

1 **The assembly of osmoDroplet reveals dehydration sensing by helix transition and
2 association**

3 Jingjing Zhang^{1,2,5}, Panting Fan^{1,2,5}, Xuebo Quan^{3,5}, Yahui Zhao^{1,2}, Lefei Gao^{1,2}, Jingyi
4 Zhang^{1,2}, Xiaofeng Fang⁴, Kai Huang^{3*} & Shengbo He^{1,2*}

5 ¹Guangdong Basic Research Center of Excellence for Precise Breeding of Future
6 Crops, Guangdong Laboratory for Lingnan Modern Agriculture, College of
7 Agriculture, South China Agricultural University, Guangzhou 510642, China.

8 ²Key Laboratory for Enhancing Resource Use Efficiency of Crops in South China,
9 Ministry of Agriculture and Rural Affairs, South China Agricultural University,
10 Guangzhou 510642, Guangdong, China

11 ³Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen,
12 Guangdong, China.

13 ⁴Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing,
14 100084, China.

15 ⁵These authors contributed equally: Jingjing Zhang, Panting Fan, Xuebo Quan.

16 *e-mail: huangkai@szbl.ac.cn; shengbo.he@scau.edu.cn

17

18 **Abstract**

19 Hyperosmotic stress triggers cellular dehydration and macromolecular crowding,
20 leading to rapid biomolecular condensation. However, the individual roles of
21 dehydration and crowding have been unclear, and the design principles of
22 osmosensors remain poorly understood. Here, we identify a conserved sensor module
23 comprising an osmo-sensing α -helix adjacent to an intrinsically disordered region
24 (IDR). Using helices from *Arabidopsis* SEUSS and rice DRG9, we demonstrate that
25 tandem repeats (≥ 2) self-assemble into a stable core that nucleates IDR condensation
26 into ‘osmoDroplets’ in yeast under hyperosmotic stress. This assembly is tunable by
27 helix copy number and IDR properties. The helices are largely unstructured under
28 isotonic conditions but fold into stable α -helices upon hyperosmotic stress. Circular
29 dichroism shows that dehydration specifically triggers this folding. Mutagenesis
30 reveals that hydrophilic residues are essential for osmo-sensing, mediating changes in
31 secondary structure and condensate formation. Simulations indicate that
32 hyperosmolarity induces helical transition by reducing water-residue hydrogen bonds,
33 compensated by intramolecular bonding. This versatile helix-IDR architecture
34 functions across plant lineages and IDRs, defining a module where
35 dehydration-driven folding directly transduces water loss into condensate assembly.
36 Our work elucidates fundamental principles for engineering synthetic biological
37 sensors and provides a practical tool for assessing the phase-separation capability of
38 any given IDR.

39

40 Cells are constantly challenged by environmental fluctuations, and the ability to sense
41 and respond to osmotic stress is central to cellular resilience¹⁻³. Hyperosmotic
42 conditions trigger rapid efflux of water, causing cellular dehydration, cytoplasmic
43 shrinkage, and increased macromolecular crowding^{1,4}. For sessile organisms such as
44 plants, recurring exposure to drought or high salinity imposes strong selective
45 pressure to evolve highly sensitive dehydration sensors and rapid adaptive
46 mechanisms^{4,5}.

47 Over the past decade, liquid-liquid phase separation (LLPS) has emerged as a key
48 mechanism by which cells reorganize molecular components under stress⁶. LLPS
49 underlies the formation of membraneless biomolecular condensates that dynamically
50 compartmentalize biochemical reactions⁷⁻¹¹. A recurring theme in condensate biology
51 is the synergy between structured self-associating scaffolds/cores and intrinsically
52 disordered regions (IDRs): scaffolds/cores often provide binding surfaces or
53 multivalent interaction hubs, while IDRs contribute the weak, transient interactions
54 required for condensation^{12,13}. Because IDRs alone usually need to reach
55 unphysiologically high concentrations to phase separate, scaffolds are critical in
56 lowering this threshold and nucleating condensates under physiological conditions.
57 For example, the optoDroplet system, which couples the *Arabidopsis thaliana* CRY2
58 photolyase homology region (PHR) domain as a light-switchable oligomerizing
59 scaffold to IDRs, enables optogenetic control of condensation and has become a
60 versatile tool for probing LLPS and chromatin organization^{12,14}. Such synthetic
61 modules highlight the potential of engineering scaffold-based sensors that connect
62 specific environmental cues to condensate formation^{13,15}. However, how to design
63 such synthetic sensors for diverse environmental signals remains to be investigated.

64 An increasing number of natural condensates likewise function as environmental
65 sensors, responding to light, temperature, pH, redox state, or hydration levels^{6,9,16-28}.
66 In plants, stress-induced condensates are particularly critical for osmotic adjustment
67 and signaling^{25,26,29}. The *Arabidopsis* transcriptional coregulator SEUSS (SEU) and
68 the rice DROUGHT RESISTANCE GENE 9 (DRG9), a double-stranded RNA
69 binding protein, exemplify this principle. Upon hyperosmotic stress, SEU assembles
70 into condensates that reprogram the transcriptome to promote cellular rehydration and
71 survival²⁵, while DRG9 enhances drought tolerance in rice by undergoing
72 stress-associated phase separation and partitioning into stress granules to safeguard

73 mRNA²⁹. Both SEU and DRG9 harbor a specialized helix that is essential for
74 hyperosmolarity-induced condensation of adjacent IDRs, suggesting that the
75 osmo-sensing helix may act as the conditional scaffold coupling
76 hyperosmolarity-induced conformational changes to condensate assembly. Their
77 conservation from dicots to monocots and basal land plants points to an ancient
78 helix-IDR osmosensing module²⁵. However, the mechanisms underlying
79 osmo-sensing of the specialized helix remain unclear.

80 Current models of hyperosmotic stress emphasize two main physical consequences:
81 macromolecular crowding and dehydration. Crowding promotes macromolecular
82 clustering, but acts relatively indiscriminately^{30,31}. By contrast, dehydration directly
83 perturbs protein hydration shells and strengthens intra- and intermolecular hydrogen
84 bonding, thereby promoting specific conformational switching in vulnerable
85 regions³²⁻³⁵. Although crowding has long been considered the dominant driver of
86 hyperosmotic stress-induced condensation^{25,26,28,30}, mounting evidence supports
87 dehydration as a distinct and often more specific determinant of osmotic sensing^{36,37}.
88 Yet, how dehydration-driven transitions are encoded in protein sequence and structure
89 remains an open question.

90 Here, we investigate helix-IDR modules from SEU and DRG9 to dissect their role in
91 osmo-responsive phase separation. We demonstrate that surface-exposed helices
92 enriched in highly hydrophilic residues fold upon dehydration, undergo
93 intermolecular association, and act as scaffolds that nucleate IDR condensation,
94 giving rise to stress-inducible osmoDroplets. By integrating mutational analysis,
95 live-cell imaging, biophysical assays, and molecular dynamics simulations, we
96 uncover a conserved mechanism by which dehydration-induced helix folding and
97 association scaffold IDR-driven condensation.

98 **Results**

99 **SEU-helix and IDR fusion acts as an osmoDroplet module**

100 AlphaFold3 predicts that the osmo-sensing helices in AtSEU and OsDRG9 are
101 surface-exposed and exhibit relatively low helical propensity compared to more stable
102 helices within the same proteins (pIDDT<70 for SEU-helix, pIDDT<90 for
103 DRG9-helix vs. pIDDT>90 for stable helices; Fig. 1a), suggesting the possibility of
104 conditional helix formation. Both proteins share a helix-IDR module (Fig. 1a), which

105 we propose functions as a common hyperosmotic sensing module (designated
106 osmoDroplet, Fig. 1b). In this module, the specialized helix serves as the
107 osmo-sensing unit and IDR drives condensation. To test this, we first assessed a single
108 SEU-helix copy fused to FUS-IDR (a commonly used IDR from ALS-related FUS
109 protein³⁸) under hyperosmotic stress in yeast using mVenus-tagged constructs (Fig.
110 1b). No fluorescent puncta formed for 1×helix^{SEU}-FUS^{IDR}-mVenus under sorbitol or
111 NaCl treatments (Fig. 1c and Supplementary Fig. 1a), indicating a single helix and
112 FUS-IDR fusion is insufficient for osmoDroplet assembly.

113 Tandem repeats of SEU-helix (2–3 copies) were then tested. While
114 2×helix^{SEU}-FUS^{IDR}-mVenus showed diffuse distribution in the untreated control
115 conditions, 3 copies spontaneously condensed (Fig. 1c and Supplementary Fig. 1a).
116 Under mild hyperosmotic stress (0.3 M NaCl or 0.6 M sorbitol), the 2-copy construct
117 formed puncta in some cells; this intensified under severe stress (0.6 M NaCl or 1.2 M
118 sorbitol; Fig. 1c and Supplementary Fig. 1a), confirming that two helices suffice to
119 drive IDR condensation. The 3-copy fusion (3×helix^{SEU}-FUS^{IDR}-mVenus, termed
120 osmoFUS^{SEU}) exhibited basal condensation in control conditions and the condensation
121 was dramatically enhanced under both mild and severe stresses, with maximal puncta
122 being formed under severe stress (Fig. 1c and Supplementary Fig. 1a). By contrast,
123 3×helix^{SEU}-mVenus (lacking FUS-IDR) showed minimal response to mild stress and
124 weak condensation under severe stress (Fig. 1d and Supplementary Fig. 1b),
125 indicating that both the helical scaffold and a “sticky” IDR are required for sensitive
126 osmoDroplet assembly.

127 **Helix-IDR represents a common osmoDroplet module**

128 Previous studies have shown that SEU homologs across diverse species, ranging from
129 bryophytes to angiosperms, contain osmo-sensing helices²⁵. To test their functional
130 conservation as scaffolds for osmoDroplet assembly, SEU-derived helices from
131 representative species spanning all major clades were evaluated. Strikingly, all tested
132 helices—when arranged as three tandem copies—triggered condensation of FUS-IDR
133 under hyperosmotic stress, though with varying sensitivities (Supplementary Fig. 1c).

134 To generalize these findings, diverse IDRs from well-documented phase-separating
135 proteins including TAF15, H2B.8, and SERRATE (SE)^{39–41} were fused to 3×helix^{SEU}.
136 All formed condensates under hyperosmotic stress but with varying efficiencies:

137 osmoTAF^{SEU} > osmoSE^{SEU} > osmoH2B.8^{SEU} (Fig. 1e), suggesting that IDRs fine tune
138 condensation capacity of osmoDroplets.

139 We further examined the osmo-sensing helix of DRG9 (Fig. 1a), a drought-inducible
140 phase-separating protein from rice²⁹. Similar to SEU-helix, the fusion of three tandem
141 DRG9-helix to FUS-IDR (osmoFUS^{DRG9}) formed condensates upon NaCl induction.
142 By contrast, 3×helix^{DRG9} (lacking FUS-IDR) formed only sparse puncta (Fig. 1f).

143 Collectively, these results demonstrate that the helix-IDR represents a common
144 osmoDroplet module, in which the helix enables osmo-sensing and IDRs fine tune
145 condensation capacity.

146 **Highly hydrophilic residues are essential for osmoDroplet assembly**

147 We next investigated the sequence determinants underlying the hyperosmotic
148 sensitivity of SEU- and DRG9-helices. Since both helices were capable of driving
149 osmoDroplet assembly (Fig. 1c–f), we hypothesized that shared sequence features
150 might form the basis of their osmo-sensing activity. Whereas SEU proteins are
151 broadly conserved across land plants from bryophytes to angiosperms, DRG9 proteins
152 are restricted to monocots^{25,29}. Sequence analysis revealed glutamine (Q) enrichment
153 in SEU-helices but not in DRG9-helices from representative species (Supplementary
154 Fig. 2a, b), suggesting that Q enrichment is not a defining osmo-sensing feature.
155 Supporting this, substituting Q with asparagine (N)—an amino acid of comparable
156 hydrophilicity (M1 variant; Fig. 2a, c)—preserved helical propensity (Supplementary
157 Fig. 2c) and retained robust puncta formation under hyperosmotic stress (Fig. 2d).
158 These results indicate that Q enrichment is dispensable for osmo-sensing and instead
159 point to strong hydrophilicity as the critical determinant, as reduced free water
160 availability under hyperosmotic conditions likely influences the conditional formation
161 of metastable helices.

162 Charged residues (Asp, Glu, Arg, Lys, His) and strongly polar residues (Gln, Asn)
163 exhibit high hydrophilicity due to their capacity for strong ion-dipole interactions and
164 hydrogen bonding with water. Weakly polar residues (Ser, Thr, Tyr) show moderate
165 hydrophilicity, while nonpolar residues (e.g., Leu, Ile, Val) are hydrophobic (Fig. 2a).
166 SEU and DRG9 helices across diverse species are surface-exposed and contain
167 substantial numbers of highly hydrophilic residues, with SEU-helices having around
168 50% strongly polar residues and DRG9-helices containing about 33% charged

169 residues (Fig. 1a and Supplementary Fig. 2d). To place these helices in a broader
170 structural context, we extracted all helices from experimentally validated protein
171 structures stored in the PDB (Protein Data Bank). After removing hydrophobic and
172 redundant entries, 13,878 non-redundant helices from 8,972 proteins were retained for
173 analysis. Kernel density estimation (KDE) in a ternary plot revealed that SEU-helices
174 clustered near the strongly polar vertex (bottom left), while DRG9-helices shifted
175 toward the charged-residue vertex (top), both diverging significantly from the bulk
176 helices (Fig. 2b; Kolmogorov-Smirnov test, $p=8.103e-33$ for SEU-helices and
177 $p=1.732e-03$ for DRG9-helices). This demonstrates that SEU-helices and
178 DRG9-helices are enriched with strongly polar and charged residues, respectively.
179 The high hydrophilicity of charged and strongly polar residues indicates that
180 SEU/DRG9-helices are exceptionally hydrophilic relative to typical helices.

181 To assess the role of hydrophilicity, we generated SEU-helix variants (M2–M7) by
182 substituting highly hydrophilic residues with weakly hydrophilic or hydrophobic
183 alternatives (Fig. 2c). All variants retained helical folding according to AlphaFold3
184 predictions (Supplementary Fig. 2c). Nonetheless, condensation activity was
185 markedly reduced in M2 (Q→S/T), completely abolished in M3 (Q→S/T/Y), strongly
186 attenuated in M4 (Q→11 Leu), and fully eliminated in M5 (Q/N/E→14 Leu), M6
187 (Q→12 Tyr), and M7 (Q/N/H/E/R→14 Tyr; Fig. 2c–e). These results demonstrate that
188 the high hydrophilicity provided by charged and strongly polar residues is essential
189 for helix-driven IDR condensation in response to hyperosmotic stress.

190 **Conformational response to hyperosmolarity requires highly hydrophilic
191 residues**

192 SEU-IDR1, which contains the SEU-helix, undergoes hyperosmolarity-induced
193 conformational changes from an open to a closed state²⁵. To test whether the
194 SEU-helix alone is sufficient for this response, we fused mTurquoise2 (donor) and
195 mNeonGreen (acceptor) to a single SEU-helix for FRET (Fluorescence Resonance
196 Energy Transfer) assays (Fig. 2f). As expected, hyperosmotic stress significantly
197 increased FRET efficiency, reflected by an elevated mNeonGreen/mTurquoise2
198 fluorescence ratio relative to the untreated control (Fig. 2g), confirming a
199 conformational change. This response was diminished by substitutions in the M4
200 variant and completely abolished in the M5–M7 variants (Fig. 2c, g), consistent with

201 their impaired ability to drive IDR condensation (Fig. 2e). Together, these findings
202 underscore the critical role of hydrophilic residues in enabling conformational
203 osmo-sensing.

204 **Dehydration induces helix folding**

205 Surface-exposed osmo-sensing helices inevitably have contacts with surrounding
206 water molecules, yet their low AlphaFold3 confidence scores suggest that their
207 structures are environmentally dependent (Fig. 1a). Hyperosmotic stress
208 simultaneously imposes dehydration and macromolecular crowding, which are
209 difficult to disentangle in vivo. To separate these effects in vitro, we used increasing
210 concentrations (up to 80%) of ethylene glycol (EG) to mimic dehydration and
211 moderate concentrations (not higher than 10%) of polyethylene glycol (PEG) to
212 mimic crowding. Circular dichroism (CD) measurements of synthetic SEU-helix1,
213 SEU-helix2, and DRG9-helix peptides revealed low basal helicity under control
214 conditions (Fig. 3a–g), consistent with their predicted instability (Fig. 1a). Addition of
215 EG increased helicity in a concentration-dependent manner: SEU-helix1 rose from
216 14.5% (control) to 29.2% (80% EG; Fig. 3b, c), SEU-helix2 from 15.6% to 61.8%
217 (Fig. 3d, e), and DRG9-helix displayed a sharp folding transition approaching
218 near-saturation (Fig. 3f, g). By contrast, up to 10% PEG6000 produced only marginal
219 changes in helical content (Supplementary Fig. 3a–f). These findings indicate that
220 dehydration specifically promotes helix folding in hydrophilic-rich peptides, thereby
221 providing a mechanistic basis for their osmo-sensing properties.

222 To assess the contribution of high hydrophilicity to helix transition, we performed CD
223 assays on synthetic SEU-helix2 peptides containing mutations where key hydrophilic
224 residues were replaced with less polar or hydrophobic ones (Fig. 2c). The results
225 show that these variants maintained a basal level of helicity and failed to undergo
226 enhanced helix transition upon EG treatment (Supplementary Fig. 4). This
227 demonstrates that highly hydrophilic residues are essential for dehydration-induced
228 helix transition. Since the same mutations attenuated or abolished the hyperosmotic
229 stress response in conformation and assembly (Fig. 2c–g), these findings strongly
230 suggest that helix transition is the immediate molecular event, preceding downstream
231 conformational changes and condensate assembly.

232 **Dehydration induces intra-molecular hydrogen bonding of SEU/DRG9-helices by**

233 **molecular dynamics simulation**

234 For SEU-helix1 and DRG9-helix, we quantitatively analyzed the variation of their
235 helical contents by molecular dynamics (MD) simulation in water and 60% EG,
236 respectively. The simulation results show that, compared with water, the helical
237 contents for both SEU-helix1 and DRG9-helix in EG are more stable and higher (Fig.
238 4a, b, e, f and Supplementary Movies 1-4), which is in good agreement with CD
239 results (Fig. 3b, c, f, g). To further uncover the underlying biophysics mechanism, we
240 computed the number of inter-residue and water-residue hydrogen bonds (H-bonds). It
241 shows that the number of inter-residue H-bonds in EG is significantly higher than in
242 water (Fig. 4c, g), whereas the number of H-bonds between residues and water
243 molecules is lower in EG (Fig. 4d, h). This behavior can be rationalized by the strong
244 H-bonding ability of EG molecules with water molecules, which reduces water
245 accessibility for residues. Consequently, EG effectively promotes the stabilization of
246 protein secondary structure, particularly α -helix, by favoring inter-residue H-bonding
247 over protein–solvent interactions.

248 **SEU/DRG9-helices undergo hyperosmolarity-enhanced intermolecular
249 association**

250 Multimerization of modular domains through self-association can act as a scaffold or
251 core for nucleating IDR condensation^{12,13}. To elucidate the scaffolding mechanism of
252 the helices, we performed yeast 2-hybrid (Y2H) assay and found that 3 \times helix^{SEU}
253 self-associates, enabling yeast growth on selective medium under normal osmolarity
254 (Fig. 5a), consistent with the basal osmoFUS^{SEU} condensation in the absence of
255 hyperosmotic stress (Fig. 1c, d). Hyperosmotic stress inhibited yeast growth, so we
256 employed FRET to directly probe hyperosmolarity-enhanced helix interactions. When
257 fused to mTurquoise2 and mNeonGreen, 3 \times helix^{SEU} fusions colocalized under
258 hyperosmotic treatment (Fig. 5b). Similar colocalization was observed for 3 \times helix^{DRG9}
259 fusions, particularly under hyperosmotic treatment (Fig. 5c). Moreover, hyperosmotic
260 stress significantly increased FRET efficiency, reflected by elevated
261 mNeonGreen/mTurquoise2 ratios, for both 3 \times helix^{SEU} and 3 \times helix^{DRG9} compared to
262 untreated controls (Fig. 5d, e). By contrast, the group 4 Late Embryogenesis Abundant
263 protein (LEA4-5), which undergoes helix transitions and conformational changes
264 under hyperosmotic stress^{36,37}, showed no self- interaction in either Y2H or FRET

265 assays (Supplementary Fig. 5a, b). Consequently, three tandem repeats of LEA helices
266 failed to scaffold IDR condensation (Supplementary Fig. 5c). Taken together, these
267 results demonstrate that SEU and DRG9 helices undergo hyperosmolarity-enhanced
268 intermolecular association, which in turn scaffolds IDR condensation.

269 **Hydration dynamics across distinct conformational states of SEU-helix by MD
270 simulation**

271 We systematically investigated the dynamic behavior of the SEU-helix in 60% EG
272 across four distinct conformational states (state A-disorder, state B-open helix, state
273 C-closed helix and state D-stable core via self-association), as depicted in Fig. 6a-d.
274 We quantified the number of inter-residue and water-residue H-bonds for the four
275 protein states (Fig. 6e, f). The results show that the number of inter-residue H-bonds
276 increased steadily from state A to state D (Fig. 6e), whereas the number of
277 water-residue decreased accordingly (Fig. 6f). Notably, the transition from state A to
278 state B exhibited the most pronounced change, highlighting that alterations in
279 H-bonding interactions are a key driving force underlying the conformational switch
280 from a disordered ensemble to a helical state. To gain further insight into the
281 hydration structure and the organization of water around proteins, we computed the
282 radial distribution function ($g(r)$) of water molecules relative to the protein. As shown
283 in Fig. 6g-j, the first peak in $g(r)$ profiles located near 0.3 nm denotes the immediate
284 hydration shell, which displays the highest intensity as indicated by the highest $g(r)$
285 value in state A among the four states. This indicates that state A maintains the
286 strongest hydration shell, which is weakening in states B-D, in agreement with the
287 water-residue analysis (Fig. 6f).

288 **Discussion**

289 We elucidate a conserved molecular mechanism wherein dehydration-induced helix
290 folding drives biomolecular condensation via tunable helix-IDR modules (Fig. 7).
291 Metastable helices enriched with highly hydrophilic residues act as conformational
292 switches: dehydration reduces the strong hydration shell of unstructured polypeptides
293 (mediated by residue-water H-bonds; *State A*), thereby strengthening residue-residue
294 H-bonds to form transient open helices (*State B*). The open helix further folds into a
295 closed conformation stabilized by inter-helix H-bonds (*State C*). Subsequently, closed
296 helices undergo inter-molecular association via H-bond interactions (*State D*),

297 forming a stable core for scaffolding IDR condensation.

298 The hydration of hydrophilic residues is a key driver of protein folding and
299 association. Perturbing this hydration shell—through dehydration by ethylene glycol
300 or by hyperosmotic stress—fundamentally alters the protein’s solvation
301 microenvironment, likely by reducing micropolarity. Given the emerging importance
302 of micropolarity in regulating phase separation and ligand partitioning^{42,43}, we
303 propose that highly hydrophilic residues may function as sensors for these changes.
304 This mechanism offers a novel hypothesis for cellular hyperosmotic sensing and
305 warrants further investigation. Nonetheless, highly hydrophilic residues alone are
306 insufficient for scaffolding IDR condensation, as demonstrated by the failure of
307 LEA4-helix to drive IDR condensation (Supplementary Fig. 5c). Helical
308 self-association is additionally required to establish a stable scaffold for nucleating
309 IDR condensation (Fig. 5).

310 Functionally conserved helices in bryophytes and angiosperms suggest an ancient
311 stress-adaptation strategy for terrestrial drought survival^{44,45}. Hydrophilic residue
312 conservation reflects strong selective pressure for dehydration sensitivity, while IDR
313 identity tunes condensation efficiency, enabling evolutionary flexibility in stress
314 response kinetics.

315 This study highlights dehydration effects on helix folding, conformational changes,
316 helical self-association, and osmoDroplet assembly. This contrasts with molecular
317 crowding effects—a common focus in the field^{25,26,28}. While crowding—a
318 consequence of hyperosmotic stress—can promote conformational shifts in tertiary
319 structure (e.g., SEU and DCP5)^{25,26}, dehydration sensing operates distinctly. Crowding
320 agents like PEG enhance phase separation in vitro likely by increasing the frequencies
321 of molecular collision but with little specificity—PEG appears to be a general
322 enhancer of in vitro phase separation; thus, defining sensors for crowding effects
323 requires additional evidence (e.g., crowding-induced conformational changes via
324 FRET, as in SEU and DCP5)^{25,26}. Here, dehydration induces helix folding in both
325 SEU-helix and DRG9-helix, underscoring the role of highly hydrophilic residues in
326 secondary-structural sensing. This distinguishes dehydration-driven responses
327 (secondary structure) from crowding-driven effects (tertiary structure) in osmosensors.
328 Hydrophobic residues may mediate crowding sensitivity as shown in the case of

329 DCP5 osmosensor²⁶, whereas strong hydrophilicity confers dehydration sensitivity.

330 One application of our system is that the SEU/DRG9-helix module can be used to
331 assess whether a given IDR is capable of undergoing phase separation. By fusing the
332 IDR of interest to SEU/DRG9-helix, phase separation behavior can be examined in
333 yeast cells under both control and hyperosmotic conditions. While the optoIDR
334 system has been widely employed for this purpose, it requires specialized light
335 illumination equipment¹². In contrast, our osmoIDR system is equally effective yet far
336 more accessible, as it relies solely on the addition of common chemicals such as NaCl
337 or sorbitol to induce hyperosmotic stress.

338 In addition, the helix-IDR module proposed for osmoDroplet assembly offers a design
339 paradigm for engineering synthetic condensates that respond to specific
340 environmental signals. The strategy involves identifying a minimal environmental
341 sensing unit from a native sensor protein. Provided this unit also self-associates into a
342 nucleating core, it can be harnessed to drive condensation of various IDRs, hence the
343 assembly of environmentally responsive synthetic condensates. This approach is
344 particularly powerful given the growing number of identified environmental
345 sensors—such as sensors responsive to high or low temperatures (e.g., ELF3, TWA1,
346 FUST1, FRI)¹⁸⁻²¹ and redox states (e.g., TMF)²⁷—that drive phase separation.
347 Expanding the repertoire of synthetic condensates will further enrich the toolbox of
348 condensate biology, enhancing crop performance and resilience in the face of an
349 ever-changing climate.

350 **Methods**

351 **DNA constructs**

352 To generate the constructs for visualizing osmoDroplet in yeast cells, the fragments of
353 $n \times \text{helix}^{\text{SEU/DRG9}}$ with or without FUS^{IDR} as well as all the $\text{helix}^{\text{SEU}}$ variants were
354 amplified and inserted into the pAV0751 vector⁴⁶. For $\text{osmoTAF}^{\text{SEU}}$, $\text{osmoSE}^{\text{SEU}}$, and
355 $\text{osmoH2B.8}^{\text{SEU}}$ constructs, the FUS^{IDR} in the $\text{osmoFUS}^{\text{SEU}}$ construct was substituted
356 with distinct IDRs.

357 For probing conformational changes of SEU-helix and the variants, FRET constructs
358 were generated by fusing mNeonGreen⁴⁷, WT/M1-7 SEU-helix mutants, and
359 mTurquoise2 into a single cassette in the backbone of pAV0751 for yeast expression.

360 To study protein-protein interactions by FRET, DNA fragments encoding
361 3×helix^{SEU/DRG9/LEA} fused to mTurquoise2 or mNeonGreen were cloned into pSH0612
362 (a vector modified from pAV0612 with the *nmt1* inducible promoter replaced with the
363 *tdh1* constitutive promoter) or pAV0751, respectively⁴⁶. For yeast two-hybrid assays,
364 3×helix^{SEU/LEA} were subcloned into bait (pGBKT7) and prey (pGADT7) vectors,
365 respectively.

366 **Fission yeast expression**

367 The LD330 strain (genotype his- ura4-D18)⁴⁶ was revived on YES solid medium
368 using the streak-plate method and incubated at 28°C for 2-3 days. Individual colonies
369 were then transferred to YES liquid medium and pre-cultured overnight at 28°C with
370 220-rpm orbital shaking. The overnight cultures were 1:100 diluted in YES liquid
371 medium and grown at 28°C for 4–6 hours with optical density at 600 nm (OD600)
372 reaching within 0.1-0.2. Prior to transformation, plasmids were linearized using PmeI
373 and AflII restriction enzymes. Yeast cells were harvested at mid-logarithmic growth
374 phase (OD600=0.4-0.8), washed twice with sterile water, and finally resuspended in
375 an appropriate buffer (240 µl of 50% PEG4000 (w/v), 36 µl of LiAc (1.0 M), 10 µl of
376 boiled single-stranded carrier DNA (10 mg/ml), 34 µl of the linearized plasmids (up to
377 1000 ng) and 40 µl sterile water). Samples were vortex-mixed, incubated at 42°C for
378 40 min, and immediately chilled on ice for 3 min. After adding 500 µl of YES liquid
379 medium, cultures were revived in a 28°C orbital shaker (220 rpm) for 30 min. Cell
380 pellets were washed, resuspended in 300 µl sterile water, and plated onto
381 uracil-deficient Edinburgh Minimal Medium (EMM-Ura) agar plates for 3-4 days of
382 incubation at 28°C.

383 **Microscopy**

384 For live-cell imaging of yeast cells, colonies grown on agar plates were inoculated
385 into liquid medium and revived overnight under optimal culture conditions. Cells
386 from each treatment group were pelleted by centrifugation and resuspended in 20 µl
387 of liquid medium supplemented with or without sorbitol and NaCl for 5 min. Cell
388 suspensions were spotted onto glass slides and mounted with coverslips. For control
389 samples, a low-concentration agarose solution was overlaid to prevent dehydration,
390 followed by sealing with fixative around the coverslip edges to minimize mechanical
391 displacement. Confocal imaging was performed using a Leica SP8 laser confocal

392 microscope. The mVenus fluorescent protein was excited at 514 nm, with emitted
393 fluorescence captured within a 517-557 nm detection window. Image acquisition was
394 conducted under a 63 \times /1.40 NA oil immersion objective.

395 **Förster resonance energy transfer analyses**

396 FRET experiments were performed essentially as described²⁵. Briefly, FRET
397 measurements were conducted on a Leica TCS SP8 confocal microscope fitted with a
398 63 \times /1.40 NA oil-immersion objective. Fluorescence emission spectra were acquired
399 from 460 to 570 nm (9.09-nm step size) with 448-nm excitation and a spectral
400 bandwidth of 10 nm. FRET efficiencies were measured by mNeonGreen (514 nm) /
401 mTurquoise2 (469 nm) fluorescence ratios using Leica acquisition software. At least
402 30 yeast cells were analyzed for each condition.

403 **Circular dichroism (CD) spectroscopy**

404 The SEU-helix1, SEU-helix2, and DRG9-helix peptides were diluted in 10 mM
405 phosphate buffer (pH 8.0), either with or without ethylene glycol (EG; 20-80% v/v) or
406 PEG6000 (2-10% w/v). CD spectra of peptide mixtures were acquired on a
407 Chirascan™ spectrometer (Applied Photophysics Ltd), using a 0.5-mm pathlength
408 quartz cuvette. Three consecutive spectral scans were acquired per sample preparation,
409 averaged, and smoothed using a noise-reduction algorithm. Circular dichroism (CD)
410 spectra, expressed in millidegrees (mdeg), were processed using the CDNN algorithm
411 for computing secondary structures.

412 **Yeast two-hybrid assays**

413 AD and BD plasmids were cotransformed into the Y2HGold yeast strain. Following
414 the addition of 10 μ l denatured carrier DNA (boiled and ice-chilled) and 500 μ l
415 PEG/LiAc solution, samples were mixed by gentle flicking every 10 minutes and
416 incubated in a 30°C water bath for 30 minutes with additional mixing at 15 minutes.
417 Tubes were incubated in a 42°C water bath for 15 minutes, with gentle inversion
418 performed at 7.5 minutes to homogenize the contents. Samples were centrifuged at
419 5,000 \times g for 40 seconds to pellet cellular components, followed by supernatant
420 removal. Pellets were resuspended in 400 μ l of ddH₂O, and centrifuged again at
421 5,000 \times g for 30 seconds. After discarding the supernatant, the final pellet was
422 resuspended in 50 μ l of ddH₂O and plated onto SD-/Trp-/Leu synthetic defined

423 medium, followed by incubation at 28°C for 2-3 days. More than three single colonies
424 were selected, resuspended in sterile water, and subjected to serial dilutions. Aliquots
425 were spotted onto synthetic defined media: SD/-Trp/-Leu, SD/-His/-Trp/-Leu, and
426 SD/-Trp/-Leu/-Ade/-His, followed by incubation at 28°C for 2-3 days to assess
427 growth phenotypes.

428 **Analysis of sequence features in alpha-helices**

429 This study was based on a dataset derived from the RCSB Protein Data Bank (PDB,
430 <https://www.rcsb.org/>). We selected all experimentally validated 71,141 protein
431 structures that contain α -helical regions and had a resolution higher than 3.0 Å. From
432 these structures, all alpha-helical sequences with a length exceeding 20 residues but
433 hydrophobic helices (with a percentage of hydrophobic residues $> 70\%$) were
434 extracted. To construct a non-redundant dataset for analysis, the extracted sequences
435 were clustered using the MMseqs2 (v13.45111) software⁴⁸ suite (–cov-mode 0
436 –min-seq-id 0.8 –cluster-mode 2) and unique sequences were retained. Finally, we
437 calculated the compositional proportion of each of the three residue types (charged,
438 strongly polar, and weakly polar) within the resulting alpha-helical sequences. The
439 distribution patterns of these compositions were statistically analyzed and visualized
440 using Kernel Density Estimation (KDE), which was implemented with the
441 `scipy.stats`⁴⁹ and `matplotlib`⁵⁰ libraries in Python.

442 **Molecular dynamics simulation**

443 The SEU-helix1 and DRG9-helix were first simulated in water and 60% EG solution.
444 The initial atomic models were predicted by the Alphafold2 program⁵¹. The protein
445 chains were placed in a periodic rectangle simulation box of dimensions of 7×7×7
446 nm³ solvated with water molecules, and appropriate number of counter-ions were
447 added to neutralize the protein systems. The CHARMM36m all-atom force field⁵²
448 was used to describe proteins and EG molecule, and the TIP3P model was used for
449 water molecules. The protein systems were first energy minimized with 5000 steps
450 and then equilibrated for 1 ns under the NVT and NPT ensemble, respectively, with
451 protein heavy atoms restrained during simulations. Finally, 5 μ s production run was
452 conducted with protein restraints released. In addition, four different states
453 (disordered, open-helix, closed-helix and stable core) of SEU-helix in 60% EG

454 solution were simulated, and three independent 10 ns production runs were performed
455 for each protein state. All simulations were performed with the GROMACS 2023
456 package⁵³. The long-range electrostatic interactions were calculated by the Particle
457 Mesh Ewald (PME) method with a cutoff radius of 1 nm. Van der Waals interactions
458 were calculated using a cutoff of 1 nm. The temperature was maintained at 300 K by
459 the V-rescale method, and the pressure was maintained at 1 bar by the
460 Parrinello-Rahman coupling method. The equations of motion were integrated using a
461 leap-frog algorithm with a time step of 2 fs. 3D periodic boundary conditions were
462 applied to all the simulations.

463 The dynamic behavior of proteins in water and EG solution was characterized by
464 helix content, protein-protein and protein-water hydrogen bonds. All trajectory
465 analyses were accomplished using our in house developed scripts and tools
466 implemented in the GROMACS and MDTraj packages⁵⁴. The secondary structures of
467 proteins were determined by the DSSP program⁵⁵. For structural visualization, the
468 Visual Molecular Dynamics (VMD)⁵⁶ program was used.

469 **References**

- 470 1. Bremer, E. & Krämer, R. Responses of Microorganisms to Osmotic Stress. *Annu. Rev. Microbiol.* **73**, 313–334 (2019).
- 471 2. Zhang, H., Zhu, J., Gong, Z. & Zhu, J.-K. Abiotic stress responses in plants. *Nat. Rev. Genet.* **23**, 104–119 (2022).
- 472 3. Lang, F. *et al.* Functional Significance of Cell Volume Regulatory Mechanisms. *Physiol. Rev.* **78**, 247–306 (1998).
- 473 4. Yu, B., Chao, D. & Zhao, Y. How plants sense and respond to osmotic stress. *J. Integr. Plant Biol.* **66**, 394–423 (2024).
- 474 5. Hasegawa, P. M., Bressan, R. A., Zhu, J.-K. & Bohnert, H. J. PLANT CELLULAR AND
475 MOLECULAR RESPONSES TO HIGH SALINITY. *Annu. Rev. Plant. Physiol. Plant. Mol. Biol.* **51**, 463–499 (2000).
- 476 6. Peng, J., Yu, Y. & Fang, X. Stress sensing and response through biomolecular condensates in
477 plants. *Plant Commun.* **6**, 101225 (2025).
- 478 7. Xu, X., Zheng, C., Lu, D., Song, C. & Zhang, L. Phase separation in plants: New insights into
479 cellular compartmentalization. *J. Integr. Plant Biol.* **63**, 1835–1855 (2021).
- 480 8. Liu, Q., Liu, W., Niu, Y., Wang, T. & Dong, J. Liquid–liquid phase separation in plants:
481 Advances and perspectives from model species to crops. *Plant Commun.* **5**, 100663 (2023).
- 482 9. Fan, P. *et al.* Exploring the frontier of plant phase separation: Current insights and future
483 prospects. *New Crops* **1**, 100026 (2024).
- 484 10. Banani, S. F., Lee, H. O., Hyman, A. A. & Rosen, M. K. Biomolecular condensates:

organizers of cellular biochemistry. *Nat. Rev. Mol. Cell Biol.* **18**, 285–298 (2017).

11. Shin, Y. & Brangwynne, C. P. Liquid phase condensation in cell physiology and disease. *Science* **357**, eaaf4382 (2017).

12. Shin, Y. *et al.* Spatiotemporal Control of Intracellular Phase Transitions Using Light-Activated optoDroplets. *Cell* **168**, 159–171 (2017).

13. Wan, L., Ke, J., Zhu, Y., Zhang, W. & Mu, W. Recent advances in engineering synthetic biomolecular condensates. *Biotechnol. Adv.* **77**, 108452 (2024).

14. Shin, Y. *et al.* Liquid Nuclear Condensates Mechanically Sense and Restructure the Genome. *Cell* **175**, 1481–1491 (2018).

15. Hilditch, A. T. *et al.* Assembling membraneless organelles from *de novo* designed proteins. *Nat. Chem.* **16**, 89–97 (2024).

16. Jiang, B. *et al.* Light-induced LLPS of the CRY2/SPA1/FIO1 complex regulating mRNA methylation and chlorophyll homeostasis in *Arabidopsis*. *Nat. Plants* **9**, 2042–2058 (2023).

17. Mo, W. *et al.* *Arabidopsis* cryptochrome 2 forms photobodies with TCP22 under blue light and regulates the circadian clock. *Nat. Commun.* **13**, 2631 (2022).

18. Jung, J.-H. *et al.* A prion-like domain in ELF3 functions as a thermosensor in *Arabidopsis*. *Nature* **585**, 256–260 (2020).

19. Geng, P. A thermosensor FUST1 primes heat-induced stress granule formation via biomolecular condensation in *Arabidopsis*. *Cell Res.* **35**, 483–496 (2025).

20. Bohn, L. *et al.* The temperature sensor TWA1 is required for thermotolerance in *Arabidopsis*. *Nature* **629**, 1126–1132 (2024).

21. Zhu, P., Lister, C. & Dean, C. Cold-induced *Arabidopsis* FRIGIDA nuclear condensates for FLC repression. *Nature* **599**, 657–661 (2021).

22. Chen, D. *et al.* Integration of light and temperature sensing by liquid-liquid phase separation of phytochrome B. *Mol. Cell* **82**, 3015–3029 (2022).

23. Feng, Z. *et al.* Liquid–liquid phase separation of TZP promotes PPK-mediated phosphorylation of the phytochrome A photoreceptor. *Nat. Plants* **10**, 798–814 (2024).

24. Dorone, Y. *et al.* A prion-like protein regulator of seed germination undergoes hydration-dependent phase separation. *Cell* **184**, 4284–4298 (2021).

25. Wang, B. *et al.* Condensation of SEUSS promotes hyperosmotic stress tolerance in *Arabidopsis*. *Nat. Chem. Biol.* **18**, 1361–1369 (2022).

26. Wang, Z. *et al.* A cytoplasmic osmosensing mechanism mediated by molecular crowding–sensitive DCP5. *Science* **386**, eadk9067 (2024).

27. Huang, X. *et al.* ROS regulated reversible protein phase separation synchronizes plant flowering. *Nat. Chem. Biol.* **17**, 549–557 (2021).

28. Boyd-Shiwarski, C. R. *et al.* WNK kinases sense molecular crowding and rescue cell volume via phase separation. *Cell* **185**, 4488–4506 (2022).

29. Wang, H. *et al.* A double-stranded RNA binding protein enhances drought resistance via protein phase separation in rice. *Nat. Commun.* **15**, 2514 (2024).

30. Subramanya, A. R. & Boyd-Shiwarski, C. R. Molecular Crowding: Physiologic Sensing and Control. *Annu. Rev. Physiol.* **86**, 429–452 (2024).

31. Vweza, A.-O., Song, C.-G. & Chong, K.-T. Liquid–Liquid Phase Separation in the Presence of Macromolecular Crowding and State-dependent Kinetics. *Int. J. Mol. Sci.* **22**, 6675 (2021).

32. Loh, D. & Reiter, R. J. Light, Water, and Melatonin: The Synergistic Regulation of Phase

534 Separation in Dementia. *Int. J. Mol. Sci.* **24**, 5835 (2023).

535 33. Prestrelski, S. J., Tedeschi, N., Arakawa, T. & Carpenter, J. F. Dehydration-induced
536 conformational transitions in proteins and their inhibition by stabilizers. *Biophys. J.* **65**,
537 661–671 (1993).

538 34. Fernández, A. & Scheraga, H. A. Insufficiently dehydrated hydrogen bonds as determinants of
539 protein interactions. *Proc. Natl. Acad. Sci. U.S.A.* **100**, 113–118 (2003).

540 35. Mallamace, D., Fazio, E., Mallamace, F. & Corsaro, C. The Role of Hydrogen Bonding in the
541 Folding/Unfolding Process of Hydrated Lysozyme: A Review of Recent NMR and FTIR
542 Results. *Int. J. Mol. Sci.* **19**, 3825 (2018).

543 36. Cuevas-Velazquez, C. L., Saab-Rincón, G., Reyes, J. L. & Covarrubias, A. A. The
544 Unstructured N-terminal Region of Arabidopsis Group 4 Late Embryogenesis Abundant
545 (LEA) Proteins Is Required for Folding and for Chaperone-like Activity under Water Deficit.
546 *J. Biol. Chem.* **291**, 10893–10903 (2016).

547 37. Rendón-Luna, D. F. *et al.* Alternative conformations of a group 4 Late Embryogenesis
548 Abundant protein associated to its in vitro protective activity. *Sci. Rep.* **14**, 2770 (2024).

549 38. Dormann, D. & Haass, C. Fused in sarcoma (FUS): An oncogene goes awry in
550 neurodegeneration. *Mol. Cell Neurosci.* **56**, 475–486 (2013).

551 39. Couthouis, J. *et al.* A yeast functional screen predicts new candidate ALS disease genes. *Proc.*
552 *Natl. Acad. Sci. U.S.A.* **108**, 20881–20890 (2011).

553 40. Buttress, T. *et al.* Histone H2B.8 compacts flowering plant sperm through chromatin phase
554 separation. *Nature* **611**, 614–622 (2022).

555 41. Xie, D. *et al.* Phase separation of SERRATE drives dicing body assembly and promotes
556 miRNA processing in Arabidopsis. *Nat. Cell Biol.* **23**, 32–39 (2021).

557 42. Ye, S. *et al.* Micropolarity governs the structural organization of biomolecular condensates.
558 *Nat. Chem. Biol.* **20**, 443–451 (2024).

559 43. Ouyang, J. *et al.* Navigating condensate micropolarity to enhance small-molecule drug
560 targeting. *Nat. Chem. Biol.* <https://www.nature.com/articles/s41589-025-02017-9> (2025).

561 44. Kunz, C. F., Goldbecker, E. S. & De Vries, J. Functional genomic perspectives on plant
562 terrestrialization. *Trends Genet.* **41**, 617–629 (2025).

563 45. Cheng, S. *et al.* Genomes of Subaerial Zygnematophyceae Provide Insights into Land Plant
564 Evolution. *Cell* **179**, 1057–1067 (2019).

565 46. Vještica, A. *et al.* A toolbox of stable integration vectors in the fission yeast
566 *Schizosaccharomyces pombe*. *J. Cell Sci.* **133**, jcs240754 (2020).

567 47. Mastrop, M. *et al.* Characterization of a spectrally diverse set of fluorescent proteins as FRET
568 acceptors for mTurquoise2. *Sci. Rep.* **7**, 11999 (2017).

569 48. Steinegger, M. & Söding, J. MMseqs2 enables sensitive protein sequence searching for the
570 analysis of massive data sets. *Nat. Biotechnol.* **35**, 1026–1028 (2017).

571 49. Virtanen, P. *et al.* SciPy 1.0: fundamental algorithms for scientific computing in Python. *Nat.*
572 *Methods* **17**, 261–272 (2020).

573 50. Hunter, J. D. Matplotlib: A 2D Graphics Environment. *Comput. Sci. Eng.* **9**, 90–95 (2007).

574 51. Jumper, J. *et al.* Highly accurate protein structure prediction with AlphaFold. *Nature* **596**,
575 583–589 (2021).

576 52. Huang, J. *et al.* CHARMM36m: an improved force field for folded and intrinsically
577 disordered proteins. *Nat. Methods* **14**, 71–73 (2017).

578 53. Hess, B., Kutzner, C., Van Der Spoel, D. & Lindahl, E. GROMACS 4: Algorithms for Highly
579 Efficient, Load-Balanced, and Scalable Molecular Simulation. *J. Chem. Theory Comput.* **4**,
580 435–447 (2008).

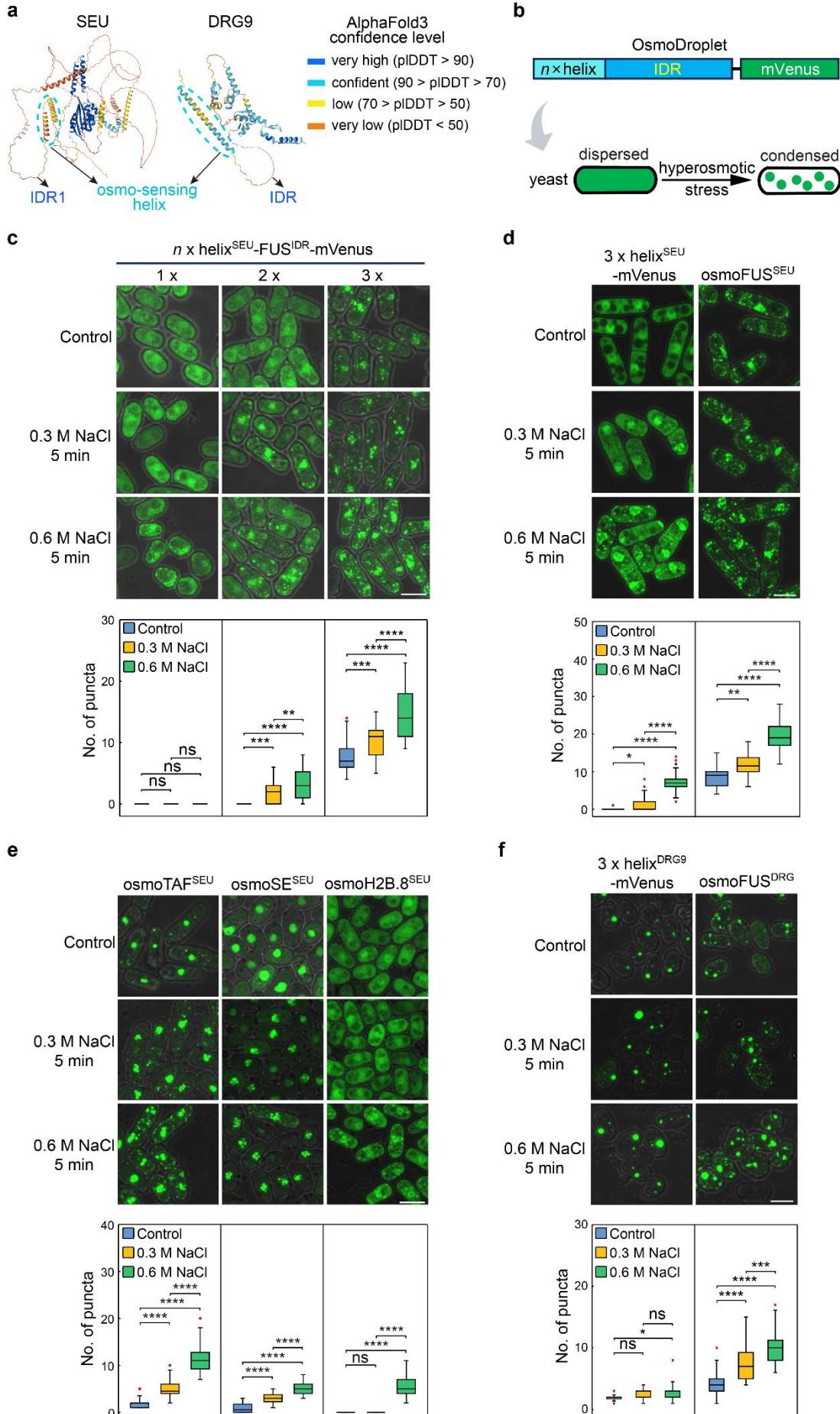
581 54. McGibbon, R. T. *et al.* MDTraj: A Modern Open Library for the Analysis of Molecular
582 Dynamics Trajectories. *Biophys. J.* **109**, 1528–1532 (2015).

583 55. Kabsch, W. & Sander, C. Dictionary of protein secondary structure: Pattern recognition of
584 hydrogen-bonded and geometrical features. *Biopolymers* **22**, 2577–2637 (1983).

585 56. Humphrey, W., Dalke, A. & Schulten, K. VMD: Visual molecular dynamics. *J. Mol. Graph.*
586 **14**, 33–38 (1996).

587 **Acknowledgements**

588 We thank Dr. Lilin Du from National Institute of Biological Sciences, Beijing, China
589 for generously providing yeast constructs and strains used for fluorescence
590 visualization. We thank Prof. Chengcai Chu and Prof. Bin Hu from South China
591 Agricultural University for helpful discussions. This work was supported by the
592 Biological Breeding-National Science and Technology Major Project (2023ZD04073),
593 Guangdong Provincial Special Fund for Science and Technology Innovation Strategy
594 (the Cultivation of Science and Technology Innovation in College Students,
595 pdjh2024a071), Guangdong Provincial “Pearl River Talent Program” Innovation and
596 Entrepreneurship Team Project (2023ZT10N019), Guangdong Basic Research Center
597 of Excellence for Precise Breeding of Future Crops (FCBRCE-202513), National
598 Natural Science Foundation of China (32370345, 32571445, 32521002), the Major
599 Program of Shenzhen Bay Laboratory (S241101001), Guangdong Laboratory for
600 Lingnan Modern Agriculture (NG2021005), Double first-class discipline promotion
601 project of Guangdong province (2021B10564001), Natural Science Foundation of
602 Guangdong province (2023A1515012067, 2024A1515010717), Guangzhou Science
603 and Technology Elite “Navigator” Program (2024A04J3436), and Guangdong
604 Provincial Pearl River Talent Plan (2021QN020536).

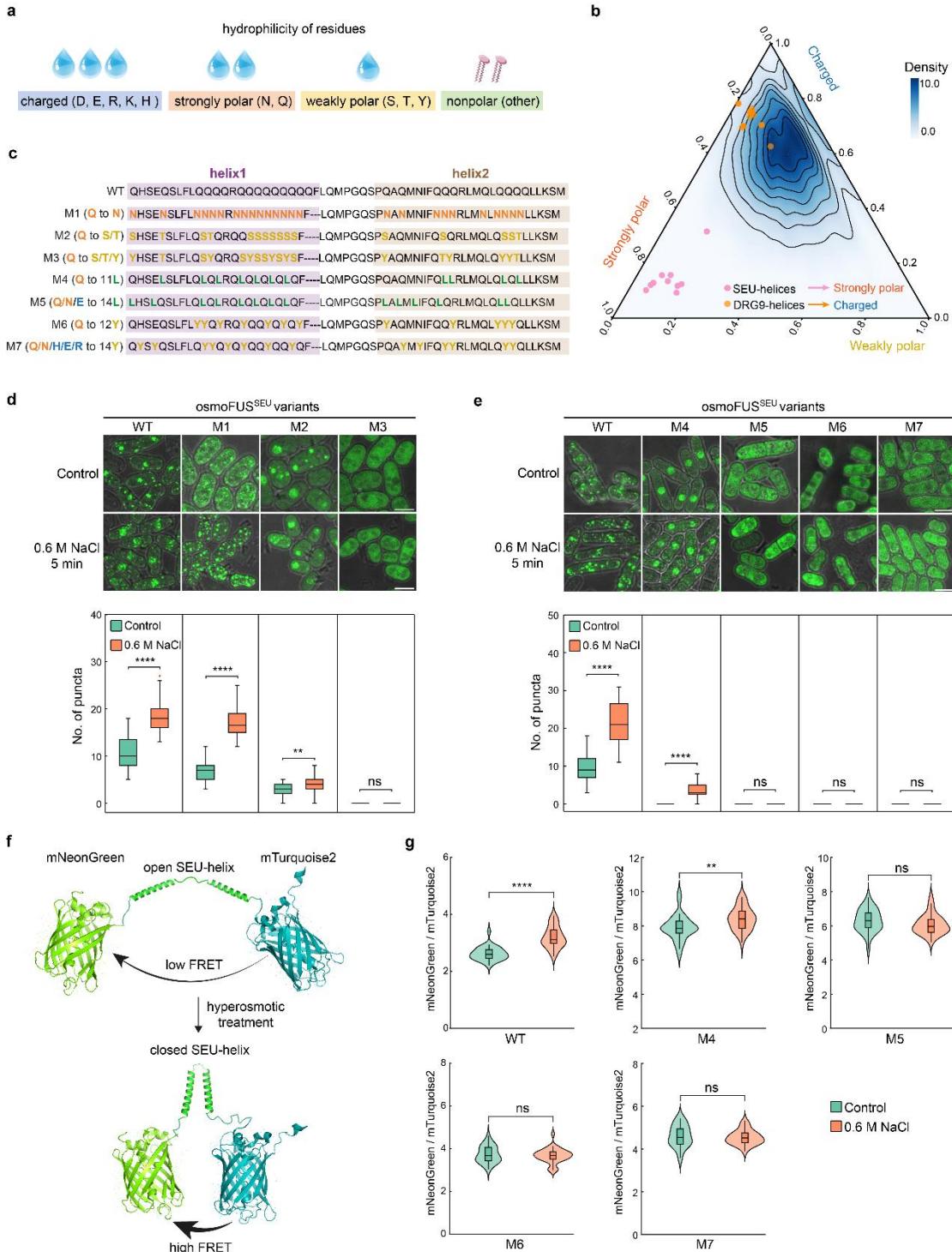

605 **Author contributions**

606 S.H. designed the study. J-J.Z., P.F., L.G. performed all experiments. X.Q., K.H.,
607 performed molecular dynamics simulations. Y.Z. performed sequence analyses. J-J.Z.,
608 P.F., X.Q., K.H., J-Y.Z., S.H. analyzed data. S.H., P.F., J-J.Z., X.Q., K.H., J-Y.Z., X.F.
609 wrote and revised the article.

610 **Competing interests**

611 The authors declare no competing interests.

612



614 **Fig. 1 Helix-IDR functions as a sensitive osmoDroplet module**

615 (a) AlphaFold3-predicted structures of *Arabidopsis thaliana* SEU (left) and *Oryza*
616 *sativa* DRG9 (right), with osmo-sensing α -helices (cyan) and intrinsically disordered
617 regions (IDRs, blue) highlighted which were previously shown to mediate phase
618 separation. Prediction confidence is color-coded (blue: very high; red: very low).
619 plDDT (Predicted Local Distance Difference Test) is a per-residue confidence metric
620 in AlphaFold3 that quantifies the model's reliability for predicting the local atomic
621 structure around each residue.

622 (b) Schematic diagram of the osmoDroplet system in yeast, depicting phase transition
623 from dispersed to condensed states in response to hyperosmotic stress.

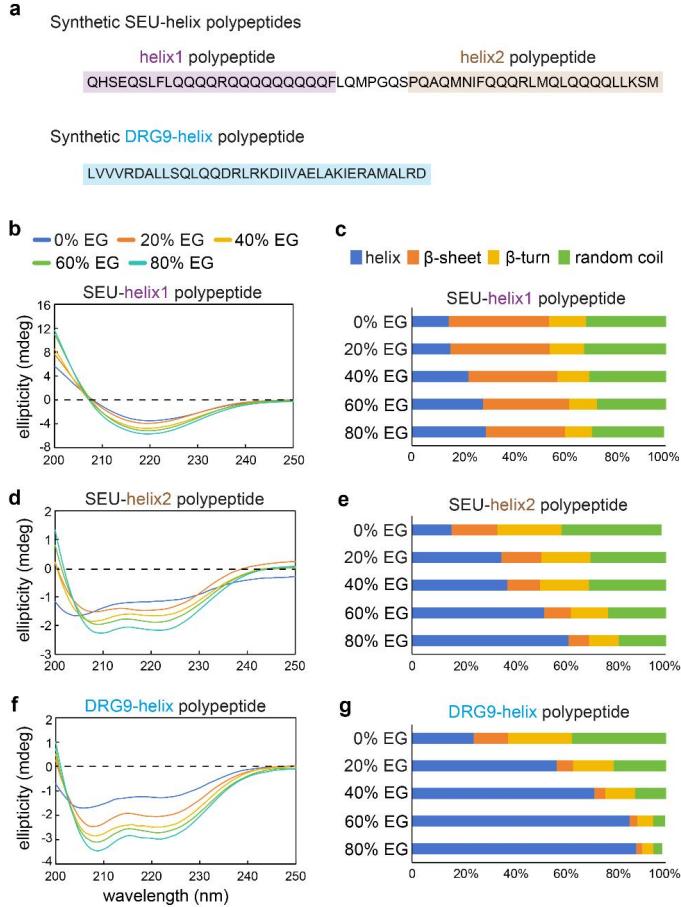
624 (c-f) Confocal images (top panels) and corresponding quantitative analyses (bottom
625 panels) of yeast cells exposed to control or NaCl treatments (0.3 M or 0.6 M, 5 min).
626 Box plots quantified puncta formation per cell. Each box encloses the middle 50% of
627 the distribution, with the horizontal line marking the median and the vertical lines
628 marking the minimum and maximum values that fall within 1.5 times the height of the
629 box. ns, not significant; **** $p < 0.0001$, *** $p < 0.001$, ** $p < 0.01$, * $p < 0.05$
630 (one-way ANOVA followed by Tukey's HSD test; $n \geq 30$ cells per group). c: Yeast
631 cells expressing different copies of SEU-helices fused to FUS-IDR and mVenus ($n = 1$,
632 2, 3). d: Yeast cells expressing 3 copies of SEU-helices with (osmoFUS^{SEU}) or without
633 FUS-IDR fusion (3 \times helix^{SEU}). e: Yeast cells expressing 3 copies of SEU-helices fused
634 to the indicated IDRs (TAF15-IDR, SE-IDR, H2B.8-IDR). SE, SERRATE. f: Yeast
635 cells expressing 3 copies of DRG9-helices with (osmoFUS^{DRG9}) or without FUS-IDR
636 fusion (3 \times helix^{DRG9}). Scale bars, 5 μ m.

637

638

639 **Fig. 2 Hydrophilicity contributes to hyperosmotic response of SEU-helix**

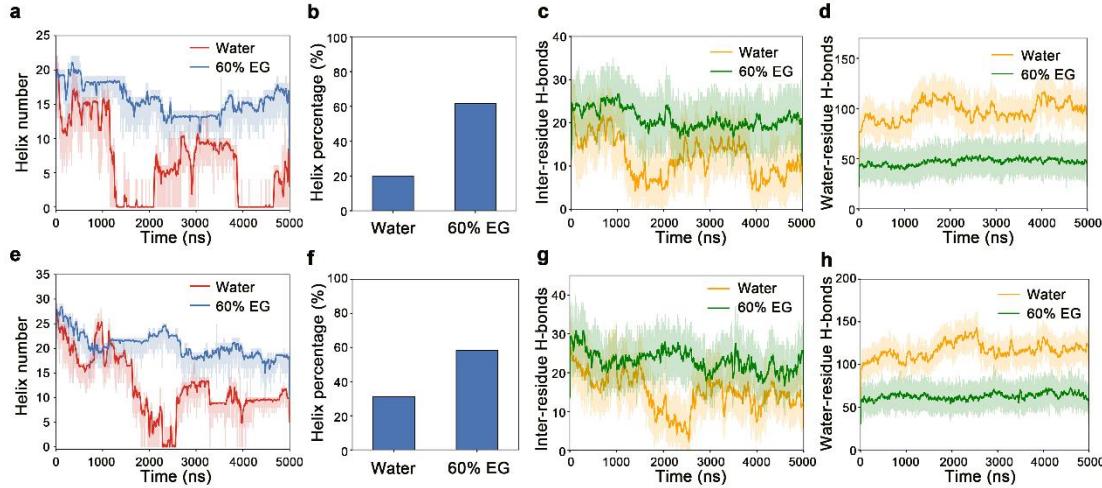
640 (a) Four groups of amino acids with differential hydrophilicity. Charged and strongly
641 polar residues have high hydrophilicity. Weakly polar residues have moderate
642 hydrophilicity, while nonpolar residues are hydrophobic. D, Asp; E, Glu; R, Arg; K,
643 Lys; H, His; Q, Gln; N, Asn; S, Ser; T, Thr; Y, Tyr.


644 (b) Ternary KDE (kernel density estimation) plot showing the distribution of residue
645 composition of SEU- and DRG9-helices from representative plant taxa as in
646 Supplementary Fig. 2 relative to the bulk control helices from PDB (Protein Data
647 Bank). The three vertices correspond to charged (top), strongly polar (bottom left),
648 and weakly polar residues (bottom right), respectively. SEU-helices clustered toward
649 the strongly polar vertex, while DRG9-helices were shifted toward the
650 charged-residue vertex, in contrast to the bulk control.

651 (c) Amino acid sequences of SEU-helix variants, with helix1 and helix2 indicating
652 the left and right helices, respectively.

653 (d,e) Confocal images (top panels) and corresponding quantitative analyses (bottom
654 panels) of yeast cells expressing mVenus-tagged osmoFUS^{SEU} ($3 \times$ helix^{SEU}-FUS^{IDR})
655 variants as indicated in (c) under control or 0.6 M NaCl for 5 min. Box plots
656 quantified puncta formation per cell. Each box encloses the middle 50% of the
657 distribution, with the horizontal line marking the median and the vertical lines
658 marking the minimum and maximum values that fall within 1.5 times the height of the
659 box. ns, not significant; **** $p < 0.0001$, ** $p < 0.01$ (Student's t test; $n \geq 30$ cells per
660 group). Scale bars, 5 μ m.

661 (f) Schematic diagram depicting FRET assay for probing conformational changes of a
662 single SEU-helix.


663 (g) Violin plots quantifying FRET efficiency measured by mNeonGreen/mTurquoise2
664 fluorescence ratios for SEU-helix variants as indicated in (c) under control or 0.6 M
665 NaCl. ns, not significant; **** $p < 0.0001$, *** $p < 0.001$, ** $p < 0.01$, * $p < 0.05$
666 (Student's t test; $n \geq 30$ cells per group).

667

668 **Fig. 3 Dehydration induces helix folding**

669 (a) Amino acid sequences of synthetic SEU-helix1, SEU-helix2, and DRG9-helix.
670 (b,d,f) Circular dichroism (CD) spectra of synthetic SEU-helix1 (b), SEU-helix2 (d),
671 and DRG9-helix (f) polypeptides. Ellipticity (mdeg) was plotted against wavelength
672 (200-250 nm) at different ethylene glycol (EG) concentrations (0%, 20%, 40%, 60%,
673 80%).
674 (c,e,g) Secondary structure composition of synthetic SEU-helix1 (c), SEU-helix2 (e),
675 and DRG9-helix (g) polypeptides. Stacked bar graphs showing fractions of α -helix
676 (blue), β -sheet (orange), β -turn (yellow), and random coil (green) derived from CD
677 spectra at corresponding EG concentrations.
678

679

680 **Fig. 4 Dehydration induces H-bonding alteration by MD simulations**

681 (a) Time evolution simulation of helix number for SEU-helix1 in nanoseconds (ns).

682 (b) Average helix number of the last 2000-ns simulation for SEU-helix1 in water or

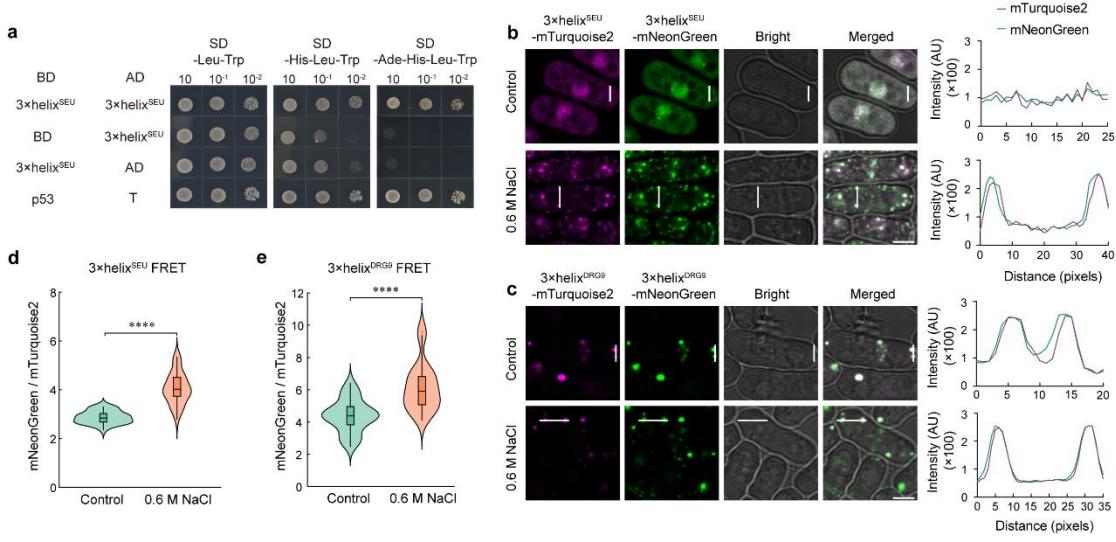
683 60% EG.

684 (c,d) Time evolution simulation of inter-residue (c) and water-residue H-bonds (d) for

685 SEU-helix1 in nanoseconds (ns).

686 (e) Time evolution simulation of helix number for DRG9-helix in nanoseconds (ns).

687 (f) Average helix number of the last 2000-ns simulation for DRG9-helix in water or


688 60% EG.

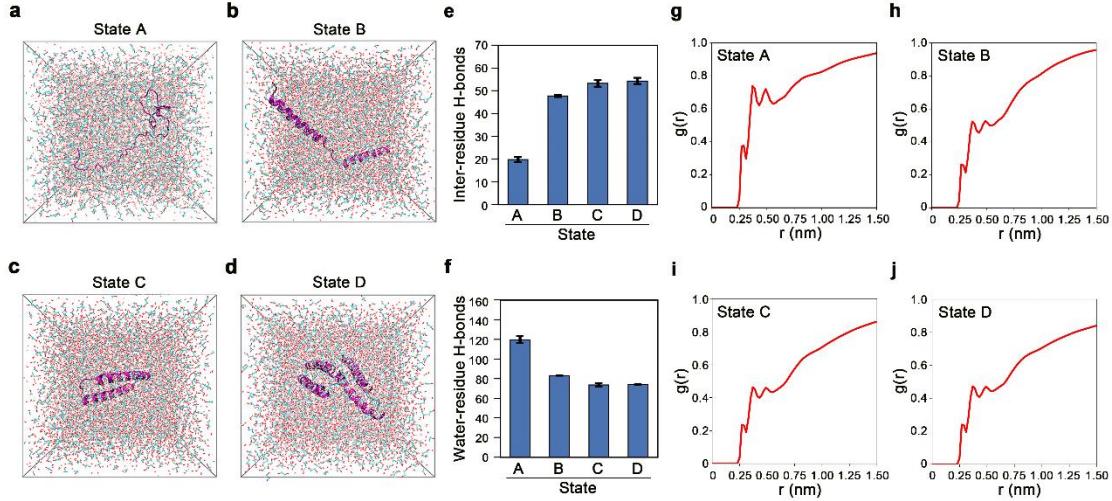
689 (g,h) Time evolution simulation of inter-residue (g) and water-residue H-bonds (h) for

690 DRG9-helix in nanoseconds (ns).

691

692

693


694 **Fig. 5 Hyperosmolarity enhances intermolecular association of helices**

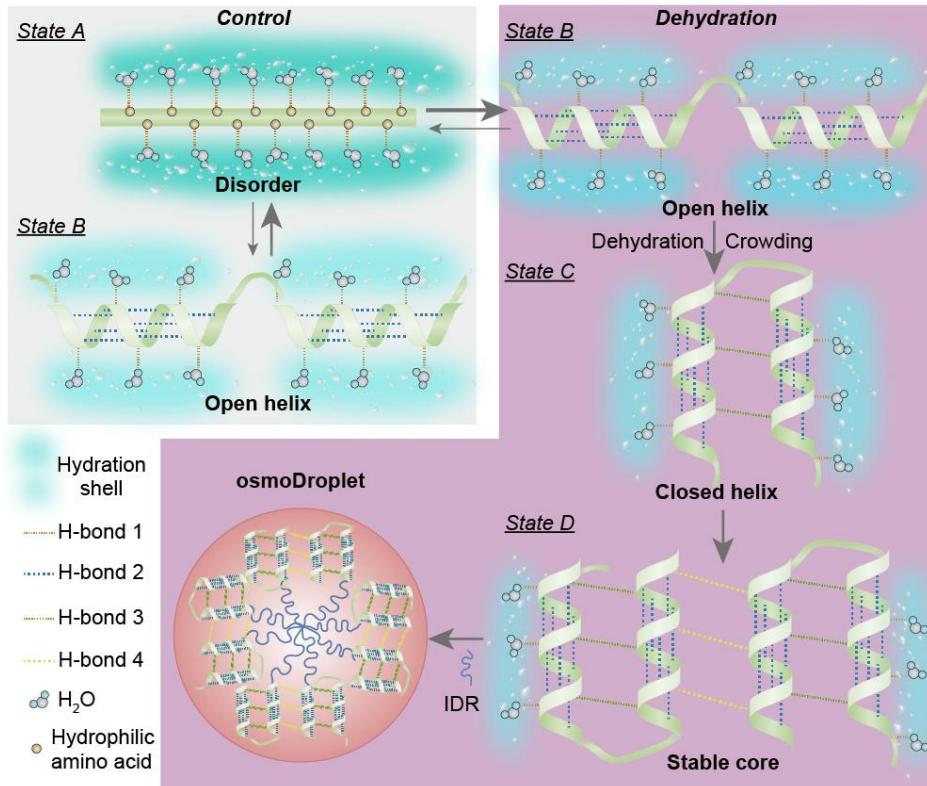
695 (a) Yeast two-hybrid assay showing 3xhelix^{SEU} self-association. BD and AD indicate
696 DNA binding domain and activation domain of GAL4, respectively. BD-p53 and
697 AD-T were used as positive control.

698 (b,c) Confocal images of yeast cells co-expressing 3xhelix^{SEU}-mTurquoise2 and
699 3xhelix^{SEU}-mNeonGreen (b), as well as 3xhelix^{DRG9}-mTurquoise2 and
700 3xhelix^{DRG9}-mNeonGreen (c) under control or hyperosmotic conditions (0.6 M NaCl,
701 5 min). The fluorescence intensities along the lines were shown in arbitrary units (AU)
702 on the right. Scale bars, 5 μ m.

703 (d,e) Violin plots quantifying FRET efficiency of intermolecular associations of
704 3xhelix^{SEU} (d) and 3xhelix^{DRG9} (e) under control or hyperosmotic conditions (0.6 M
705 NaCl). ***p < 0.0001 (Student's t test, n > 30 cells per group).

706

707

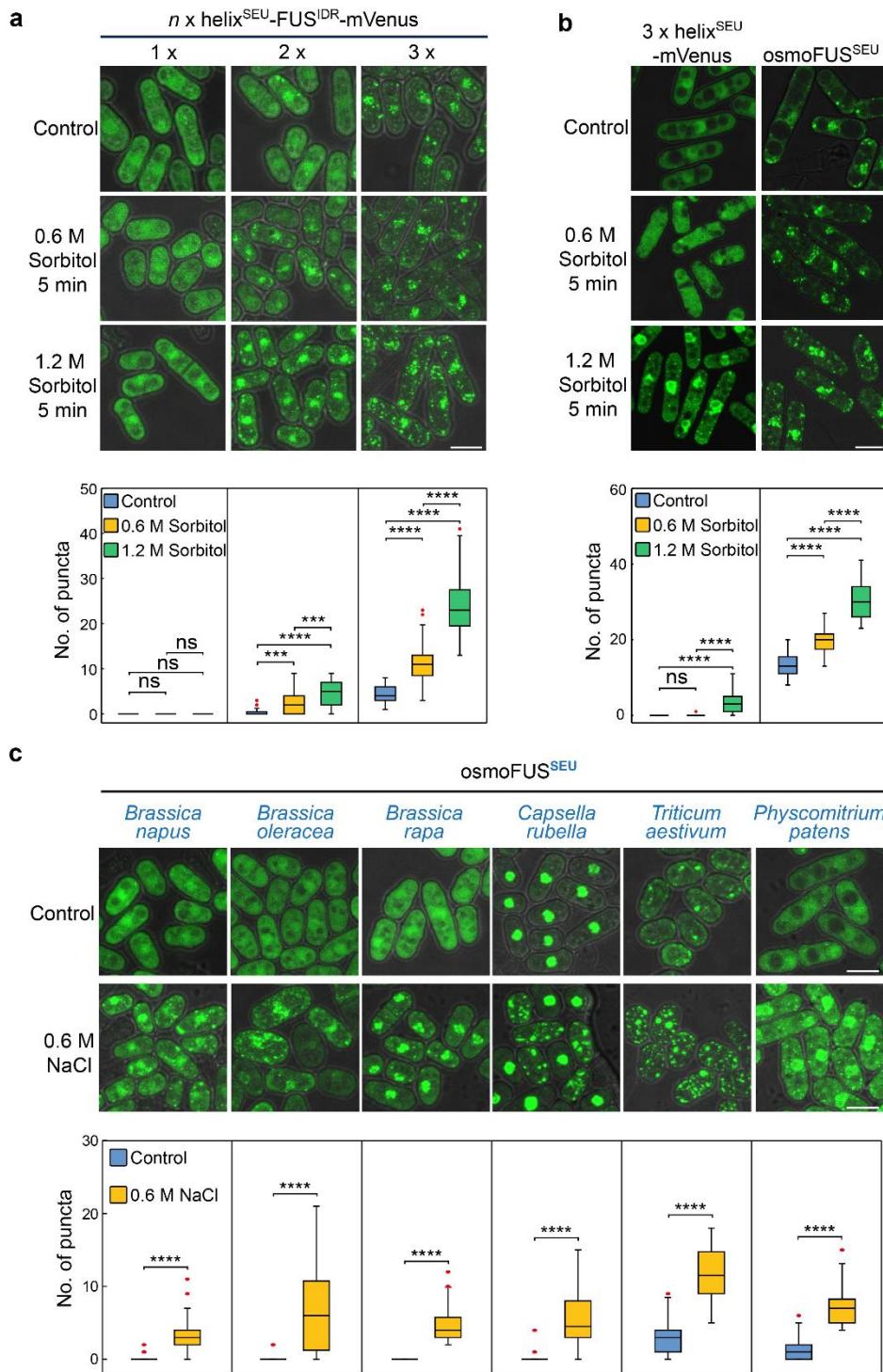

708 **Fig. 6 Hydration analyses across distinct conformational states of SEU-helix by**
709 **MD simulations**

710 (a-d) Four typical conformations of SEU-helix in 60% EG from MD simulations.

711 (e,f) Average number of inter-residue (e) and water-residue (f) H-bonds.

712 (g-j) The radical distribution function ($g(r)$) of water molecules relative to proteins for
713 the indicated States.

714


715

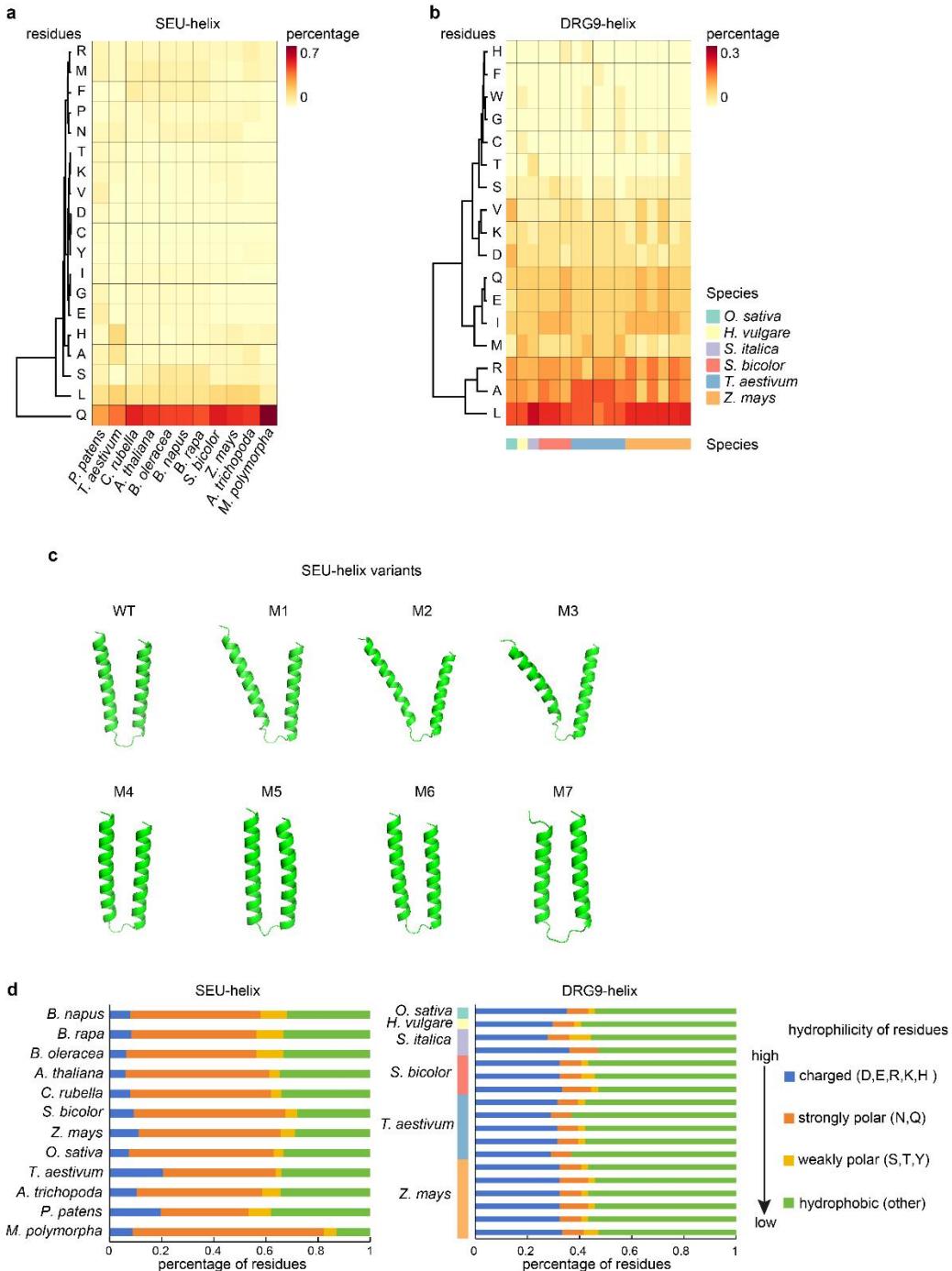
716 **Fig. 7 A model for osmoDroplet assembly**

717 Under control conditions, the metastable SEU-helix, which is enriched with highly
718 hydrophilic residues, tends to be unstructured with strong hydration shell maintained
719 by abundant residue-water hydrogen bonds (H-bond 1, *State A*). Hyperosmotic stress,
720 however, triggers a shift to *State B* (open helix) via dehydration, which reduces
721 residue-water H-bonds and hydration shell, and promotes residue-residue H-bonding
722 (H-bond 2). Subsequently, the open helix folds into a closed conformation (*State C*),
723 stabilized by inter-helix H-bonds (H-bond 3), likely through the combined effects of
724 dehydration and molecular crowding. Finally, the closed helices associate via
725 intermolecular H-bonds (H-bond 4) to form *State D*, creating a stable core that
726 nucleates the condensation of intrinsically disordered regions (IDRs) and drives
727 osmoDroplet assembly.

728

729

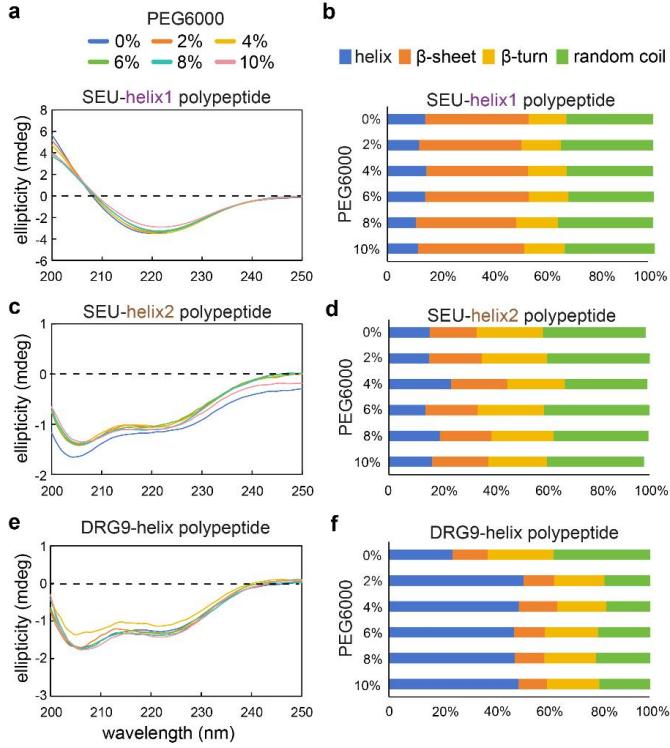
730


731 **Fig. S1 Conserved helix-IDR osmoDroplet module**

732 (a) Confocal images (top) and quantification (bottom) of yeast cells expressing
 733 *n x helix^{SEU}-FUS^{IDR}-mVenus* fusion proteins under control or sorbitol stress (0.6 M or
 734 1.2 M, 5 min). Constructs vary by helix copy number (*n*=1, 2, 3). Box plots quantify
 735 puncta per cell.

736 (b) Confocal images (top) and quantification (bottom) of yeast cells expressing 3
737 copies of SEU-helices with (osmoFUS^{SEU}) or without FUS-IDR fusion (3×helix^{SEU})
738 under control and sorbitol-stress conditions (0.6 M or 1.2 M, 5 min).

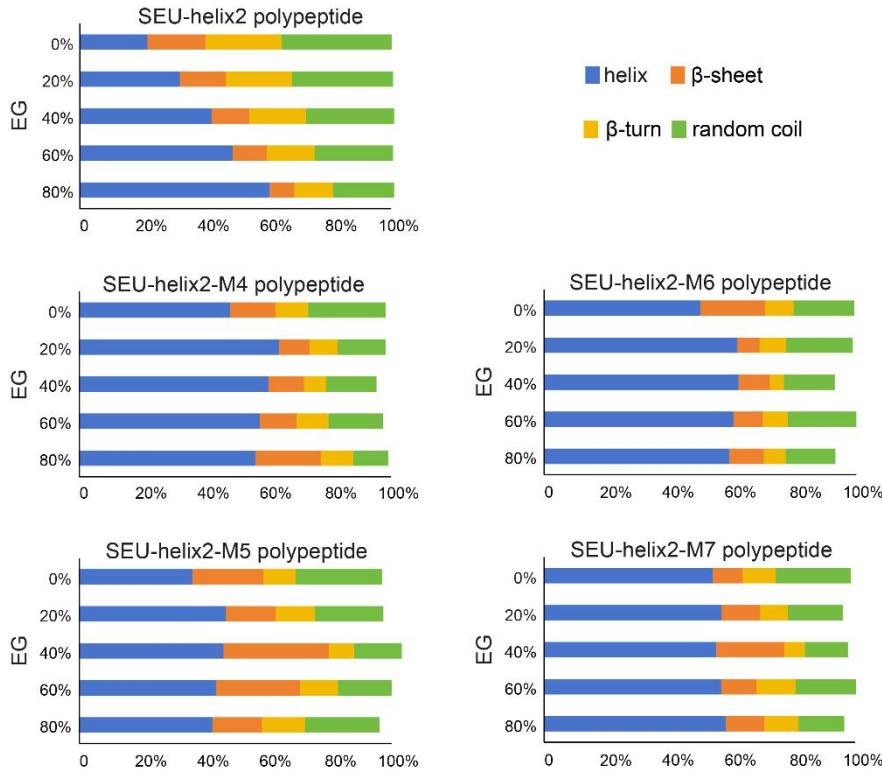
739 (c) Confocal images (top) and quantification (bottom) of yeast cells expressing 3
740 copies of SEU-helices with FUS-IDR fusion (osmoFUS^{SEU}), with SEU-helices from
741 the indicated plant taxa: *Brassica napus*, *Brassica oleracea*, *Brassica rapa*, *Capsella*
742 *rubella*, *Triticum aestivum*, *Physcomitrium patens* under control and 0.6 M NaCl (5
743 min) conditions.


744 (a-c) Box plots quantifying puncta formation per cell. Each box encloses the middle
745 50% of the distribution, with the horizontal line marking the median and the vertical
746 lines marking the minimum and maximum values that fall within 1.5 times the height
747 of the box. ns, not significant; **** $p < 0.0001$, *** $p < 0.001$ (one-way ANOVA
748 followed by Tukey's HSD test for (a,b) and Student's *t* test for (c); $n \geq 30$ cells per
749 group). Scale bars, 5 μ m.

751 **Fig. S2 Sequence and structure analyses of SEU/DRG9-helix and the variants**

752 (a,b) Heatmap clustering analysis showing enrichment of individual residues in
 753 SEU-helices (a) and DRG9-helices (b) from the indicated plant taxa.
 754 (c) AlphaFold3 predictions of SEU-helix variants corresponding to Fig. 2c.
 755 (d) Sequence composition of SEU- and DRG9-helices from the indicated plant taxa.
 756 Residues were grouped into four types according to hydrophilicity.

757

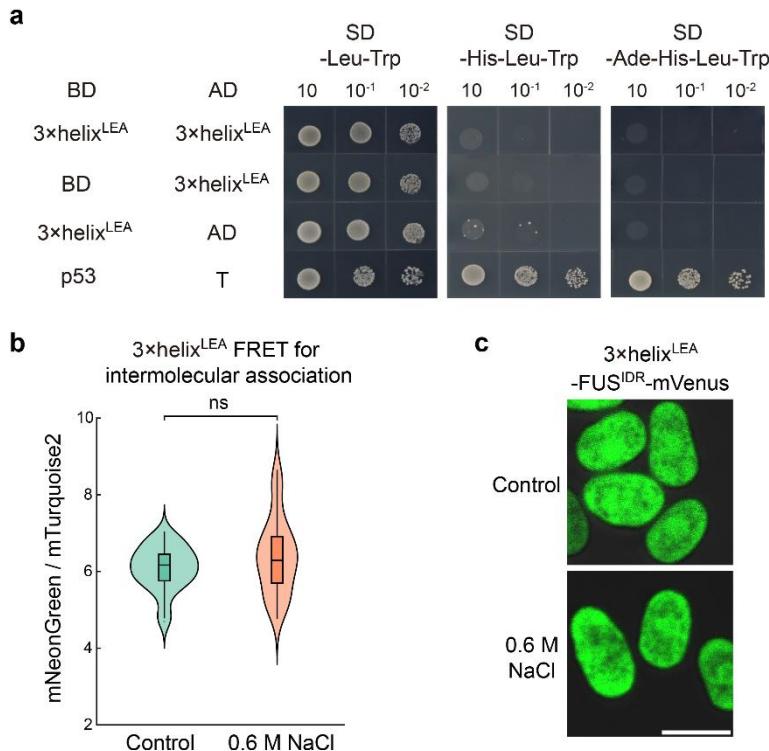

758

759 **Fig. S3 Molecular crowding induces marginal helix folding**

760 (a,c,e) Circular dichroism (CD) spectra of synthetic SEU-helix1 (a), SEU-helix2 (c),
761 and DRG9-helix (e) polypeptides. Ellipticity (mdeg) was plotted against wavelength
762 (200-250 nm) at different polyethylene glycol (PEG6000) concentrations (0%, 2%,
763 4%, 6%, 8%, 10%).

764 (b,d,f) Secondary structure composition of synthetic SEU-helix1 (b), SEU-helix2 (d),
765 and DRG9-helix (f) polypeptides. Stacked bar graphs showing fractions of α -helix
766 (blue), β -sheet (orange), β -turn (yellow), and random coil (green) derived from CD
767 spectra at corresponding PEG concentrations.

768



769

770 **Fig. S4 High hydrophilicity is essential for helix transition under EG**

771 Secondary structure composition of synthetic polypeptides of SEU-helix2 and its
772 variants corresponding to M4-M7 as depicted in Fig. 2c. Stacked bar graphs showing
773 fractions of α -helix (blue), β -sheet (orange), β -turn (yellow), and random coil (green)
774 derived from CD spectra at corresponding EG concentrations.

775

776

777 **Fig. S5 LEA helix fails to self-interact or drive condensation**

778 (a) Yeast two-hybrid assay of 3xhelix^{LEA}. BD and AD indicate DNA binding domain
779 and activation domain of GAL4. BD-p53 and AD-T were used as positive control.

780 (b) Violin plots quantifying FRET efficiency of intermolecular associations of
781 3xhelix^{LEA} under control or hyperosmotic conditions (0.6 M NaCl). ns, not significant
782 (Student's *t* test, *n* >30 cells per group).

783 (c) Confocal images of yeast cells expressing 3xhelix^{LEA}-FUS^{IDR}-mVenus under
784 control or hyperosmotic conditions (0.6 M NaCl, 5 min).

785

786 Supplementary Movies 1-4. Time evolution simulations of SEU-helix1 in EG (Movie
787 1), water (Movie 2), and of DRG9-helix in EG (Movie 3), water (Movie 4) within
788 5000 nanoseconds (ns).