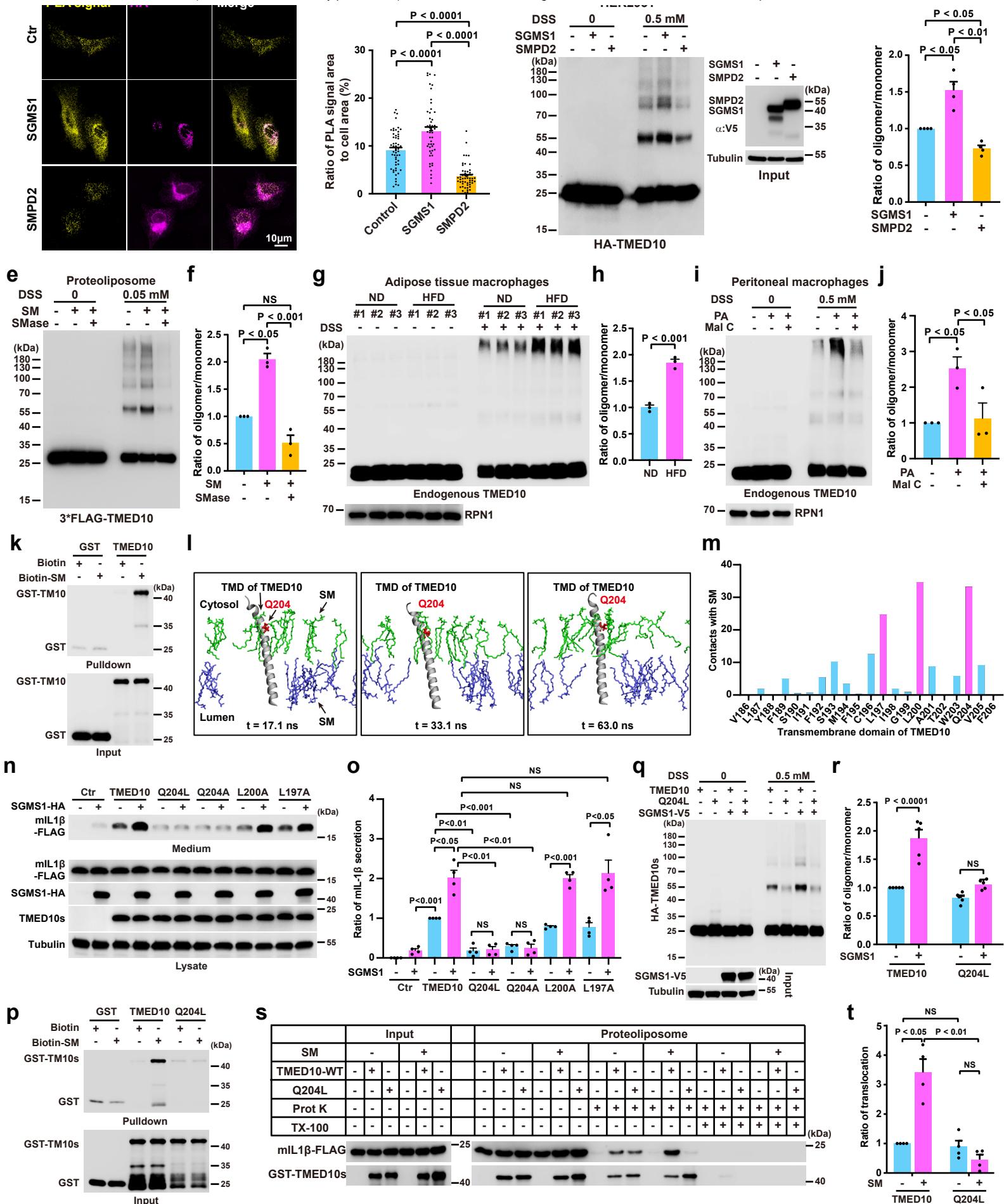
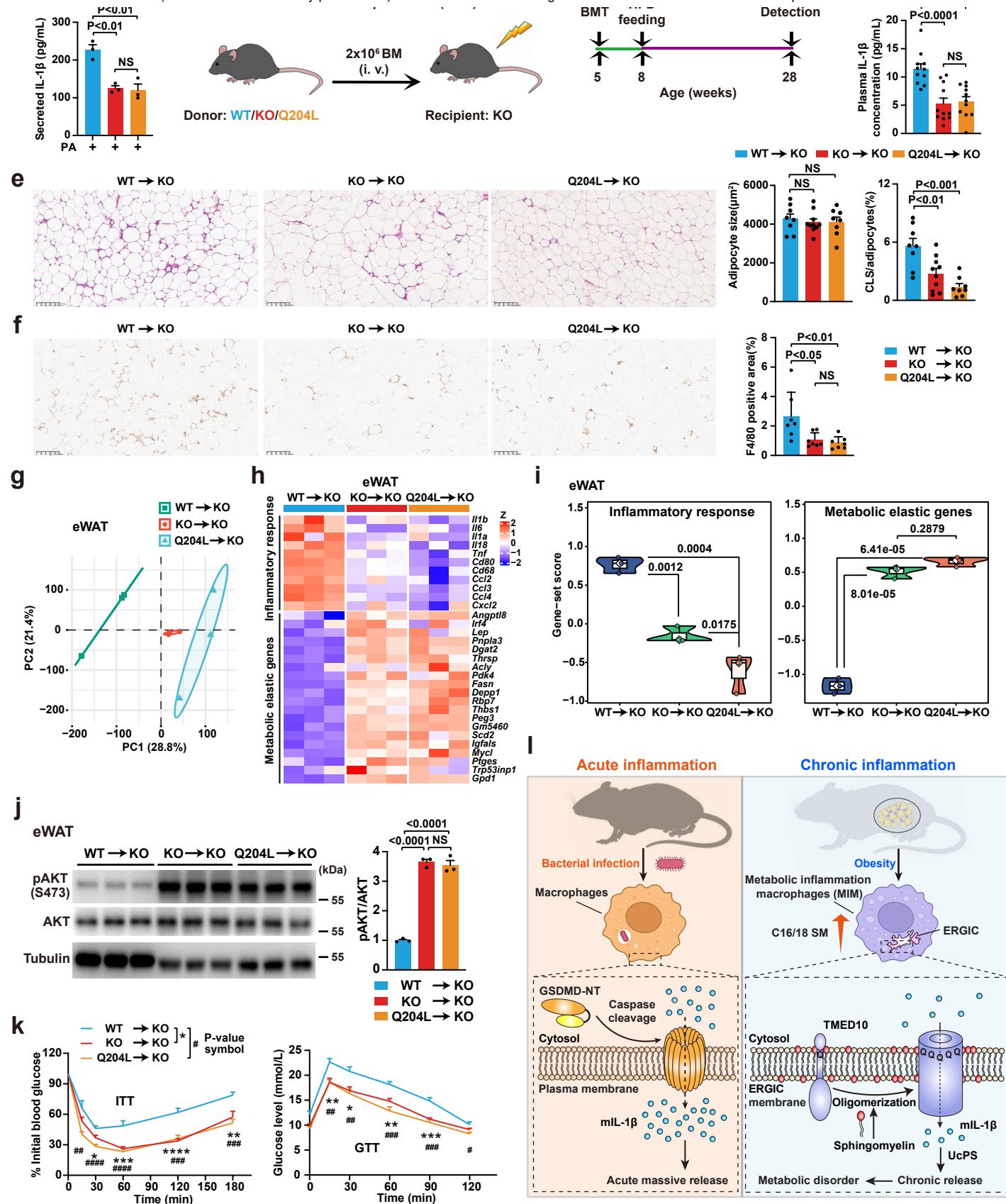
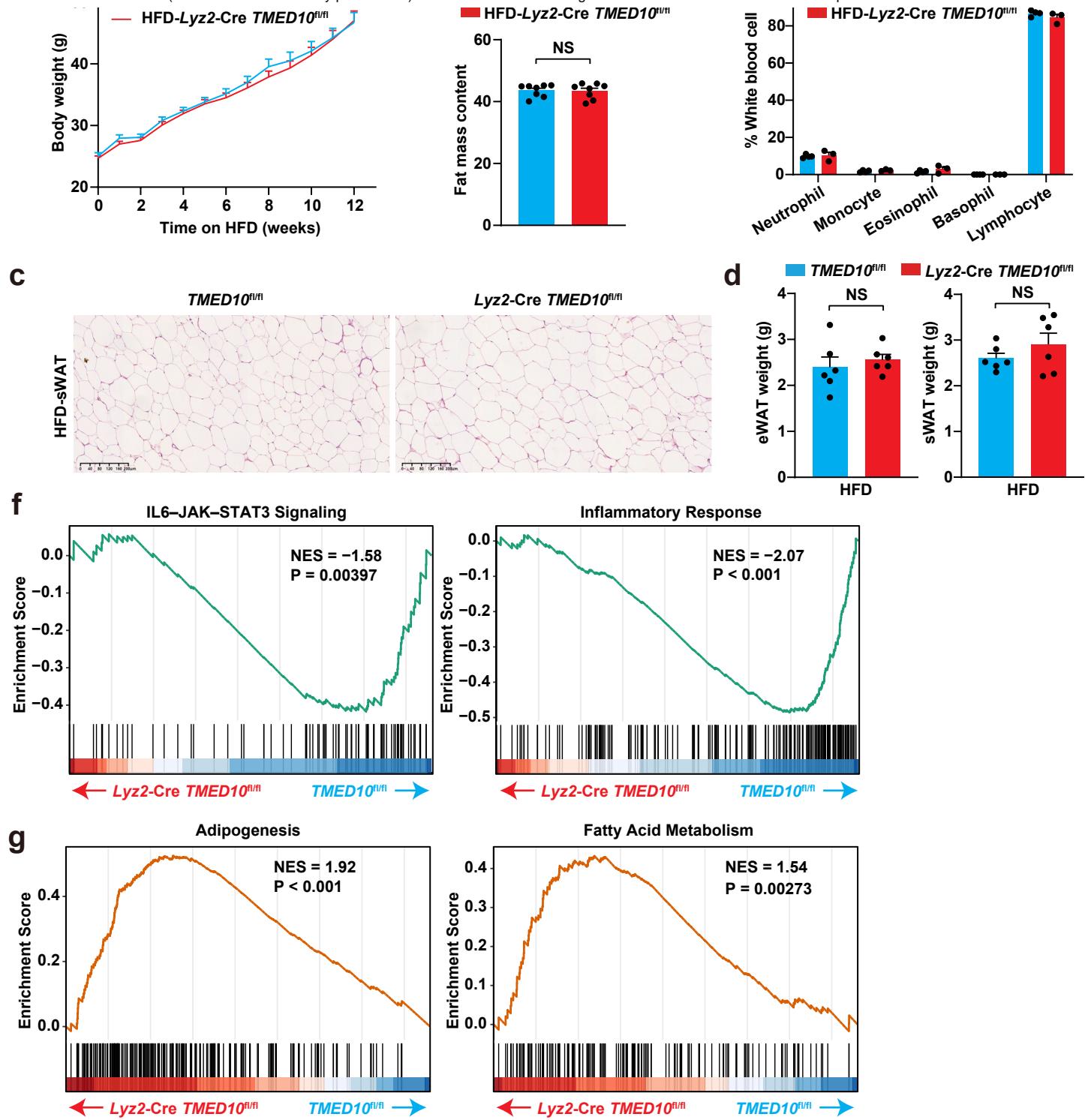


Fig. 5

Fig. 5 | SM binds and increases TMED10 oligomerization. **a**, Duolink PLA assay performed with U2OS cells co-expressing TMED10-V5, and TMED10-3*FLAG, without or with SGMS1-HA or SMPD2-HA to test the self-interaction of TMED10. Scale bar, 10 μ m. **b**, Quantification of the percentage of duolink signal area to cell area (mean \pm s.e.m.). P values were calculated by one-way ANOVA (> 50 cells from three independent experiments). **c**, Crosslink assay performed in HEK293T cells co-expressing HA-TMED10 without or with SGMS1-V5, or SMPD2-V5. **d**, Quantification of the ratio of TMED10 oligomers to its monomer from **(c)** (mean \pm s.e.m.). P values were calculated by one-way ANOVA ($n = 4$). **e**, Crosslink assay performed in 3*FLAG-TMED10 proteoliposomes generated with PC, PC plus SM, or PC plus SM treated with sphingomyelinase. 3*FLAG-TMED10 was purified using the 293F expression system. **f**, Quantification of the ratio of TMED10 oligomers to its monomer from **(e)** (mean \pm s.e.m.). P values were calculated by one-way ANOVA ($n = 3$). **g**, Crosslink assay using adipose tissue macrophages separated from ND and HFD mice. **h**, Quantification of the ratio of TMED10 oligomers to its monomer from **(g)** (mean \pm s.e.m.). P value was calculated by two-tailed t test ($n = 3$). **i**, Crosslink assay using peritoneal macrophages treated without or with 200 μ M PA or 200 μ M PA plus 10 μ M Malabaricone C (Mal C) for 16 h. **j**, Quantification of the ratio of TMED10 oligomers to its monomer from **(i)** (mean \pm s.e.m.). P values were calculated by one-way ANOVA ($n = 3$). **k**, Pull-down assay performed between biotin-SM and GST or GST-TMED10. The data are representative of three independent experiments. **l**, Molecular dynamics simulations showing the interaction between the TMED10 transmembrane domain (TMD) and SM at three representative time points with Q204 highlighted. The corresponding video is shown in **(Supplementary Video 1)**. **m**, Quantification of contact scores between TMED10 transmembrane domain residues and SM from **(l)**. **n**, Secretion of mIL-1 β in TMED10-KO HEK293T cells co-expressing control, TMED10-WT or mutants without or with SGMS1-HA. **o**, Quantification of mIL-1 β secretion from **(n)** (mean \pm s.e.m.). P values were calculated by one-way ANOVA ($n = 4$). **p**, Pull-down assay performed using biotin-SM and GST, GST-TMED10, or GST-TMED10-Q204L. The data are representative of three independent experiments. **q**, Crosslink assay performed in TMED10-KO HEK293T cells co-expressing HA-TMED10 or HA-TMED10-Q204L, without or with SGMS1-V5. **r**, Quantification of ratio of TMED10 oligomers to its monomer from **(q)** (mean \pm s.e.m.). P values were calculated by one-way ANOVA ($n = 5$). **s**, In vitro mIL-1 β translocation assay using control, GST-TMED10 or GST-TMED10-Q204L proteoliposomes generated with PC, or PC plus 10% SM respectively. **t**, Quantification of the relative translocation efficiency of mIL-1 β from **(s)** (mean \pm s.e.m.). P values were calculated by one-way ANOVA ($n = 4$).

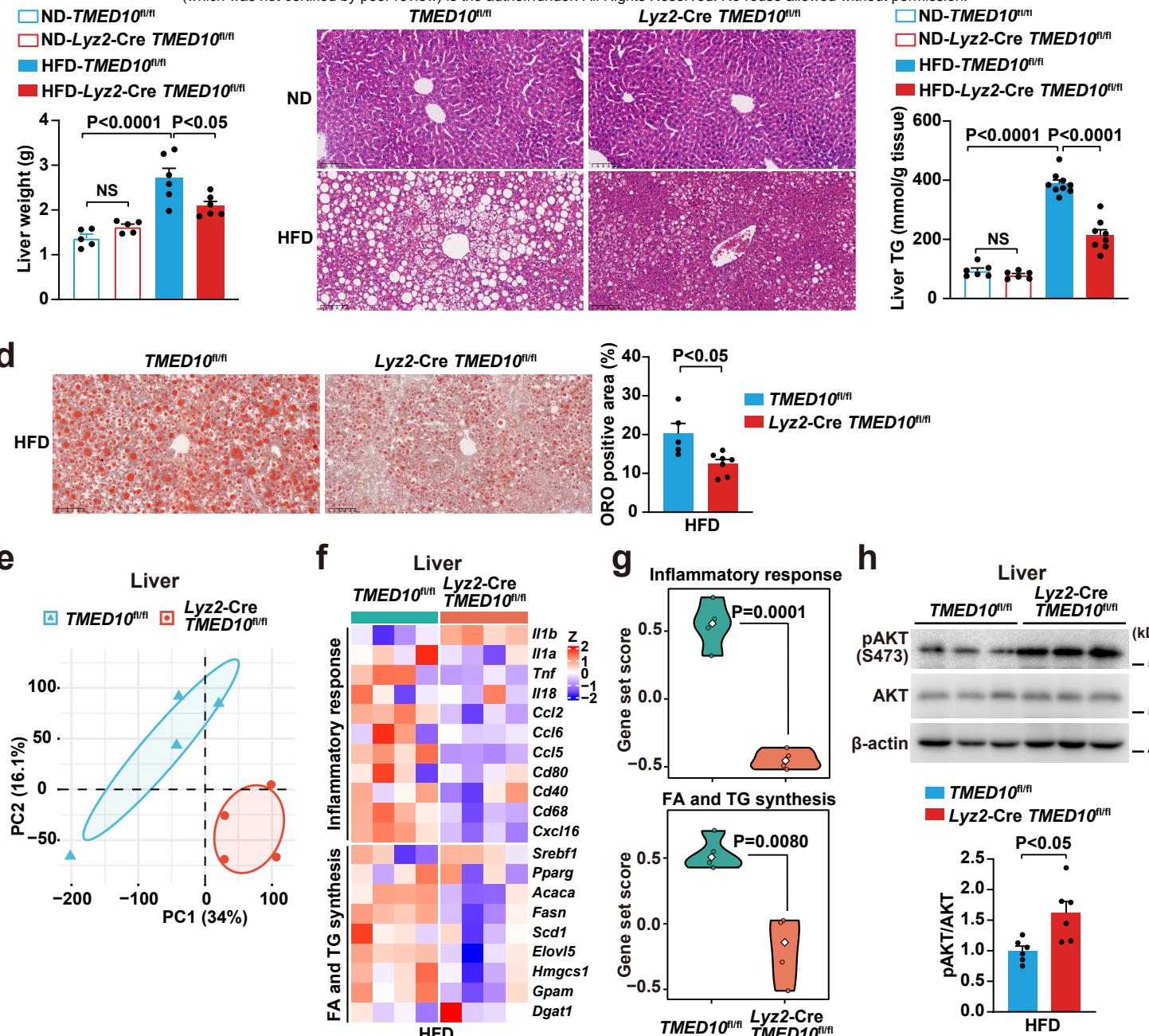
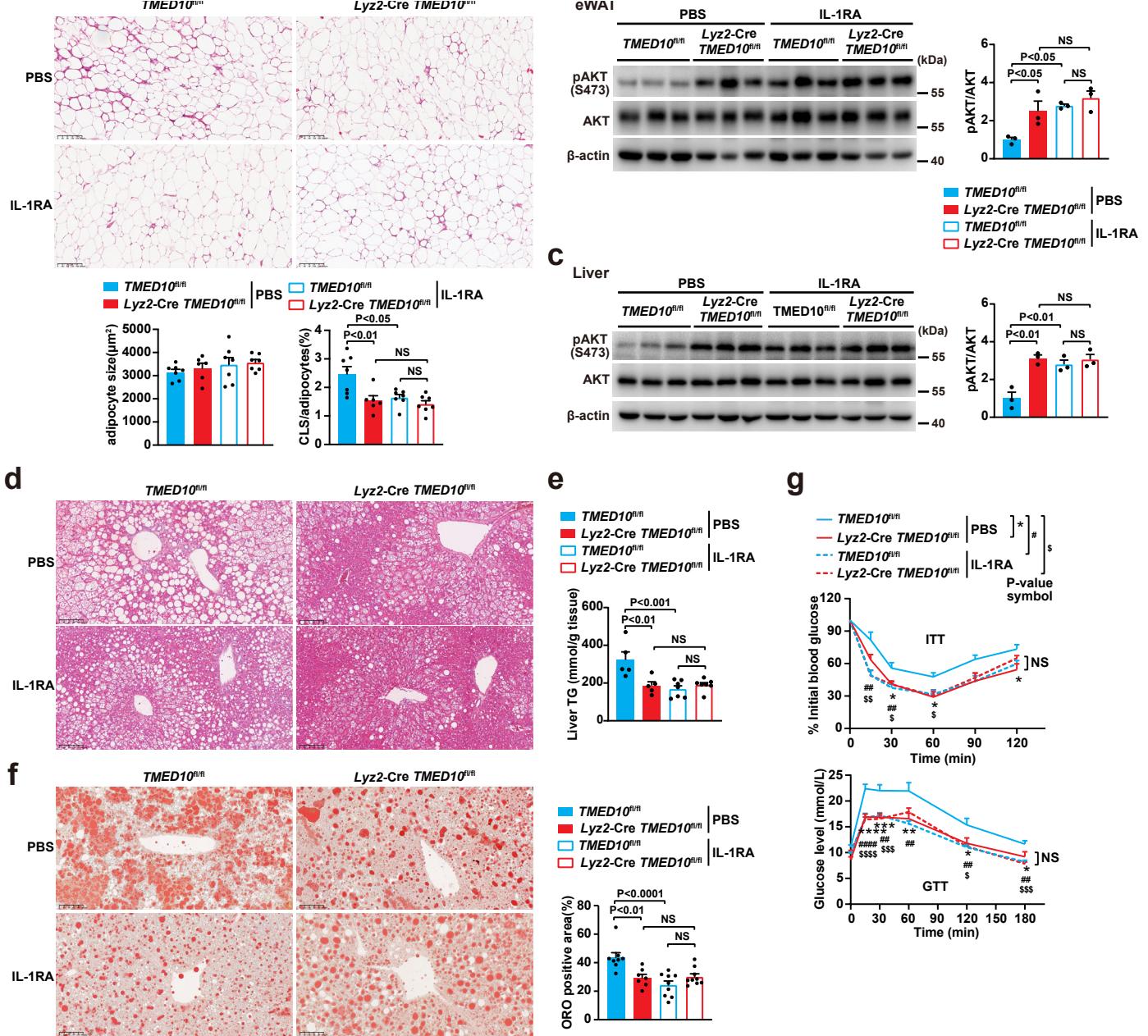
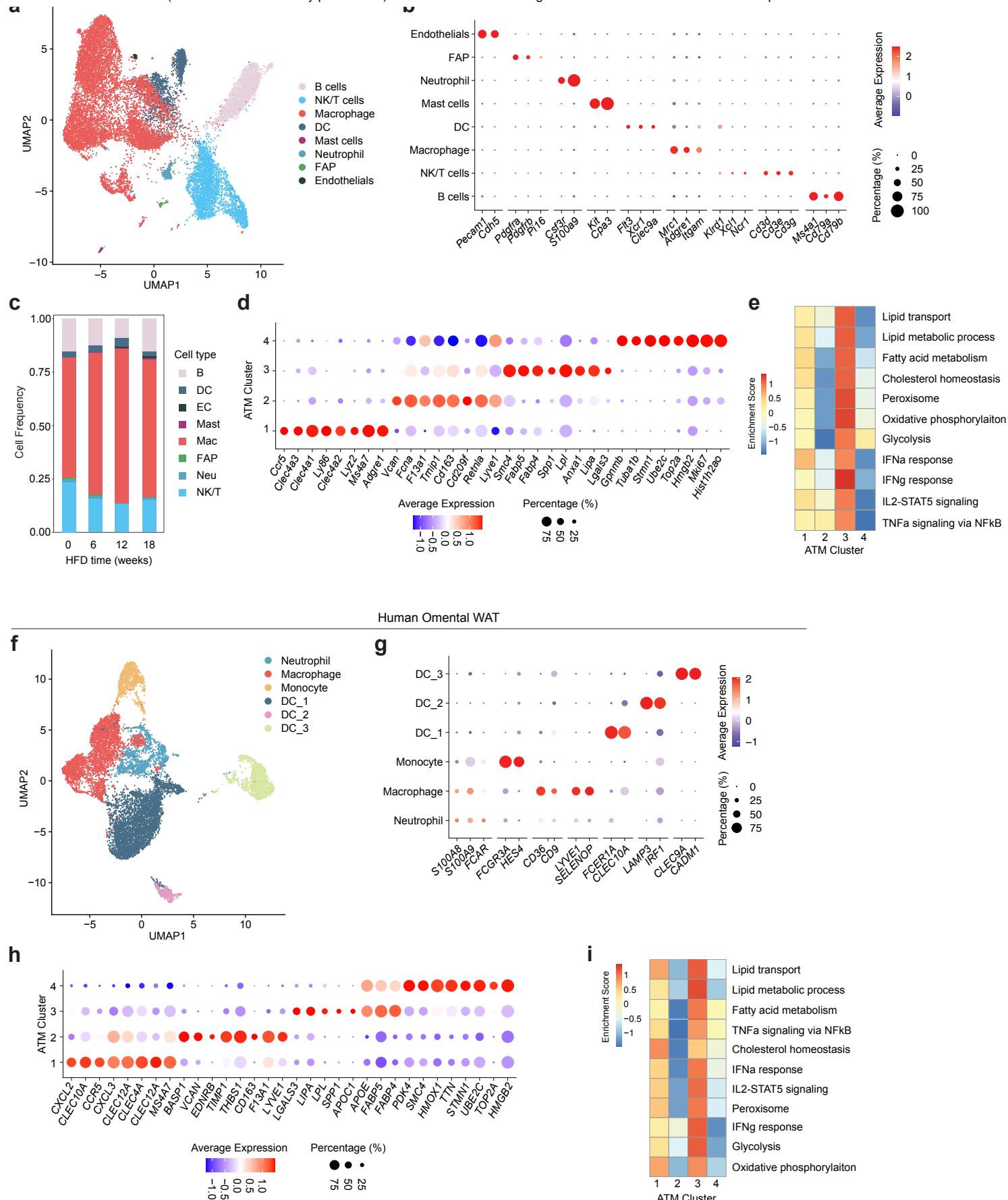

Fig. 6

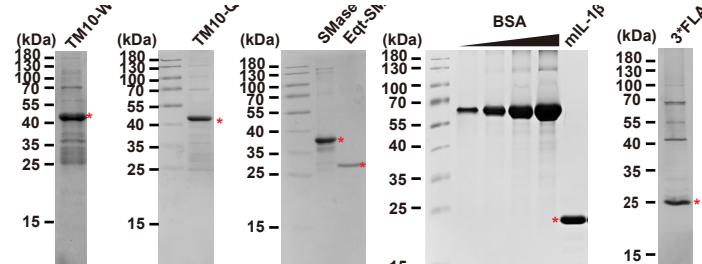
Fig. 6 | TMED10-Q204L mutant alleviates HFD-induced metabolic inflammation and dysfunction. **a**, ELISA analysis of IL-1 β secretion in peritoneal macrophages following 150 μ M PA stimulation for 24 h from WT (*TMED10*^{f/f}), KO (*Lyz2-cre TMED10*^{f/f}) or TMED10-Q204L knock-in (*TMED10*^{Q204L/Q204L}) mice. **b,c**, Scheme of bone marrow transplantation (BMT) assay. **d**, ELISA analysis of plasma IL-1 β (n=11) from KO (*Lyz2-cre TMED10*^{f/f}) mice transplanted with bone marrows of WT (*TMED10*^{f/f}), KO (*Lyz2-cre TMED10*^{f/f}) or Q204L knock-in (*TMED10*^{Q204L/Q204L}) mice after HFD. **e**, H&E staining of eWAT for quantification of adipocyte size and CLS percentage (n=8-10). **f**, IHC for F4/80+ macrophages in eWAT (n=7). **g**, PCA of eWAT from RNA-seq. **h,i**, Heatmap analysis (**h**) of genes involved in inflammatory response or metabolic elastic genes with corresponding gene-set score (**i**) in eWAT. **j**, Western blot analysis of pAKT (S473) and quantification in eWAT after insulin administration for 15 min (n=3). **k**, GTT (n=6) and ITT (n=6-8) of indicated BMT mice fed with HFD. NS, non-significant; *# P < 0.05; **## P < 0.01; ***### P < 0.001; ****#### P < 0.0001. All values are presented as mean \pm s.e.m. P values were calculated by one-way ANOVA followed by Tukey's test (**a, d, e, f, j, k**), or two-sided Wilcoxon rank-sum test (**i**). **l**, A model comparing GSDMD-mediated acute inflammation with TMED10-mediated chronic metabolic inflammation. During bacterial infection, acute inflammation is driven by the rapid release of IL-1 β from macrophages, a process triggered by gasdermin-D-mediated pore formation. In contrast, metabolic inflammation is characterized by a chronic, low-grade inflammatory response in which macrophages accumulate lipids, resulting in altered sphingomyelin composition. Specifically, an increase in medium-chain SM species promotes TMED10 oligomerization and activation—likely occurring at the ERGIC—which in turn enables a slow, sustained release of IL-1 β . This mechanism underlies the persistent inflammatory tone associated with metabolic disease.


Extended Data Fig. 1

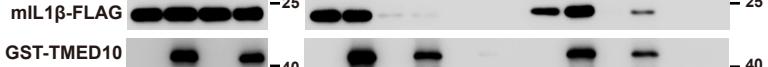
Extended Data Fig. 1 | Myeloid TMED10 deficiency mitigates HFD-induced metabolic inflammation and metabolic dysfunction independent of body or WAT weights. Male *TMED10^{f/f}* mice and *Lyz2-cre TMED10^{f/f}* mice were fed on HFD for 12 weeks. The following analyses were performed, including: **a**, Body weights (n=6); **b**, Fat mass content (n=8); **c**, H&E staining of sWAT; **d**, eWAT and sWAT weights(n=6); **e**, Percentage of white blood cells (n=3); **f**, **g**, GSEA analysis of indicated biological processes from bulk RNA-seq of eWAT shown in (Fig. 1m-q). All values are presented as mean \pm s.e.m. P values were calculated by unpaired two-tailed Student's t-test (**b**, **d**) or permutation testing adjusted for multiple comparisons using the Benjamini–Hochberg procedure (**f**, **g**).


Extended Data Fig. 2

Extended Data Fig. 2 | Myeloid TMED10 deficiency alleviates HFD-induced hepatic lipid accumulation and metabolic function. Male *TMED10*^{fl/fl} mice and *Lyz2-cre TMED10*^{fl/fl} mice were fed on ND or HFD for 12 weeks. The following analyses were performed, including: **a**, Liver weight (n=5-6). **b**, H&E staining of liver. **c**, Liver TG (n=6-9). **d**, Oil Red O staining of liver (n=5-7). **e**, PCA of liver from RNA-seq. **f**, **g**, Heatmap analysis (**f**) of genes involved in inflammatory response or metabolic elastic genes with corresponding gene-set score (**g**) in liver. **h**, Western blot analysis of pAKT (S473) and quantification in liver after insulin administration for 15 min (n=6). All values are presented as mean \pm s.e.m. P values were calculated by unpaired two-tailed Student's t-test (**d**, **h**), two-sided Wilcoxon rank-sum test (**g**), or one-way ANOVA followed by Tukey's test (**a**, **c**).


Extended Data Fig. 3

Extended Data Fig. 3 | IL-1 β is the major pro-inflammatory cytokine accounting for the effect of TMED10 deficiency. Male $TMED10^{fl/fl}$ mice and $Lyz2\text{-cre } TMED10^{fl/fl}$ mice were fed on HFD for 4 weeks, then mice were intraperitoneally injected with 10 mg/kg IL-1RA or PBS every other day for 8 weeks. The following analyses were performed, including: **a**, H&E staining of eWAT for quantification of adipocyte size and crown-like structure (CLS) percentage (n=6-7). **b, c**, Western blot analysis of pAKT (S473) and quantification in eWAT (**b**) and liver (**c**) after insulin administration for 15 min (n=3). **d**, H&E staining of liver. **e**, Liver TG (n=5-7). **f**, Oil Red O staining of liver (n=7-9). **g**, GTT (n=9) and ITT (n=7). NS, non-significant; *#/§ P < 0.05; **#/§§ P < 0.01; ***/###/§§§ P < 0.001; ****/####/§§§§ P < 0.0001. All values are presented as mean \pm s.e.m. P values were calculated by one-way ANOVA followed by Tukey's test (**a-c, e-g**).


Extended Data Fig. 4

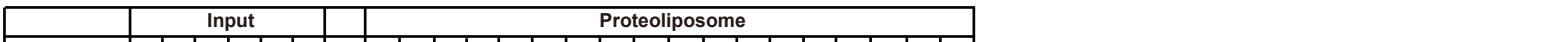
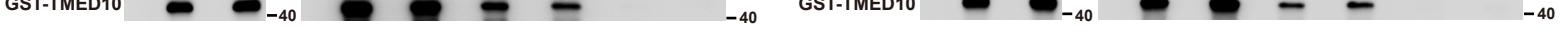
Extended Data Fig. 4 | Single-cell definition of adipose stromal cell populations and conserved ATM subsets in mouse and human adipose tissue. **a**, UMAP visualization of stromal vascular cells from mouse eWAT colored by major cell types (B cells, NK/T cells, macrophages, dendritic cells (DCs), mast cells, neutrophils, fibro-adipogenic progenitors (FAP), and endothelial cells) identified by canonical markers. **b**, Dot plot of representative marker genes for each stromal cell type shown in **(a)**; dot size indicates the percentage of cells expressing the gene, and color denotes scaled average expression. **c**, Bar graph showing the relative frequency of each stromal cell type in eWAT across increasing durations of HFD feeding (0, 6, 12, and 18 weeks). **d**, Dot plot of marker genes defining four transcriptionally distinct ATM clusters (1–4) in mouse eWAT shown in **(Fig. 2c-g)**. Dot size indicates the percentage of cells expressing the gene, and color denotes scaled average expression. **e**, Heatmap of enrichment scores for lipid metabolic and inflammatory pathways (lipid transport, fatty acid metabolism, cholesterol homeostasis, peroxisome, oxidative phosphorylation, glycolysis, IFN α /IFN γ responses, IL-2–STAT5 signaling, and TNF α –NF κ B signaling) in mouse ATM clusters 1–4. **f**, UMAP visualization of myeloid populations from human adipose tissue, showing neutrophils, macrophages, monocytes, and three DC subsets (DC_1–3). **g**, Dot plot of representative marker genes for human neutrophil, macrophage, monocyte, and DC subsets shown in **(f)**; dot size indicates the percentage of cells expressing the gene, and color denotes scaled average expression. **h**, Dot plot of representative marker genes for human ATMs clusters (1–4) shown in **(Fig. 2i-m)**; dot size indicates the percentage of cells expressing the gene, and color denotes scaled average expression. **i**, Heatmap of enrichment scores for lipid metabolic and inflammatory pathways (lipid transport, fatty acid metabolism, cholesterol homeostasis, peroxisome, oxidative phosphorylation, glycolysis, IFN α /IFN γ responses, IL-2–STAT5 signaling, and TNF α –NF κ B signaling) in human ATM clusters 1–4.

b

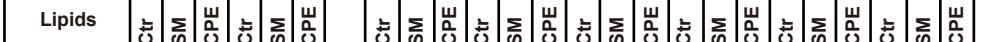
Lipids	Input				Proteoliposome							
	PI		SM		PI				SM			
	-	+	-	+	-	+	-	+	-	+	-	+
GST-TMED10	-	+	-	+	-	+	-	+	-	+	-	+
Prot K	-	-	-	-	-	-	+	+	+	-	+	+
TX-100	-	-	-	-	-	-	-	+	+	-	-	+

c

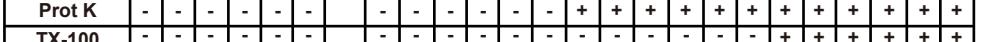
Lipids	Input				Proteoliposome						PE		Chol
	PE		Chol		PE			Chol			PE		Chol
	-	+	-	+	-	+	-	+	-	+	-	+	-
GST-TMED10	-	+	-	+	-	+	-	+	-	+	-	+	-
Prot K	-	-	-	-	-	-	-	-	-	-	-	-	-
TX-100	-	-	-	-	-	-	-	-	-	-	-	-	-



d

Lipids	Input				Proteoliposome								LPC		
	LPC		CL		LPC				CL				LPC		
	-	+	-	+	-	+	-	+	-	+	-	+	-	+	-
GST-TMED10	-	+	-	+	-	+	-	+	-	+	-	+	-	+	-
Prot K	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
TX-100	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-


e

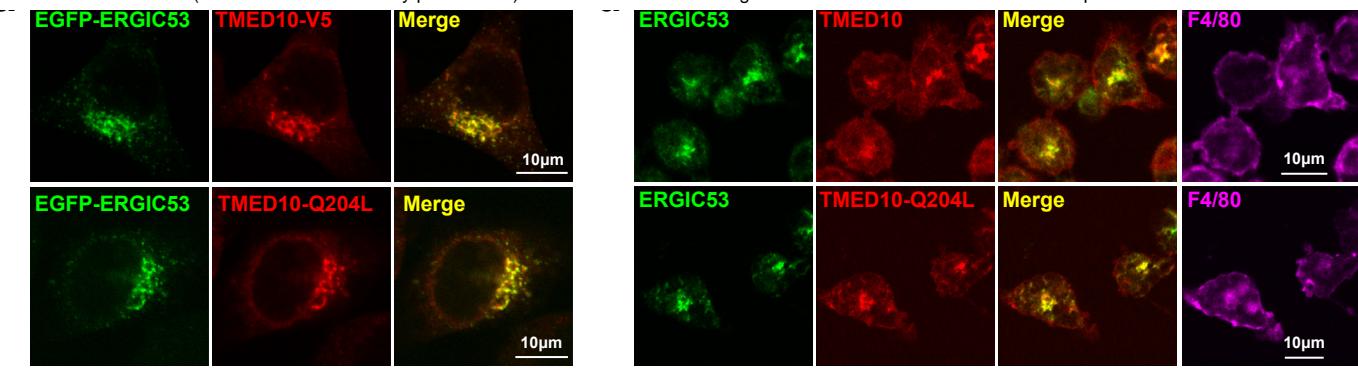
Lipids	Input				Proteoliposome						PC		Cer
	PC		Cer		PC			Cer			PC		Cer
	-	+	-	+	-	+	-	+	-	+	-	+	-
GST-TMED10	-	+	-	+	-	+	-	+	-	+	-	+	-
Prot K	-	-	-	-	-	-	-	-	-	-	-	-	-
TX-100	-	-	-	-	-	-	-	-	-	-	-	-	-


f

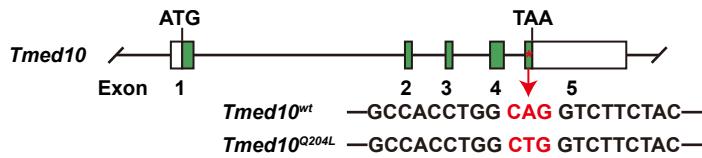
Lipids	Input				Proteoliposome								Ctr		
	Ctr	SM	CPE	Ctr	SM	CPE	Ctr	SM	CPE	Ctr	SM	CPE	Ctr	SM	CPE
	-	+	-	+	-	+	-	+	-	+	-	+	-	+	-
GST-TMED10	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Prot K	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
TX-100	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

g

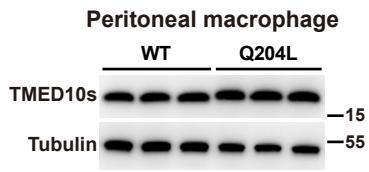
C16:0 SM (%)	Input						Proteoliposome								C16:0 SM (%)				
	0	0.5	1	2	5	10	0	0.5	1	2	5	10	0	0.5	1	2	5	10	
	-	+	-	+	-	+	-	+	-	+	-	+	-	+	-	+	-	+	-
GST-TMED10	-	+	-	+	-	+	-	+	-	+	-	+	-	+	-	+	-	+	-
Prot K	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
TX-100	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-


h

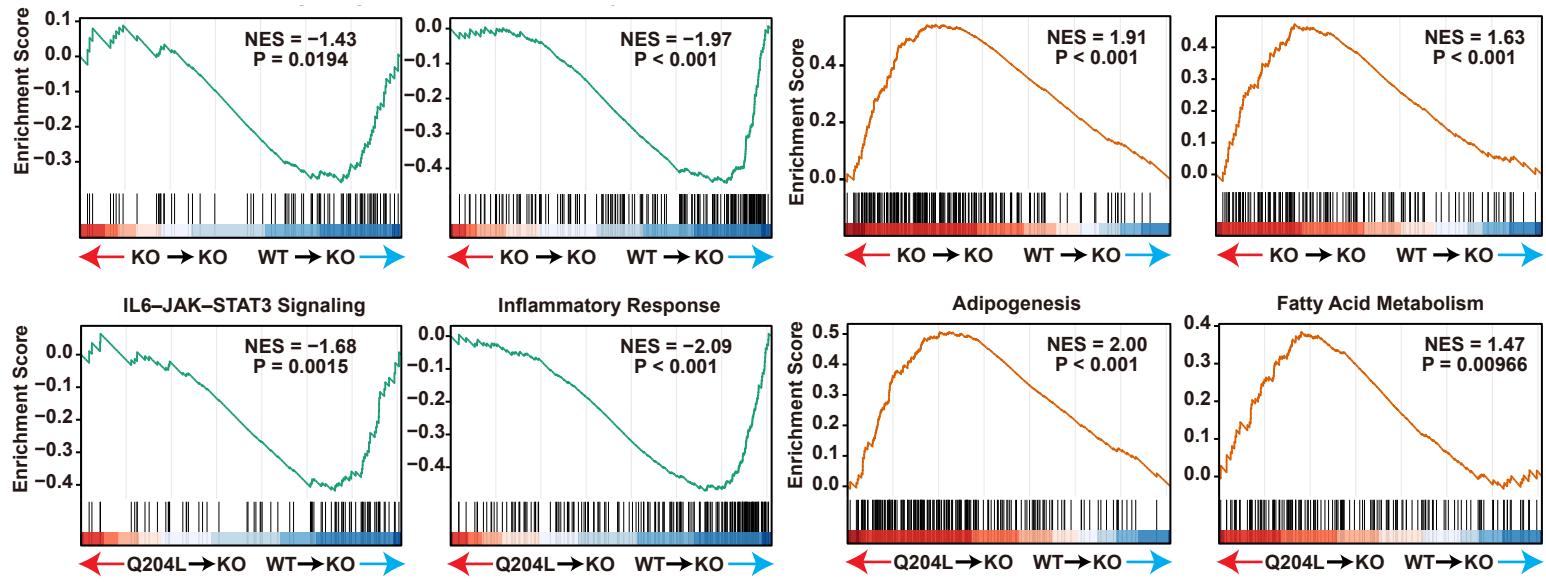
C18:0 SM (%)	Input						Proteoliposome								C18:0 SM (%)					
	0	0.5	1	2	5	0	0.5	1	2	5	0	0.5	1	2	5	0	0.5	1	2	5
	-	+	-	+	-	+	-	+	-	+	-	+	-	+	-	+	-	+	-	+
GST-TMED10	-	+	-	+	-	+	-	+	-	+	-	+	-	+	-	+	-	+	-	+
Prot K	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
TX-100	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-



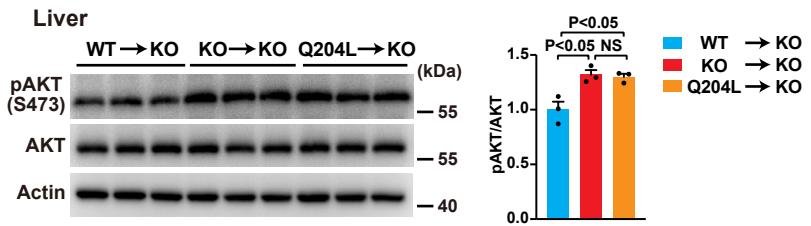
Extended Data Fig. 5


Extended Data Fig. 5 | Protein purification and effect of lipids for TMED10-mediated IL-1 β translocation. **a**, Coomassie blue staining of GST-TMED10, GST-TMED10-Q204L, Sphingomyelinase (SMase), Equinatoxin II (Eqt-SM) and T7-mIL-1 β -FLAG purified from *E. coli* expression system; and 3*FLAG-TMED10 purified using the 293F mammalian expression system. **b-e**, In vitro mIL-1 β translocation assay using control or GST-TMED10 proteoliposomes generated with PC, or PC plus 10% other lipids (PI, SM, PE, Cholesterol, lyso PC, cardiolipin and ceramide). Chol: cholesterol; LPC: lyso PC; CL: cardiolipin; Cer: ceramide. **f**, In vitro mIL-1 β translocation assay using control or GST-TMED10 proteoliposomes generated with PC (Ctr), PC plus 1% SM (C18:0) or 1% CPE (C18:0). **g, h**, In vitro mIL-1 β translocation assay using GST-TMED10 proteoliposomes generated with PC, or PC plus indicated concentration of C16:0 (**g**) or C18:0 (**h**) SM.

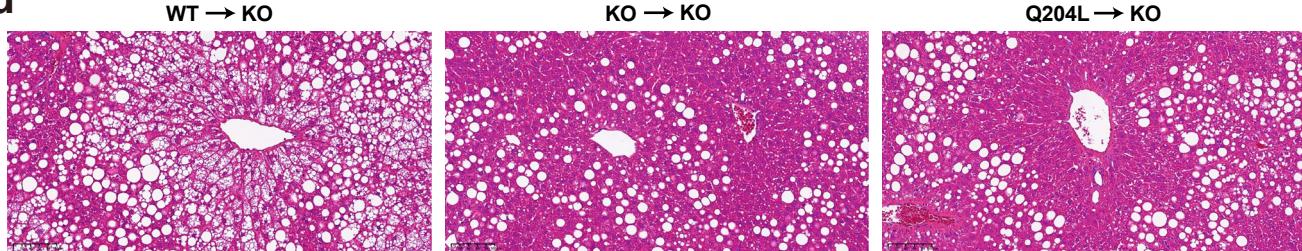
b

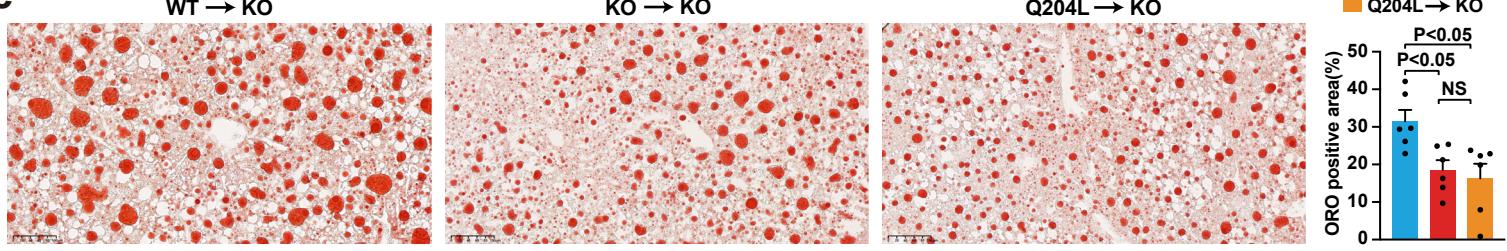


c



Extended Data Fig. 6


Extended Data Fig. 6 | Localization and expression of TMED10-Q204L mutant. **a**, Immunofluorescence of TMED10 KO HeLa cells co-expressing EGFP-ERGIC-53 with TMED10-WT or Q204L mutant using anti-V5 antibodies. Scale bar, 10 μ m. **b**, Scheme of TMED10-Q204L knock-in mice generation. **c, d**, The protein level (**c**) and localization (**d**) of endogenous TMED10 and Q204L mutant in peritoneal macrophages separated from WT and TMED10-Q204L knock-in mice.


C

d

e

Extended Data Fig. 7

Extended Data Fig. 7 | TMED10-Q204L mutant alleviates HFD-induced adipose tissue inflammation and metabolic dysfunction, and hepatic metabolic dysfunction. **a, b**, GSEA analysis of indicated pathways from bulk RNA-seq of eWAT from bone marrow transplantation mice as shown in (Fig. 6g-i). **c**, Western blot analysis of pAKT (S473) and quantification in liver after insulin administration for 15 min (n=3). **d**, H&E staining of liver. **e**, Oil Red O staining of liver (n=6). All values are presented as mean \pm s.e.m. P values were calculated by permutation testing adjusted for multiple comparisons using the Benjamini–Hochberg procedure (**a, b**), or one-way ANOVA followed by Tukey's test (**c, e**).