

1 **Pharmacological Targeting of the NLRP3 trLRR Domain with Isothiazolinones**

2 **Overcomes CRID3-Resistant Inflammation**

3 Hawon Woo^{1*}, Yeonseo Jang^{1*}, Soyeon Kim¹, Wonyoung Kim¹, Fenfen Zhang²,

4 Raghvendra Mall³, Chirag N. Patel^{3,4}, Melan Kurera⁵, Chinh Ngo⁵, Simon H. Jiang⁵, Asia

5 Nicotra⁶, Bénédicte F. Py⁶, Min Zheng^{2**}, Si Ming Man^{5**}, Rajendra Karki^{1**}

6

7 ¹ Department of Biological Sciences, College of Natural Science, Seoul National
8 University, Seoul, 08826, South Korea.

9 ² Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen, Guangdong,
10 518132, China.

11 ³ Biotechnology Research Center, Technology Innovation Institute, P.O. Box:9639, Abu
12 Dhabi, United Arab Emirates.

13 ⁴ Translational Gerontology Branch, National Institute on Aging, NIH, Baltimore, MD,
14 USA.

15 ⁵ Division of Immunology and Infectious Diseases, The John Curtin School of Medical
16 Research, The Australian National University, Canberra, Australia.

17 ⁶ CIRI, Centre International de Recherche en Infectiologie, Univ Lyon, Inserm, U1111,
18 Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007, Lyon,
19 France

20

21 **Corresponding author. Email: rkarki@snu.ac.kr (RK); Email:
22 siming.man@anu.edu.au (SMM); Min Zheng. Email: min.zheng@szbl.ac.cn (MZ)

23 *These authors contributed equally to this work.

24 **Abstract**

25 The NLRP3 inflammasome is a key driver in inflammatory, infectious, metabolic, and
26 neurodegenerative diseases. Although the NLRP3 inhibitor CRID3 (also known as
27 MCC950) exhibits potent activity, it cannot inhibit several hyperactive NLRP3
28 mutations associated with autoinflammatory syndromes and has not progressed
29 clinically, underscoring the need for the development of new NLRP3 inhibitors.
30 Through a high-throughput screen, we identified LOC14, an isothiazolinone-containing
31 small molecule, as a selective NLRP3 inhibitor. Distinct from CRID3, which targets the
32 NACHT domain, LOC14 binds to or near the LRR domain of NLRP3 and inhibits both
33 CRID3-responsive and CRID3-non-responsive hyperactive or gain-of-function NLRP3
34 variants. Furthermore, we identified that the carbonyl oxygen of the isothiazol-3(2H)-
35 one moiety is critical for inhibitory activity. In mice, LOC14 exerted anti-inflammatory
36 effects in skin inflammation, intestinal inflammation, and sepsis, demonstrating broad
37 physiological and therapeutic relevance. Our findings highlight isothiazolinone-
38 containing compounds as first-in-class NLRP3 inhibitors for use against inflammatory
39 diseases.

40 **Introduction**

41 The innate immune system responds to various pathological conditions through the
42 orchestration of highly specialized protein signaling complexes, ensuring host defense
43 and tissue homeostasis. Central to this response is the inflammasome, a multi-protein
44 complex that is assembled in response to pathogen-associated molecular patterns
45 (PAMPs) or damage-associated molecular patterns (DAMPs) (Gurung, 2025; Karki &
46 Kanneganti, 2019; Lamkanfi & Dixit, 2014; Swanson *et al*, 2019). Once activated, the
47 inflammasome triggers activation of caspase-1, which cleaves the pro-inflammatory
48 cytokines pro-IL-1 β and pro-IL-18 into their mature, biologically active forms.
49 Caspase-1 activation also cleaves gasdermin D (GSDMD), allowing its N-terminal
50 fragment to translocate to the plasma membrane (Kayagaki *et al*, 2015; Shi *et al*,
51 2015), where it forms pores and facilitates the release of certain cytokines and cellular
52 contents, ultimately leading to an inflammatory form of cell death called pyroptosis
53 (Karki & Kanneganti, 2021; Man & Kanneganti, 2024).

54 Among the various inflammasomes, the NLRP3 inflammasome has garnered global
55 attention in fundamental and translational science due to its ability to sense a diverse
56 array of PAMPs and DAMPs and trigger inflammation and cell death in multiple disease
57 contexts (Anand, 2025; Hollis & Lukens, 2025; Li *et al*, 2025; Pandey *et al*, 2025; Xu &
58 Nunez, 2023). NLRP3 activation is tightly regulated by a sequence of priming and
59 activation events. The priming phase is driven by signals that activate the signaling
60 proteins nuclear factor-kappa B (NF- κ B) and extracellular signal-regulated kinase
61 (ERK), leading to the upregulation of NLRP3 and pro-IL-1 β (Bauernfeind *et al*, 2009;
62 Franchi *et al*, 2009). The subsequent activation phase requires conformational
63 changes in NLRP3 that facilitate the interaction between NLRP3 and the
64 serine/threonine kinase NEK7 (He *et al*, 2016; Schmid-Burgk *et al*, 2016; Shi *et al*,
65 2016). This interaction is pivotal for the recruitment and oligomerization of the adaptor

66 protein ASC, culminating in the assembly of the NLRP3 inflammasome (Sharif *et al*,
67 2019).

68 The NLRP3 inflammasome is implicated in various infectious and inflammatory
69 diseases (Vande Walle & Lamkanfi, 2024). Gain-of-function mutations in NLRP3 cause
70 the development of a group of inflammatory diseases known as cryopyrin-associated
71 periodic syndromes, characterized by severe localized and systemic inflammation and
72 clinical manifestations owing to aberrant inflammasome activation and excessive
73 IL-1 β secretion (Aganna *et al*, 2002; Feldmann *et al*, 2002; Hoffman *et al*, 2001).

74 Beyond genetic predispositions, NLRP3 activation triggered by cholesterol crystals and
75 monosodium urate crystals leads to the progression of atherosclerosis (Martinton *et al*,
76 2006) and gout (Duewell *et al*, 2010), respectively. Moreover, the NLRP3
77 inflammasome is activated by protein fibrils and aggregates, β -amyloid plaques, and
78 tau fibers, contributing to the pathogenesis of Alzheimer's disease (Heneka *et al*,
79 2013). Despite the therapeutic importance of targeting the NLRP3 inflammasome, the
80 development of effective inhibitors has faced considerable challenges. Several CRID3-
81 based second-generation NLRP3 inhibitors have been developed, but none have
82 received clinical approval (Coll & Schroder, 2025; Mangan *et al*, 2018), and many
83 cannot inhibit several NLRP3 variants associated with autoinflammatory syndromes
84 (Cosson *et al*, 2024; Feng *et al*, 2025; Kim *et al*, 2025; Vande Walle *et al*, 2019).

85 In this study, we used a chemical compound screen to identify the small-molecule
86 LOC14 as an inhibitor of NLRP3. LOC14 bound to the transition LRR domain of NLRP3
87 and disrupted NLRP3-NEK7 interaction. We identified isothiazolinone as the functional
88 group of LOC14, inhibiting the NLRP3 inflammasome and pyroptosis. Notably, LOC14
89 did not inhibit the activation of NLRP1, AIM2, NLRC4, and Pyrin inflammasomes. In
90 mouse models of psoriasis, colitis, and sepsis, administration of LOC14 or
91 isothiazolinone suppressed inflammatory responses and improved disease outcomes.

92 Overall, our findings highlight LOC14 and isothiazolinone as promising therapeutic
93 agents for treating NLRP3-associated inflammatory and infectious diseases.

94 **Results**

95 **A chemical library screen reveals LOC14 as an inhibitor of the NLRP3**
96 **inflammasome**

97 We screened a chemical library of 1,140 compounds in primary bone marrow-derived
98 macrophages (BMDMs) treated with the NLRP3 activator combination,
99 lipopolysaccharide (LPS) plus nigericin, and assessed for cell death to identify potential
100 inhibitors of the NLRP3 inflammasome (**Fig. 1A**). The top five inhibitors in order of the
101 highest potency were the sulfonylurea NLRP3 inhibitor CRID3 (also known as MCC950),
102 LOC14, the steroidal lactone Withaferin A, the caspase-1 dipeptide inhibitor
103 Belnacasan, and the NF- κ B inhibitor NF- κ B-IN-1 (also known as 1,6-Heptadiene-3,5-
104 dione) (**Fig. 1B**). Of these candidates, LOC14 is not known to inhibit NLRP3 previously,
105 whereas CRID3 (Coll *et al.*, 2015), Belnacasan (Wannamaker *et al.*, 2007), NF- κ B-
106 IN-1(Yin *et al.*, 2018) and Withaferin A (Kim *et al.*, 2015) have been reported to inhibit
107 NLRP3 inflammasome activation.

108 To validate the role of the new candidate LOC14 in suppressing NLRP3
109 inflammasome activation, we stimulated wild-type (WT) and *Nlrp3*^{-/-} BMDMs with the
110 NLRP3 activators LPS plus nigericin or LPS plus ATP, in the presence or absence of
111 LOC14 or CRID3. Both LOC14 and CRID3 abolished cell death in WT BMDMs induced by
112 LPS plus nigericin or LPS plus ATP (**Fig. 1C, D, Supplementary Fig. 1A, B**). The cell
113 death inhibitory effect of LOC14 in WT BMDMs was comparable to the outcome
114 achieved in *Nlrp3*^{-/-} BMDMs (**Fig. 1C, D, Supplementary Fig. 1A, B**). Following
115 NLRP3 inflammasome activation, both the cysteine protease caspase-1 and pore-
116 forming protein GSDMD undergo proteolytic cleavage (Kayagaki *et al.*, 2015; Shi *et al.*,
117 2015), leading to cell death and the release of inflammatory cytosolic contents such as
118 lactate dehydrogenase (LDH) and high mobility group box 1 (HMGB1). Consistent with
119 its inhibitory effect on cell death, LOC14 inhibited the proteolytic cleavage of
120 caspase-1 and GSDMD, and the release of LDH and HMGB1 in BMDMs stimulated with

121 LPS plus nigericin or LPS plus ATP (**Fig. 1E, Supplementary Fig. 1C**). In addition,
122 IL-1 β release, which accompanies caspase-1 and GSDMD activation, was abolished in
123 these BMDMs following LOC14 treatment (**Fig. 1F, Supplementary Fig. 1D**).
124 Expanding on the activators LPS plus nigericin or LPS plus ATP, which induce the
125 activation of NLRP3 via a K $^{+}$ efflux-dependent manner, we tested LPS plus imiquimod,
126 which induces the activation of NLRP3 independently of K $^{+}$ efflux (Gross *et al*, 2016).
127 LOC14 inhibited K $^{+}$ efflux-independent NLRP3 inflammasome activation induced by
128 LPS plus imiquimod (**Fig. 1G**).

129 To assess the role of LOC14 in human cells, we stimulated the human monocytic
130 cell line THP1 with LPS plus nigericin in the presence or absence of LOC14. Treatment
131 of LOC14 inhibited the proteolytic cleavage of caspase-1 and GSDMD
132 (**Supplementary Fig. 1E**). Further, in primary human peripheral blood mononuclear
133 cells (PBMCs) from healthy donors, LOC14 attenuated caspase-1 and GSDMD
134 activation, and IL-1 β release triggered by Pam3CSK4 plus nigericin (**Supplementary**
135 **Fig. 1F, G**). Although LOC14 is also known as an allosteric inhibitor of protein disulfide
136 isomerase A3 (PDIA3) (Kaplan *et al*, 2015), gene silencing of PDIA3 in BMDMs did not
137 affect NLRP3 inflammasome activation, suggesting that the inhibitory effect of LOC14
138 on NLRP3 is independent of its action on PDIA3 (**Supplementary Fig. 2A-F**). These
139 data collectively suggest that LOC14 is an inhibitor of the NLRP3 inflammasome in
140 human and mouse cells.

141 **LOC14 blocks non-canonical NLRP3 inflammasome activation**

142 The NLRP3 inflammasome can also be activated by cytoplasmic LPS or infection with
143 Gram-negative bacteria, through a pathway known as the non-canonical activation
144 pathway owing to the requirement for the protease caspase-11 that binds LPS to
145 initiate this process (Karki *et al*, 2020; Kayagaki *et al*, 2015; Kayagaki *et al*, 2011; Shi
146 *et al*, 2014). To determine whether LOC14 affects non-canonical NLRP3 inflammasome
147 activation, we transfected LPS into BMDMs in the presence or absence of LOC14.

148 Caspase-1 activation and IL-1 β release were reduced in LOC14-treated BMDMs, similar
149 to CRID3-treated BMDMs (**Supplementary Fig. 3A, B**). In this case, LOC14 did not
150 inhibit GSDMD cleavage (**Supplementary Fig. 3A**), which is due to caspase-11-
151 dependent proteolytic cleavage of GSDMD that occurs prior to NLRP3 activation
152 (Kayagaki *et al.*, 2011). Moreover, cell death analysis revealed similar kinetics of
153 pyroptosis and the release of LDH in LPS-transfected BMDMs, in the presence or
154 absence of LOC14 (**Supplementary Fig. 3A, C, D**). These data suggest that LOC14
155 does not inhibit caspase-11-dependent GSDMD processing and pyroptosis, but
156 specifically blocks the activation of the NLRP3 inflammasome after caspase-11-
157 mediated non-canonical activation.

158 **LOC14 does not inhibit AIM2, NLRC4, NLRP1b and Pyrin inflammasomes**

159 Next, we evaluated whether LOC14 functions against other inflammasomes. The DNA-
160 sensing AIM2 inflammasome can be activated during infection with the bacterium
161 *Francisella tularensis* subspecies *novicida* (*F. novicida*) or transfection of dsDNA
162 poly(dA:dT) into the cytoplasm of mammalian cells (Fernandes-Alnemri *et al.*, 2010;
163 Rathinam *et al.*, 2010). In the presence or absence of LOC14, we saw similar levels of
164 caspase-1 and GSDMD proteolytic cleavage and cell death in BMDMs infected with *F.*
165 *novicida* infection or transfected with poly(dA:dT), and similar induction of the
166 transcription factor IRF1 in BMDMs infected with *F. novicida* infection or treated with
167 IFN- β that were required to potentiate AIM2 inflammasome activation (**Fig. 2A-D**,
168 **Supplementary Fig. 4A, B**) (Man *et al.*, 2015; Man *et al.*, 2016). These data suggest
169 that LOC14 does not impair IRF1-dependent and IRF1-independent AIM2
170 inflammasome activation. The NLRP1b inflammasome is activated following the
171 inhibition of cytosolic serine dipeptidases DPP8 and DPP9 (Okondo *et al.*, 2018).
172 However, LOC14 treatment did not impede the activation of caspase-1 and GSDMD or
173 cell death following Val-boroPro stimulation (**Fig. 2E-G**). NLRC4 inflammasome is
174 activated by bacterial flagellin, or rod and needle proteins of the Type III secretion

systems found in *Salmonella enterica* subspecies *enterica* serovar Typhimurium (*S. Typhimurium*) (Karki *et al.*, 2018). LOC14 treatment did not affect caspase-1 and GSDMD activation and the rate of cell death in BMDMs following infection with *S. Typhimurium* (**Supplementary Fig. 4C, D**). Finally, Pyrin inflammasome activation occurs as a result of the inactivation of host Rho guanosine triphosphatases caused by infection with the bacterium *Clostridium difficile* (Xu *et al.*, 2014). We observed that LOC14 treatment did not hinder Pyrin inflammasome activation induced by the supernatant of *Clostridium difficile* (**Supplementary Fig. 4E, F**). These results indicate that LOC14 does not interfere with the activation of the AIM2, NLRP1, NLRC4, and Pyrin inflammasomes.

185 **LOC14 inhibits inflammasome oligomerization via binding to NLRP3**

186 During inflammasome assembly, NLRP3 proteins form active oligomers in a disk-shape
187 structure, where the C-terminal lobe of NEK7 nestles against both the LRR and NACHT
188 of NLRP3, which is then required to form a larger complex with the inflammasome
189 adaptor protein ASC (Sharif *et al.*, 2019; Xiao *et al.*, 2023; Yu *et al.*, 2024) Indeed,
190 analysis using semi-denaturing detergent agarose-gel electrophoresis revealed that
191 NLRP3 oligomerization induced by LPS plus ATP or LPS plus nigericin was impaired in
192 BMDMs treated with LOC14 (**Fig. 3A**). Further, ASC oligomerization in BMDMs or the
193 formation of ASC specks in human THP1 cells stimulated with LPS plus ATP or LPS plus
194 nigericin were impaired in the presence of LOC14 (**Fig. 3B, Supplementary Fig. 5**).
195 Taken together, these results indicate that LOC14 interferes with inflammasome
196 complex assembly at an early stage by simultaneously impairing both NLRP3
197 oligomerization and subsequent ASC speck formation. Based on this observation, we
198 hypothesized that LOC14 may exert its inhibitory effect by binding to NLRP3.

199 To test this possibility, we first used extra precision XP docking to investigate
200 the interaction between LOC14 and human NLRP3 (**Supplementary Fig. 6A, B**).
201 LOC14 bound to human NLRP3 with a similar affinity at -2.777 kcal/mol compared to

202 that between CRID3 and NLRP3 at -2.871 kcal/mol (**Fig. 3C**). Notably, in the presence
203 of the kinase NEK7, LOC14 bound to human NLRP3 with an increased affinity at -5.012
204 kcal/mol (**Fig. 3C**). The presence of NEK7 did not increase the binding affinity between
205 CRID3 and NLRP3 (**Fig. 3C**). We then used the Molecular Mechanics Generalized Born
206 Surface Area method to assess the interaction between LOC14 and the NLRP3-NEK7
207 complex (Genheden & Ryde, 2015). The Gibbs free energy change (ΔG) value for
208 LOC14 in the NLRP3-NEK7 complex was -48.92 kcal/mol (**Supplementary Fig. 6C**),
209 indicating that NEK7 binding induces a conformation change on the surface
210 architecture of NLRP3, generating an additional binding interface that enhances
211 LOC14 affinity. To experimentally validate these *in silico* data, we used the drug
212 affinity responsive target stability (DARTS) technique, which detects drug-protein
213 interactions based on reduced protease susceptibility upon ligand binding (Lomenick
214 *et al*, 2009). LOC14 protected endogenous NLRP3, but not ASC and caspase-1, from
215 protease-mediated proteolysis in BMDMs (**Fig. 3D**). Further, in HEK293T cells
216 expressing full-length human NLRP3 or mouse NLRP3, these proteins were resistant to
217 protease-induced degradation (**Fig. 3E, Supplementary Fig. 7A**). However, full-
218 length human NLRP6 expressed in HEK293T cells was not resistant to protease-
219 induced degradation (**Supplementary Fig. 7B**). In addition, we used a NanoBRET
220 probe to quantify the engagement between NLRP3 and LOC14 or CRID3 (Teske *et al*,
221 2024). In this assay, an NLRP3-Nluc protein is expressed in HEK293FT cells that binds
222 to a fluorescent NanoBRET tracer. We found that the addition of either LOC14 or
223 CRID3, but not the pan-caspase inhibitor qVD, to HEK293FT cells dose-dependently
224 displaced the NanoBRET tracer from NLRP3 (**Fig. 3F**), suggesting that LOC14, similar
225 to CRID3, can occupy NLRP3. Consistent with the high binding affinity of LOC14 to
226 NLRP3, we found that LOC14 abolished the endogenous interaction between NLRP3
227 and NEK7 in THP1 cells (**Fig. 3G**). Together, these results demonstrate that LOC14

228 binds to NLRP3, disrupts the interaction between NLRP3 and NEK7, and thereby
229 blocking inflammasome oligomerization at an early stage.

230 **LOC14 binds to or near the LRR domain of NLRP3**

231 To identify the specific domains of NLRP3 that bind LOC14, we expressed the LRR,
232 NACHT, and PYD of NLRP3 in HEK293T cells and applied our DARTS assays (**Fig. 4A**).
233 LOC14 protected the LRR, but not the NACHT or PYD, of NLRP3 against protease-
234 induced degradation (**Fig. 4B, C**). Detailed analysis of stable molecular interactions
235 between NLRP3, NEK7, and LOC14 revealed that the amino acid residue position R697
236 of NLRP3, located within the transition LRR domain (amino acid residue positions 640-
237 742) (Hochheiser *et al.*, 2022), formed a hydrogen bond with the carbonyl oxygen
238 bridge found between the piperazine and cyclopropane chemical groups of LOC14.
239 Further, the amino acid G696 of NLRP3 formed a hydrogen bond with the carbonyl
240 oxygen of the benzisothiazolinone moiety of LOC14 (**Fig. 4D, E**). These data suggest
241 that LOC14 binds to the transition LRR domain of NLRP3.

242 Given that CAPS patients carry gain-of-function mutations primarily in the
243 NACHT domain of NLRP3, which causes hyperactive inflammasome assembly, we next
244 asked whether LOC14 can suppress inflammasome hyperactivation driven by these
245 NACHT domain mutations (Cosson *et al.*, 2024). To test this, we induced the
246 expression of two well-characterized constitutively active NLRP3 mutants, D303H and
247 K568N, in the human monocytic cell line U937 using doxycycline, leading to
248 inflammasome-dependent cell death (Cosson *et al.*, 2024). Both mutants are non-
249 responsive to CRID3 (Cosson *et al.*, 2024). LOC14 treatment dose-dependently
250 inhibited cell death against both NLRP3 mutants (**Supplementary Fig. 8A, B**).
251 Further, LOC14 blocked LPS-induced IL-1 β in primary PBMCs from a patient with CAPS
252 carrying the CRID3-responsive NLRP3 variant R490K (**Supplementary Fig. 8C**).
253 These results suggest that LOC14 exerts its inhibitory effects by targeting near the LRR

254 domain, thereby suppressing hyperactivity caused by NLRP3 gain-of-function
255 mutations.

256 **The isothiazolinone moiety is the functional group inhibiting the NLRP3**
257 **inflammasome**

258 LOC14 consists of two major chemical moieties: 1,2-Benzisothiazol-3(2H)-one (also
259 known as BITO) and 1-(cyclopropylcarbonyl)piperazine-3(2H)-one (also known as PCP)
260 (**Fig. 5A**), both of which are precursors for LOC14 synthesis (Kaplan *et al.*, 2015). We
261 sought to determine the relative contributions of these chemical moieties in inhibiting
262 NLRP3. BITO substantially reduced the cleavage of caspase-1 and GSDMD and
263 inhibited cell death in BMDMs stimulated with LPS plus nigericin, similar to the levels
264 achieved by LOC14 (**Fig. 5B, C**), whereas little inhibitory effects were observed for
265 PCP (**Fig. 5B, C**).

266 From this inhibitory BITO moiety, we further removed the benzene ring within
267 BITO to generate isothiazol-3(2H)-one (also known as ITO), and then systematically
268 removed the carbonyl oxygen from ITO to generate isothiazole (also known as IT), then
269 altered the position of the nitrogen atom IT to generate thiazole (also known as T), and
270 finally replaced the sulfur atom in T with a nitrogen to generate imidazole (also known
271 as I) (**Fig. 5D**). From these chemical subgroups, we saw ITO, but not IT, T and I
272 inhibited NLRP3 inflammasome activation driven by LPS plus nigericin (**Fig. 5D-G**).
273 Consistent with this, ITO and BITO attenuated NLRP3 inflammasome-induced cell
274 death (**Supplementary Fig. 9A**). ITO also inhibited NLRP3 inflammasome activation
275 in BMDMs infected with influenza A virus (**Supplementary Fig. 9B**). The IC₅₀ values
276 for BITO, ITO, LOC14, and CRID3 were 670 nM, 630 nM, 570 nM, and 450 nM,
277 respectively (**Fig. 5H**). These results indicate that the carbonyl oxygen within the
278 isothiazole ring of LOC14, BITO, and ITO is critical for NLRP3 inhibition. To test whether
279 the isothiazolinone core structure remains essential when additional substituents are
280 present, we next evaluated DCOIT (4,5-dichloro-2-n-octyl-4-isothiazoline-3-one) and

281 methylisothiazolinone (M-ITO). Both DCOIT and M-ITO exhibited a dose-dependent
282 suppression of LPS plus ATP-induced cell death (**Supplementary Fig. 9C-F**),
283 supporting the functional importance of the isothiazolinone moiety in these chemical
284 derivatives.

285 **LOC14 inhibits priming of the NLRP3 inflammasome**

286 NLRP3 inflammasome activation requires priming, which is regulated by both
287 transcriptional upregulation of *Nlrp3* and *Il1b* expressions via Toll-like receptor (TLR)
288 signaling and post-translational modifications (Bauernfeind *et al.*, 2009; Franchi *et al.*,
289 2009). To elucidate whether LOC14 also affects priming, BMDMs were treated with
290 LOC14 during the LPS priming phase, or during the activation phase in the presence of
291 nigericin or ATP (**Supplementary Fig. 10A**). LOC14 consistently abolished NLRP3
292 activation when used in the priming or activation phase (**Supplementary Fig. 10A-**
293 **G**). In addition to the activation phase, LOC14 delayed the upregulation of NLRP3 and
294 pro-IL-1 β mRNA and protein expression in BMDMs treated with LPS alone (**Fig. 6A**,
295 **Supplementary Fig. 11A**). These results suggest an inhibition of TLR4-NF- κ B-
296 dependent transcriptional upregulation of NLRP3 components. Furthermore, LOC14
297 delayed the kinetics of LPS-induced phosphorylation of priming signaling proteins
298 I κ B α , ERK, and JNK (**Fig. 6B**). In addition to TLR4-dependent priming by LPS, LOC14
299 suppressed the activation of pro-inflammatory signaling pathways and NLRP3
300 upregulation induced by the TLR2 activator Pam3 or TLR3 activator Poly I:C (**Fig. 6C**,
301 **D**, **Supplementary Fig. 11A-C**). Importantly, ITO and BITO did not inhibit LPS-
302 induced upregulation of NLRP3, whereas LOC14 slightly delayed this process.
303 However, all compounds delayed induction of pro-IL-1 β expression (**Supplementary**
304 **Fig. 11D**). Furthermore, LOC14 caused a more pronounced inhibition of LPS-induced
305 NF- κ B and MAPK activation compared to BITO and ITO (**Supplementary Fig. 11E**).
306 These findings imply that additional functional groups in LOC14 contribute to the
307 inhibition of the inflammasome priming events.

308 **LOC14 attenuates colitis, sepsis, and psoriasis**

309 The NLRP3 inflammasome contributes to inflammatory disorders, including colitis,
310 sepsis, and psoriasis (Sharma & Kanneganti, 2021; Swanson *et al.*, 2019). To evaluate
311 the therapeutic potential of LOC14, we assessed the efficacy of LOC14 across three
312 mouse models of inflammatory diseases. In dextran sulfate sodium (DSS)-induced
313 colitis, WT mice given DSS were treated orally with LOC14 or vehicle once daily. Body
314 weight changes were monitored for 9 days post-DSS administration. LOC14-treated
315 mice exhibited less body weight loss and reduced colon shortening compared with
316 vehicle-treated controls (**Fig. 7A, B, Supplementary Fig. 12A**). The levels of
317 inflammasome-dependent cytokines IL-1 β and IL-18 were significantly reduced in the
318 colons of mice treated with LOC14 compared with mice treated with a vehicle control
319 (**Fig. 7C**). Hematoxylin and eosin staining revealed diminished cellular infiltration and
320 reduced colon damage in mice treated with LOC14 (**Fig. 7D**). Histologic parameters,
321 including inflammation, ulceration, and hyperplasia, were markedly attenuated in the
322 proximal, middle, and distal regions of the colon of mice treated with LOC14 (**Fig. 7D**).

323 In our second model of LPS-induced sepsis, mice that were orally administered
324 with LOC14 had reduced circulating levels of IL-1 β compared to mice treated with a
325 vehicle control (**Supplementary Fig. 12B**). Finally, in a mouse model of psoriasis
326 driven by topical application of the inflammation trigger imiquimod on the back skin of
327 mice for 5 days, we tested the role of LOC14 in inhibiting inflammasome activation and
328 inflammation. Mice treated daily with oral LOC14 showed reduced psoriasis severity
329 defined by the PASI score, similar to that observed in mice treated with the anti-
330 inflammatory compound methotrexate (**Fig. 8A, B**). Moreover, mice treated with
331 LOC14 had reduced psoriatic lesions, such as erythema, scaling, and thickening of the
332 skin, compared with mice treated with a vehicle control (**Fig. 8A, B**). We observed
333 reduced cellular infiltration and epidermal thickness and cleavage of GSDMD in the
334 skin of mice treated with LOC14 compared to mice treated with a vehicle control (**Fig.**

335 **8C-E).** These findings indicate that LOC14 exhibits anti-inflammatory physiological
336 effects across multiple models of inflammatory diseases.

337 **Discussion**

338 Inflammation is initiated by the innate immune system through a complex network of
339 signaling pathways. Among these pathways, the NLRP3 inflammasome is a key player
340 that has been implicated in a spectrum of inflammatory conditions, from
341 autoinflammatory diseases to metabolic disorders and neurodegenerative conditions
342 (Dubey *et al*, 2025; Karki *et al*, 2017; Sharma & Kanneganti, 2021; Swanson *et al*.,
343 2019). In this study, we identified isothiazolinone-containing drugs as potent inhibitors
344 of NLRP3. The importance of our findings lies in the characterization of the
345 mechanisms of action of LOC14 in inhibiting the NLRP3 inflammasome. LOC14 not only
346 suppressed NLRP3 activation but also impeded the upregulation of NLRP3
347 inflammasome components. Unlike conventional NLRP3 inhibitors such as CRID3,
348 which primarily target the ATPase activity of the NACHT domain (Coll *et al*, 2019;
349 Tapia-Abellan *et al*, 2019), LOC14 acts by binding to or near the LRR domain of NLRP3.
350 This binding disrupts critical interactions between NLRP3 and NEK7, thereby blocking
351 subsequent protein complex assembly and oligomerization. Our data suggest that
352 LOC14, via the carbonyl oxygen of its isothiazolinone moiety, forms a hydrogen bond
353 with the NLRP3 residue G696 that is located at the NLRP3-NEK7 interface (Sharif *et al*.,
354 2019). This interaction may provide a molecular basis for the distinct inhibitory
355 mechanism of LOC14. Importantly, this mechanism of action may enable LOC14 to
356 inhibit both MCC950-responsive and MCC950-non-responsive NLRP3 mutants (Cosson
357 *et al*., 2024). This broad-spectrum efficacy highlights the therapeutic promise of LRR-
358 targeting NLRP3 inhibitors in treating CAPS and other NLRP3-driven inflammatory
359 disorders, especially those involving gain-of-function NLRP3 mutations resistant to
360 current therapies.

361 LOC14 has a less inhibitory effect on NF- κ B activation and NLRP3 upregulation
362 compared to ERK activation and pro-IL-1 β induction. This potential differential
363 inhibition implies that NLRP3 upregulation is more reliant on NF- κ B signaling, whereas

364 pro-IL-1 β induction is more dependent on ERK activation. However, the inhibition of
365 NLRP3 inflammasome activation by isothiazolinone-containing compounds at lower
366 concentrations appears to be independent of any effect on inflammasome priming, as
367 these compounds retained their suppressive activity without altering the priming step.
368 The inhibitory effects of isothiazolinone on both priming and activation steps of NLRP3
369 may offer a broader applicability across different inflammatory diseases. Indeed, our
370 *in vivo* results demonstrated the efficacy of LOC14 in three preclinical models of
371 inflammatory diseases.

372 Importantly, LOC14 possesses favorable pharmacokinetic properties, including
373 cell permeability, the ability to cross the blood-brain barrier, and oral bioavailability,
374 with no reported toxicity (Kaplan *et al.*, 2015). The neuroprotective effects of LOC14 in
375 a preclinical model of Huntington's disease are attributed to its role in inhibiting PDIA3
376 (Kaplan *et al.*, 2015; Zhou *et al.*, 2018). It is conceivable that the PDIA3-independent,
377 NLRP3-dependent effects of LOC14 might also contribute to the previously observed
378 improvements in cognitive function following LOC14 treatment. Given the implication
379 of inflammasomes in various neurological diseases, our findings potentially broaden
380 the therapeutic application of isothiazolinone-containing drugs to neurological
381 conditions. In conclusion, our findings report LOC14 and isothiazolinone compounds as
382 selective inhibitors of the NLRP3 inflammasome with broad therapeutic effects for
383 inflammatory diseases. Further clinical development of isothiazolinone derivatives as
384 next-generation NLRP3 inhibitors will empower and advance anti-inflammatory
385 therapeutics.

386 **Materials and Methods**

387 **Mice**

388 C57BL/6J (wild type) mice were purchased from Raonbio (Yongin, Korea). *Nlrp3*^{-/-},
389 *Aim2*^{-/-}, *Nlrc4*^{-/-}, and *Mefv*^{-/-} mice were kindly provided by Dr. SangJoon Lee (Ulsan
390 National Institute of Science and Technology) (Oh *et al*, 2023). Mice were housed and
391 bred under protocols approved by the Seoul National University committee on the Use
392 and Care of Animals. C57BL/6N mice were purchased from the Vital River Laboratory
393 Animal Technology Co., Ltd (Beijing) and kept in a specific pathogen-free facility at the
394 animal resource center at Shenzhen Bay Laboratory. Mice were maintained with a 12 h
395 light/dark cycle and were fed standard chow. Both male and female age- and sex-
396 matched 6- to 9-week old mice were used in this study. Animal studies were conducted
397 under protocols approved by the Seoul National University committee and the
398 Regional Ethics Committee for Animal Experiments at Shenzhen Bay Laboratory.

399

400 **Cell culture**

401 Primary bone marrow-derived macrophages (BMDMs) were obtained from the bone
402 marrow of mice. Cells were cultured for 7 days in DMEM (Biowest, L0103-500) with
403 30% L929 conditioned media, 10% heat-inactivated fetal bovine serum (HI-FBS;
404 Thermo Fischer Scientific, 16000044), 1% penicillin and streptomycin (Biowest, L0022-
405 100), and 1% non-essential amino acids (Thermo Fisher Scientific, 11140-050). BMDMs
406 were then seeded into DMEM media supplemented with 1% non-essential amino acids,
407 1% penicillin and streptomycin and 10% HI-FBS, at a density of 1×10^6 cells into 12-
408 well plates and incubated at 37 °C overnight unless otherwise described. In the
409 indicated experiments, DMEM media supplemented with 10% human serum (Biowest,
410 S4190), 1% penicillin and streptomycin, and 1% non-essential amino acids were used
411 during stimulation procedure. THP1-ASC-GFP cells were established by transducing

412 lentivirus expressing ASC-GFP and then selected via flow cytometry. The cells were
413 grown in RPMI 1640 (Biowest, L0498) with 10% FBS.

414

415 **Bacterial culture**

416 *F. novicida* strain U112 was grown overnight under aerobic conditions at 37 °C in
417 Tryptic Soy Broth (Formedium, TSB0110) supplemented with 0.2% L-cysteine
418 (ThermoFisher Scientific, BP376-100). Bacteria were subcultured (1:10) for 4 h at 37 °C
419 in fresh Trypticase Soy Broth supplemented with 0.2% L-cysteine.
420 *Salmonella* Typhimurium strain SL1344 were inoculated into Luria-Bertani (LB) broth
421 (Formedium, LMM0104) and incubated overnight under aerobic conditions at 37
422 °C. *S. Typhimurium* SL1344 were subcultured (1:10) for 4 h at 37 °C in fresh LB broth
423 to generate bacteria grown to log phase. *C. difficile* ATCC 9689 (Korean Collection for
424 Type Cultures, 5009) were streaked onto brain heart infusion agar (BD Biosciences,
425 211065) and incubated overnight at 37 °C in an anaerobic chamber. Single colonies
426 were inoculated into tryptic-soy broth (Kisanbio, MB-T1054) with 5% sheep blood
427 (Kisanbio, MB-S1876), 1% vitamin K1-hemin solution (Kisanbio, MB-V0761), 0.05% L-
428 cysteine (ThermoFisher Scientific, BP376-100) at 37 °C anaerobically. The *C.*
429 *difficile* supernatant was prepared by centrifugation to obtain the culture supernatant,
430 followed by filtration of this supernatant through a 0.22 µm filter (Corning, 431219).

431

432 **Influenza A virus culture**

433 The influenza A virus (A/Puerto Rico/8/34, H1N1 [PR8]) was generated by reverse
434 genetics as previously described (Zheng *et al*, 2015). Virus stocks were propagated by
435 inoculation of seed virus into allantoic cavity of 9- to 11-day old embryonated chicken
436 eggs. Virus titer was measured by plaque assay in MDCK cells. For IAV infection,
437 BMDMs were infected at an MOI of 20 in DMEM plain media (Sigma, D6171). After

438 absorption for 2 h, cells were supplemented with 10% FBS and then incubated for the
439 indicated time.

440

441 **Cell stimulation**

442 Seeded BMDMs were first gently washed with PBS before stimulation. For activation of
443 the canonical NLRP3 inflammasome, cells were primed for 4 h with 100 ng/mL LPS
444 (InvivoGen, tlrl-smlps) and were stimulated with 5 mM ATP (Roche, 10127531001) or
445 20 μ M nigericin (Cayman, 11437) for indicated time with or without 5 μ M LOC14
446 (Selleckchem, S0321), 1 μ M CRID3 (Selleckchem, S7809), 5 μ M 1,2-
447 Benzisothiazol-3(2H)-one (Tokyo Chemical Industry, B3767), 5 μ M 1-
448 (cyclopropylcarbonyl)piperazine (Tokyo Chemical Industry, C3112), 5 μ M
449 Isothiazol-3(2H)-one (Tokyo Chemical Industry, I1172), 5 μ M Isothiazol (Tokyo
450 Chemical Industry, I0982), 5 μ M Thiazole (Tokyo Chemical Industry, T0185), 5 μ M
451 Imidazole (Tokyo Chemical Industry, I001), 1 μ M, 5 μ M, 10 μ M of 4,5-dichloro-2-n-
452 octyl-4-isothiazoline-3-one (MedChemExpress, HY-W041308), and 1 μ M, 5 μ M, 10 μ M
453 of methylisothiazolinone (TargetMol, T19774). For NLRP3 inflammasome activation in
454 human monocytes, THP1-ASC-GFP cells were plated in 24-well plates (5×10^5 cells per
455 well) and treated with 100 ng/ml phorbol myristate acetate (Sigma-Aldrich, P1585) for
456 48 h for differentiation. Then cells were washed twice with PBS, followed by rest for
457 another 24 h. Cells were first primed with 500 ng/ml LPS (Sigma-Aldrich, L2018) for 1 h
458 and then treated with 10 μ M nigericin plus 5 μ M LOC14 (AbMole Bioscience, M9840), or
459 nigericin plus 5 μ M CRID3 (Sigma, 256373-96-c) for 45 min. For activation of
460 potassium-independent NLRP3 inflammasome, cells were treated with 100 ng/ml LPS
461 plus 20 μ g/ml imiquimod (InvivoGen, tlrl-imqs). For transfection of DNA or LPS, each
462 reaction consisted of 2 μ g of poly(dA:dT) (InvivoGen, tlrl-patn) or 1 μ g of LPS
463 resuspended in PBS and mixed with 0.6 μ L of Xfect polymer in Xfect reaction buffer
464 (Clontech Laboratories Inc, 631318). After 10 min, DNA complexes were added to cells

465 that were preincubated in Opti-MEM (ThermoFisher Scientific, 31985070) for 1 h. For
466 activation of the NLRP1 inflammasome, cells were treated with 50 μ M Val-boroPro
467 (Selleckchem, S8455) for indicated time. For mRNA expression and signaling, BMDMs
468 were stimulated with 100 ng/ml LPS, 1 μ g/ml Pam3CSK4 (InvivoGen, tlrl-pms), and 5
469 μ g/ml PolyI:C HMW (InvivoGen, tlrl-pic) for indicated time. For bacterial infection, the
470 following conditions were used: *F. novicida* at an MOI of 100 for 16 h of incubation (for
471 activation of caspase-1 and GSDMD) and an MOI of 50 for 4, 12, or 24 h of incubation
472 (for expression of IRF1); *S. Typhimurium* at an MOI of 0.1 for 3 h of incubation (for
473 activation of caspase-1 and GSDMD). After 4 h of infection, bacteria were washed off
474 with PBS and treated with 50 μ g/ml gentamicin (ThermoFisher Scientific, 15750060).

475 Human blood was obtained with consent from donors in accordance with the
476 Declaration of Helsinki, under protocols approved by the The Australian Capital
477 Territory (ACT) Health Human Research Ethics Committee and The Australian National
478 University Human Research Ethics Committee and under protocols ETH.1.16.011,
479 2022.ETH.00059, 2015/079, and H/2023/1429. Human peripheral blood mononuclear
480 cells (PBMCs) were isolated from blood by density gradient centrifugation over
481 LymphoprepTM (07851, STEMCELL Technologies) and suspended at 1×10^7 cells/ml in
482 RPMI-1640 supplemented with 10% FBS, 1% penicillin and streptomycin, and 1% L-
483 Glutamine. PBMCs were seeded in antibiotic-free media at a concentration of 1×10^6
484 cells per well in 24-well plates. PBMCs were primed with Pam3CSK4 (InvivoGen, tlrl-
485 pms) for 2.5 h, followed by treatment with either DMSO, 5 μ M LOC14, or 10 μ M CRID3
486 for 30 min. PBMCs were then stimulated with 10 μ M nigericin (Sigma, N7143) for 1.5 h.
487 PBMCs from a human patient with CAPS carrying an NLRP3 R490K mutation were
488 seeded in antibiotic-free media at a concentration of 1×10^6 cells per well in 24-well
489 plates. PBMCs were either left untreated or treated with DMSO, 10 μ M LOC14, or 10 μ M
490 CRID3 for 30 min, followed by stimulation with *E. coli* LPS (Enzo Life Sciences, ALX-581-
491 014-L002) for 6 h.

492

493 **Analysis of real-time cell death**

494 Real-time cell death assays were performed on an IncuCyte (Satorius, IncuCyte SX5).
495 BMDMs were seeded in 12-well plate and stimulated. Propidium iodide (Invitrogen,
496 P3566) were added at the time of stimulation for cell death analysis. Images (4 image
497 fields per well) were acquired every 15, 30 or 60 minutes depending on the expected
498 time frame for cell death at 37 °C and 5 % CO₂. Subsequent image analysis was
499 conducted using the software package supplied with the IncuCyte imager, the number
500 of propidium iodide-positive cells (PI⁺ cells) present in each image were counted.

501 Representative images were selected at indicated time points.

502

503 **High-throughput screening**

504 A high-throughput screening (HTS) based on cell death induced by NLRP3
505 inflammasome activation was performed. Cell death triggered by LPS plus nigericin
506 was screened against a custom library (TargetMol), which included inhibitors targeting
507 more than 500 molecules across more than 100 signaling pathways, FDA-approved
508 drugs, clinical trial drugs, and natural products. BMDMs were seeded at a density of 2
509 × 10⁵ cells per well into 96-well plates and treated with each library compound at 5 μM.
510 The compounds were screened in duplicate, and real-time cell death assays were
511 performed using the IncuCyte system. Propidium iodide (PI) was added at the time of
512 stimulation for cell death analysis. Subsequent image analysis was conducted as
513 described in the previous section.

514

515 **Knockdown via small interfering RNAs (siRNAs)**

516 siRNAs specifically targeting *Pdia3* were chemically synthesized by Bionics, Korea. The
517 sequences of si-*Pdia3* were as follows: sense, 5'-GUGAAGGAGUACGAUGAUA-3'; and
518 antisense, 5'-UAUCAUCGUACUCCUUCAC-3'. A non-targeting siRNA was used as a

519 control. BMDMs were transfected with these oligos for 24 h using the Neon™
520 Transfection System (Invitrogen, MPK5000) according to the manufacturer's
521 instructions. After transfection, the cells were stimulated with LPS and ATP or LPS and
522 nigericin as previously described.

523

524 **Immunoblot analysis**

525 Immunoblotting was performed as described previously (Karki *et al*, 2021b). For
526 caspase analysis, cells were lysed along with the supernatant using 50 µL caspase lysis
527 buffer (containing 1 × protease inhibitors, 1 × phosphatase inhibitors, 10% NP-40 and
528 25 mM DTT) followed by the addition of 100 µL 4 × sample loading buffer (containing
529 SDS and 2-mercaptoethanol). For analysis of LDHA and HMGB1, centrifuged (8000 rpm
530 for 4min) supernatant 180 µL was combined with sample loading buffer 60 µL. For
531 analysis of signaling proteins, supernatants were removed at the indicated time
532 points, and cells were washed once with PBS, after which cells were lysed with RIPA
533 buffer (containing 1 × phosphatase inhibitor, protease inhibitor, 1% NP-40, 0.5%
534 Sodium deoxycholate) and sample loading buffer. Proteins were separated by
535 electrophoresis through 8-12% polyacrylamide gels. Following electrophoretic transfer
536 of proteins onto PVDF membranes (Millipore, IPVH00010), non-specific binding was
537 blocked by incubation with 5% skim milk in TBST; then membranes were incubated at
538 4 °C for overnight with the following primary antibodies: caspase-1 (AdipoGen,
539 AG-20B-0042, 1:1000), human cleaved caspase-1 (Cell Signaling, 4199, 1:1000),
540 human caspase-1 (Cell Signaling, 2225, 1:1000), NEK7 (Abcam, ab133514, 1:1000),
541 FLAG (Sigma, F1804, 1:5000), GSDMD (Abcam, ab209845, 1:1000), cleaved GSDMD
542 (abcam, ab215203, 1:1000), LDHA (Proteintech, 19987-1-AP, 1:1000), ASC (AdipoGen,
543 AG-25B-0006-C100, 1:1000), NLRP3/NALP3 (AdipoGen, AG-20B-0014-C100, 1:1000),
544 HMGB1 (abcam, ab18256, 1:1000), SAPK/JNK (Cell Signaling, 9252, 1:1000), phospho-
545 SAPK/JNK (Cell Signaling, 9251, 1:1000), IκB-alpha (Cell Signaling, 9242, 1:1000),

546 phospho-I κ B-alpha (Cell Signaling, 2859, 1:1000), MAPK p44/42 (Cell Signaling, 9102,
547 1:1000), phospho-MAPK p44/42 (Cell Signaling, 9101, 1:1000), IRF1 (Cell Signaling,
548 8478, 1:1000), PDIA3 (Abclonal, A1085, 1:1000), IL-1 β (Abclonal, A16288, 1:1000),
549 GAPDH (CST, 5174S, 1:1000) and β -actin (Cell Signaling, 8457, 1:1000) antibodies.
550 Membranes were then washed with TBST (10 min, 3 times) and incubated with
551 appropriate secondary antibodies: HRP-conjugated anti-rabbit (Thermo Fisher
552 Scientific, 31460, 1:5000) and HRP-conjugated anti-mouse (Cellnest, CNG004-0005,
553 1:5000) for 1 h, after which were washed with TBST (10 min, 4 times). Proteins were
554 visualized by using Immobilon Forte Western HRP Substrate (Millipore, WBLUF0500),
555 and the membranes were analyzed using Amersham ImageQuant 800 UV (Bae *et al.*,
556 2025).

557

558 **Real-time PCR (RT-PCR) analysis**

559 Total RNA from cells was extracted with TRIzol reagent (Invitrogen, 15596026)
560 following manufacturer's instructions. Isolated RNAs were reverse transcribed with M-
561 MLV cDNA synthesis kit (Enzyomics, EZ006S) using the Applied Biosystems
562 SimpliAmp thermal cycler (A24812) following manufacturers' instructions. Real-time
563 qPCR was performed on QuantStudio 3 Real-Time PCR System by using TB green
564 premix ex Taq (Takara, RR420) and ROX reference dye (Takara, AM21069A).
565 Oligonucleotides used were as follows (Bionics): *Gapdh*: 5'-CGT CCC GTA GAC AAA ATG
566 GT-3'(forward), 5'-TTG ATG GCA ACA ATC TCC AC-3' (reverse); and *Nlrp3*: 5'-TCA GAT
567 TGC TGT GTG TGG GAC TGA-3' (forward), 5'-AGC TCA GAA CCA ATG CGA GAT CCT-3'
568 (reverse).

569

570 **Drug Affinity Responsive Target Stability (DARTS) assay**

571 DARTS was carried out as described previously (Lomenick *et al.*, 2009). BMDMs were
572 primed with LPS (50 ng/ml) for 3 h. HEK293T cells were harvested 24 h after

573 transfection with the indicated plasmids. Cells were lysed with NP-40 lysis buffer
574 containing protease inhibitors. Lysates were centrifuged at 13,000 × g for 10 min at 4
575 °C and the protein concentration was measured with a BCA Protein Assay Kit
576 (Beyotime Biotechnology). Lysates were incubated with LOC14 at the indicated
577 concentrations overnight at 4 °C with rotation. Then, the protease pronase (200 ng of
578 enzyme per reaction, AbMole Bioscience) was added to the lysates and incubated for
579 15 min at room temperature. The reaction was stopped by the addition of 4 × SDS
580 loading buffer. The samples were then analyzed by immunoblotting.

581
582 **NLRP3 Target Engagement assay**

583 A NanoBRET® probe was used to quantify engagement between the NLRP3 and LOC14
584 or control inhibitors (Teske *et al.*, 2024). HEK293FT cells were transiently transfected
585 with plasmids encoding NLRP3-Nluc fusion proteins. After 24 hours of transfection,
586 HEK293FT cells were treated with serially diluted NLRP3 NanoBRET® tracer in the
587 presence or absence of serially diluted LOC14 (AbMole Bioscience, M9840), MCC950
588 (Mathur *et al.*, 2023), or qVD (Selleckchem, S7311). After 2 hours of equilibration, the
589 NanoBRET® Target Engagement substrate solution and the inhibitor solution were
590 added one after the other, and Bioluminescence Resonance Energy Transfer (BRET)
591 was recorded on a VICTOR Nivo Plate Reader.

592
593 **U937 expressing NLRP3-AID-associated mutant assays**

594 NLRP3-deficient U937 cells reconstituted with the doxycycline-inducible NLRP3 D303H
595 or K568N constitutively-active mutant have been previously described (Cosson *et al.*,
596 2024). 0.1×10⁶ cells/ml were plated in Roswell Park Memorial Institute (RPMI) 1640
597 GlutaMaxTM-I supplemented with 1× penicillin and streptomycin and 10% FBS
598 (Gibco). The next day, cells were treated the LOC14 (TA-T5534-5MG) at concentrations
599 of 20, 10, or 5 μM in a final DMSO concentration of 0.2% (for 20 μM). 15 min later, cells

600 were treated with 2 μ g/ml doxycycline (Sigma) before time-lapse imaging using a CQ1
601 high content screening microscope (Yokogawa) for 5 h. PI (1.25 μ g/ml) and Hoechst
602 (0.2 μ g/ml) were added 1 h before imaging. 2 images per well were taken every 15 min
603 for 5 h. Image analysis was performed as previously described (Cosson *et al.*, 2024).

604

605 **NLRP3 oligomerization assay**

606 NLRP3 oligomerization was determined by using semi-denaturing detergent agarose
607 gel electrophoresis (SDD-AGE). BMDMs lysate was mixed with SDD-AGE loading dye
608 (0.5% TAE, 5% glycerol, 2% sarcosyl, 0.1mg/ml bromophenol blue, and protease
609 inhibitor) without boiling. Capillary transfer method was used to transfer the proteins
610 to PVDF membrane as described previously (Hanna-Addams & Wang, 2018). Input
611 lysate was boiled in 4 \times sample loading buffer (containing SDS and 2-
612 mercaptoethanol) and run for SDS-PAGE.

613

614 **ASC oligomerization assay**

615 After stimulation with ATP or nigericin, BMDMs were rinsed in ice-cold PBS and then
616 lysed with NP-40 buffer (20 mM HEPES-KOH pH 7.5, 10 mM KCL, 1 mM EGTA, 1 mM
617 EDTA, 320 mM sucrose, protease inhibitor) and incubated 10 min on ice. Collected
618 lysates were passed through a 21-gauge needle at least 10 times to further disrupt the
619 cells and then incubated on ice for 5 min. 30 μ l of cell lysate was used for input. The
620 remaining lysates were centrifuged at 3400 \times g for 15 min at 4 °C. After removing the
621 supernatants, the pellets were washed once with PBS and were centrifuged at 3400 \times
622 g for 15 min at 4 °C. The pellets were resuspended in 500 μ l PBS containing 2 mM
623 suberic acid bis (Sigma, S1885). The samples were incubated at RT for an hour for
624 cross-linking and centrifuged at 10,000 \times g for 15 minutes at 4 °C. The supernatants
625 were aspirated, and the pellets were resuspended with 35 μ l of 2 \times loading dye. Both

626 input and cross-linked samples were incubated at 95 °C for 5 min and analyzed by
627 immunoblot (Zangiabadi *et al*, 2022).

628

629 **ASC specks formation**

630 After stimulation with LPS and nigericin, THP1-ASC-GFP cells were rinsed with ice-cold
631 PBS. The cells were then fixed with 4% paraformaldehyde for 10 min at room
632 temperature, followed by three washes with PBS. ASC specks were visualized by
633 immunofluorescence microscopy.

634

635 **Co-immunoprecipitation assay**

636 THP1-ASC-GFP cells (1×10^7 cells) were plated in 10 cm dishes and treated for 45 min
637 as indicated. Following treatment, the cells were collected and washed once with ice-
638 cold PBS. Cells were then lysed using NP-40 lysis buffer containing protease inhibitors.
639 The cell lysates were centrifuged at 13,000 \times g for 10 min at 4 °C. The supernatant
640 was incubated overnight with 1 µg anti-NLRP3 (AG-20B-0014, Adipogen) or mouse IgG
641 (Cell Signaling, 5415) antibody at 4 °C with rotation. After overnight incubation,
642 protein A/G Agarose Resin (Yeason, 36403ES) was added to the lysates and further
643 incubated for 1 h at 4 °C. The agarose resin was then washed 5 times with NP-40 lysis
644 buffer. The samples were mixed with 2 \times SDS loading buffer and boiled at 100 °C for 5
645 min.

646

647 **Mouse models of inflammatory diseases**

648 *LPS-induced systemic inflammation:* 7- to 8-week-old female WT mice were injected
649 intraperitoneally with 20 mg/kg body weight of LPS (Sigma, L2630) (Karki *et al*,
650 2021a). Thirty minutes prior to the LPS injection, mice were administered
651 intraperitoneally with either 200 µL of vehicle (10% DMSO in PBS, n = 10), or LOC14

652 (10 mg/kg body weight, n = 10). After 4 h, serum was collected and IL-1 β levels were
653 measured by ELISA.

654

655 *DSS-induced colitis*: Colitis was induced in 7- to 8-week-old female WT mice using
656 dextran sodium sulfate (DSS) as described previously (Karki *et al*, 2016). Mice were
657 randomly divided into four groups: Normal (n = 7), DSS (n= 9), DSS + 5 mg/kg LOC14
658 (n= 9), and DSS + 10 mg/kg LOC14 (n= 9). LOC14 was administered via
659 intraperitoneal injection daily for 9 days. Both the normal and DSS-only (Yeanon,
660 60316ES25) groups received the same volume of DMSO. Body weight was monitored
661 daily. On day 9, mice were sacrificed, colon length was measured, serum was
662 collected, and colons were submitted for histological analysis.

663

664 *IMQ-induced skin inflammation (psoriasis)*: 7- to 8-week-old female WT mice were
665 randomly divided into four groups: Normal (Vaseline, n = 10), Imiquimod (IMQ, n = 9),
666 IMQ + Isothiazol3(2H)-one (ITO, n = 8), and IMQ + methotrexate (MTX, n = 7). To
667 induce psoriasis-like skin inflammation, mice were topically applied Aldara, a cream
668 containing 5% IMQ cream, on the shaved back skin (62.5 mg per mouse, Dong-A
669 Science Technology) for 6 days. The normal group received the same amount of
670 Vaseline. Starting one day after IMQ application, mice were orally administered ITO (10
671 mg/kg) or MTX (1 mg/kg, Yuhan Corporation) daily. To score the severity of
672 inflammation of the back skin, an objective scoring system was used based on the
673 clinical Psoriasis Area and Severity Index (PASI) (van der Fits *et al*, 2009). Erythema,
674 scaling, and thickening were scored independently on a scale from 0 to 4: 0, none; 1,
675 slight; 2, moderate; 3, marked; 4, very marked. The cumulative score (erythema plus
676 scaling plus thickening) served as a measure of the severity of inflammation (scale 0-
677 12). Mice were sacrificed on day 7, and skin tissues were submitted for histological
678 analysis or homogenized in RIPA lysis buffer.

679

680 **Histological analysis**

681 The back skin and colon were fixed in 4% formaldehyde (Cellnest, CNP015-1000).
682 Tissue processing and H&E staining for skin and colons were performed by DKKorea
683 and Wuhan Servicebio Technology Laboratory, respectively. The stained sections were
684 digitized using a whole slide imaging system (Olympus VS200) at 20 x objective
685 magnification with a consistent scanning setting across the same set of experiments.

686

687 **Cytokine analysis**

688 Cytokines were measured by performing ELISA for mouse IL-18 (Invitrogen, BMS618-
689 3), mouse IL-1 β (Invitrogen, 88-7013-88), and human IL-1 β (ThermoFisher, BMS224-
690 2TEN) according to the manufacturers' instructions.

691

692 **Docking analysis**

693 *Preparation of receptor and ligands:* The structure of NLRP3-NEK7 complex was
694 retrieved from the Protein Databank (PDB) with the ID 6NPY (Sharif *et al.*, 2019). The
695 Protein Preparation Wizard tool was utilized to assign hydrogen atoms, and charges.
696 The OPLS_2005 force field was used to optimize ionization and tautomeric states
697 (Jorgensen *et al.*, 1996). The 3D structure of LOC14 (PubChem ID: 9117962) was
698 downloaded as a structure data file (SDF). LigPrep (Schrödinger Release 2024-2) was
699 applied to verify chiral centers. The NLRP3 protein consists of 2 chains. Chain A
700 includes the NACHT, LRR, and PYD domains, while B comprises the Serine/threonine-
701 protein kinase NEK7. To investigate the interaction between NLRP3 and NEK7, the
702 Receptor Grid Generation tool was used to define the active site. The active site of
703 NLRP3 included P134, E135, A614, K615, A616, K617, K618, L619, Q620, I621, Q622,
704 P623, S624, Q625, E627, L628, F629, Y630, C631, L632, Q636, E637, E638, D639,
705 A644, M645, K694, E695, G696, R697, H698, L699, N720 residues. For NEK7, the

706 active site included residues D261, H262, Y263, S264, C298, and T299. The receptor-
707 ligand docking study was conducted using the Glide (grid-based ligand docking with
708 extra precision (XP)) tool from the Schrödinger molecular modeling package (Halgren
709 *et al*, 2004).

710

711 *Molecular dynamic simulation:* The Molecular Dynamics (MD) simulation of the NLRP3-
712 NEK7-LOC14 complex was conducted using the Desmond package (Schrödinger
713 Release 2024-2) for a duration of 1000 ns. The complex was prepared using a protein
714 preparation wizard, which involved inserting hydrogen atoms, removing water
715 molecules, assigning bond orders, and completing missing side chains and loops.
716 Hydrogen-bond assignments were optimized at a pH of 7.0, and water orientations
717 were sampled. Energy minimization of the protein-ligand complexes was performed
718 using the OPLS-2005 force field (Price & Brooks, 2004).

719 The system was assembled using the TIP3P solvent model, creating a 10 Å
720 buffer around the complex in an orthorhombic simulation box. Na^+ ions and Cl^- counter
721 ions were added to achieve a physiological salt concentration of 0.15 M and to
722 neutralize the system. The MD simulation was run under an NPT (constant Number of
723 particles, Pressure, and Temperature) ensemble at a temperature of 300 K and a
724 pressure of 1.013 bar (Patel *et al*, 2023). Surface tension was calculated using the
725 Smooth Particle Mesh Ewald (PME) method (Essmann *et al*, 1995) to account for long-
726 range electrostatic interactions, with the RESPA integrator used for potential energy
727 calculations (Wang *et al*, 2006).

728 The simulation was performed for 1000 ns, capturing 1000 frames throughout the
729 duration. The resulting trajectories were analyzed using the Simulation Interaction
730 Diagram wizard to calculate Root Mean Square Deviation (RMSD) and Root Mean
731 Square Fluctuation (RMSF) values (Zhang & Lazim, 2017). Protein-ligand contact
732 patterns and the duration of interactions for key amino acid residues were assessed

733 over the simulation period. The MD simulation approach was used to validate the
734 docking postures and the interactions predicted by both ligands with the NLRP3
735 protein.

736

737 *Binding free energy calculations:* The Gibb's free energy change was performed using
738 the Molecular Mechanics Generalized Born Surface Area (MM-GBSA) method to
739 analyze the interaction between the LOC14 and NLRP3-NEK7 protein complex (Hou *et*
740 *al*, 2011; Massova & Kollman, 2000). The initial step involved conducting MD
741 stimulation to generate an output file containing the trajectories and conformations of
742 the protein-ligand complex. The MD stimulation output file was input into Schrödinger
743 Maestro's Prime wizard for further optimization. The optimized structures were used to
744 calculate the binding free energy using the OPLS-2005 force field. The change in free
745 energy upon binding (ΔG) was determined by the following equation:

$$\Delta G_{\text{Bind}} = \Delta E_{\text{MM}} + \Delta G_{\text{Solv}} + \Delta G_{\text{SA}}$$

747 Where:

748 ΔG_{Bind} : Molar Gibbs free energy change associated with the binding of the
749 receptor and ligand in solution.

750 ΔE_{MM} : Difference in the molecular mechanics energy between the minimal
751 energy states of the protein-ligand complex.

752 ΔG_{Solv} : Total solvation energy, comprising the solvation energies of the protein
753 and ligand and the change in GBSA solvation energy.

754 ΔG_{SA} : Difference in surface area energies between the free and bound states.

755

756 Statistical analysis

757 GraphPad Prism 9.0 software was used for data analysis. The data are presented as the
758 mean \pm SEM. Statistical significance was determined using a t test (two-tailed) or one-
759 way ANOVA and two-way ANOVA with multiple comparisons for multiple groups. P

760 values less than 0.05 were considered statistically significant and are indicated as *P <
761 0.05, **P < 0.01, ***P < 0.001, and ****P < 0.0001.
762

763

764 **Acknowledgments**

765 We thank all the members of the Karki laboratory for their comments and suggestions
766 during the development of this manuscript. We acknowledge the contribution of SFR
767 Biosciences (Université Claude Bernard Lyon 1, CNRS UAR3444, Inserm US8, ENS de
768 Lyon) and the help of the staff of LyMIC-PLATIM, especially Elodie Chatre, for
769 assistance with HCS microscopy. We acknowledge Ann-Maree Padarin (The Australian
770 National University) for assistance with obtaining human blood.

771 This work was supported by the Creative-Pioneering Researchers Program
772 through Seoul National University (3344-20240032 to RK), National Research
773 Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (RS-2023-
774 00251395 to RK), National Research Foundation of Korea (NRF) grant funded by the
775 Korea government (MSIT) (RS-2025-00554099 to RK), Bio&Medical Technology
776 Development Program of the National Research Foundation (NRF) funded by the Korea
777 government (MSIT) (RS-2024-00440738 to RK), BK21 Research Fellowship from the
778 Ministry of Education, Science and Technology, Republic of Korea (to RK), and CSL
779 Centenary Fellowship (to SMM).

780

781 **Author contributions**

782 HW, YJ, and RK conceived and designed the study. HW, YJ, SK, WK, RM, CNP, MZ, MK,
783 CN, SHJ, AN, BFP, SMM, and RK designed and performed the experiments. SHJ, MZ,
784 SMM, and RK provided reagents and funding. HW, YJ, SMM, and RK wrote the
785 manuscript. HW, YJ, SK, WK, FZ, RM, CNP, MK, MZ, SMM, and RK revised the
786 manuscript. RK supervised the study and provided funding. All authors read and
787 approved the manuscript.

788

789 **Conflict of Interests**

790 HW, YJ, and RK reported a provisional patent application (KR 10-2024-0124191) on
791 LOC14 and isothiazolinone, filed by Seoul National University; those authors are listed
792 as inventors. No other disclosures were reported.

793

794 **Additional Information**

795 The datasets generated and analyzed during the current study are contained within
796 the manuscript and the accompanying extended data figures. Source data are
797 provided with this paper. Correspondence and requests for materials should be
798 addressed to MZ, SMM, and RK.

799 **References**

800 Aganna E, Martinon F, Hawkins PN, Ross JB, Swan DC, Booth DR, Lachmann HJ, Bybee
801 A, Gaudet R, Woo P *et al* (2002) Association of mutations in the NALP3/CIAS1/PYPAF1
802 gene with a broad phenotype including recurrent fever, cold sensitivity, sensorineural
803 deafness, and AA amyloidosis. *Arthritis Rheum* 46: 2445-2452
804 Anand PK (2025) From fat to fire: The lipid-inflammasome connection. *Immunol Rev*
805 329: e13403
806 Bae H, Moon S, Chang M, Zhang F, Jang Y, Kim W, Kim S, Fu M, Lim J, Park S *et al* (2025)
807 Ferroptosis-activating metabolite acrolein antagonizes necroptosis and anti-cancer
808 therapeutics. *Nat Commun* 16: 4919
809 Bauernfeind FG, Horvath G, Stutz A, Alnemri ES, MacDonald K, Speert D, Fernandes-
810 Alnemri T, Wu J, Monks BG, Fitzgerald KA *et al* (2009) Cutting edge: NF-kappaB
811 activating pattern recognition and cytokine receptors license NLRP3 inflammasome
812 activation by regulating NLRP3 expression. *J Immunol* 183: 787-791
813 Coll RC, Hill JR, Day CJ, Zamoshnikova A, Boucher D, Massey NL, Chitty JL, Fraser JA,
814 Jennings MP, Robertson AAB *et al* (2019) MCC950 directly targets the NLRP3 ATP-
815 hydrolysis motif for inflammasome inhibition. *Nat Chem Biol* 15: 556-559
816 Coll RC, Robertson AA, Chae JJ, Higgins SC, Munoz-Planillo R, Inserra MC, Vetter I,
817 Dungan LS, Monks BG, Stutz A *et al* (2015) A small-molecule inhibitor of the NLRP3
818 inflammasome for the treatment of inflammatory diseases. *Nat Med* 21: 248-255
819 Coll RC, Schroder K (2025) Inflammasome components as new therapeutic targets in
820 inflammatory disease. *Nat Rev Immunol* 25: 22-41
821 Cosson C, Riou R, Patoli D, Niu T, Rey A, Groslambert M, De Rosny C, Chatre E, Allatif O,
822 Henry T *et al* (2024) Functional diversity of NLRP3 gain-of-function mutants associated
823 with CAPS autoinflammation. *J Exp Med* 221
824 Dubey SR, Turnbull C, Pandey A, Zhao A, Kurera M, Al-Zidan R, Shen C, Gautam M,
825 Mahajan S, Jadhav PS *et al* (2025) Molecular mechanisms and regulation of
826 inflammasome activation and signaling: sensing of pathogens and damage molecular
827 patterns. *Cell Mol Immunol*
828 Duewell P, Kono H, Rayner KJ, Sirois CM, Vladimer G, Bauernfeind FG, Abela GS, Franchi
829 L, Nunez G, Schnurr M *et al* (2010) NLRP3 inflammasomes are required for
830 atherogenesis and activated by cholesterol crystals. *Nature* 464: 1357-1361
831 Essmann U, Perera L, Berkowitz ML, Darden T, Lee H, Pedersen LG (1995) A Smooth
832 Particle Mesh Ewald Method. *J Chem Phys* 103: 8577-8593
833 Feldmann J, Prieur AM, Quartier P, Berquin P, Certain S, Cortis E, Teillac-Hamel D,
834 Fischer A, de Saint Basile G (2002) Chronic infantile neurological cutaneous and
835 articular syndrome is caused by mutations in CIAS1, a gene highly expressed in
836 polymorphonuclear cells and chondrocytes. *Am J Hum Genet* 71: 198-203
837 Feng S, Wierzbowski MC, Hrovat-Schaale K, Dumortier A, Zhang Y, Zyulina M, Baker PJ,
838 Reygaerts T, Steiner A, De Nardo D *et al* (2025) Mechanisms of NLRP3 activation and
839 inhibition elucidated by functional analysis of disease-associated variants. *Nat
840 Immunol* 26: 511-523
841 Fernandes-Alnemri T, Yu JW, Juliana C, Solorzano L, Kang S, Wu J, Datta P, McCormick
842 M, Huang L, McDermott E *et al* (2010) The AIM2 inflammasome is critical for innate
843 immunity to *Francisella tularensis*. *Nat Immunol* 11: 385-393
844 Franchi L, Eigenbrod T, Nunez G (2009) Cutting edge: TNF-alpha mediates
845 sensitization to ATP and silica via the NLRP3 inflammasome in the absence of microbial
846 stimulation. *J Immunol* 183: 792-796
847 Genheden S, Ryde U (2015) The MM/PBSA and MM/GBSA methods to estimate ligand-
848 binding affinities. *Expert Opin Drug Discov* 10: 449-461
849 Gross CJ, Mishra R, Schneider KS, Medard G, Wettmarshausen J, Dittlein DC, Shi H,
850 Gorka O, Koenig PA, Fromm S *et al* (2016) K(+) Efflux-Independent NLRP3

851 Inflammasome Activation by Small Molecules Targeting Mitochondria. *Immunity* 45: 852 761-773
853 Gurung P (2025) Innate Immune Sensors in Health and Disease. *Immunol Rev* 330: 854 e70008
855 Halgren TA, Murphy RB, Friesner RA, Beard HS, Frye LL, Pollard WT, Banks JL (2004) 856 Glide: A new approach for rapid, accurate docking and scoring. 2. Enrichment factors 857 in database screening. *J Med Chem* 47: 1750-1759
858 Hanna-Addams S, Wang Z (2018) Use of Two Dimensional Semi-denaturing Detergent 859 Agarose Gel Electrophoresis to Confirm Size Heterogeneity of Amyloid or Amyloid-like 860 Fibers. *J Vis Exp*
861 He Y, Zeng MY, Yang D, Motro B, Nunez G (2016) NEK7 is an essential mediator of 862 NLRP3 activation downstream of potassium efflux. *Nature* 530: 354-357
863 Heneka MT, Kummer MP, Stutz A, Delekate A, Schwartz S, Vieira-Saecker A, Griep A, 864 Axt D, Remus A, Tzeng TC *et al* (2013) NLRP3 is activated in Alzheimer's disease and 865 contributes to pathology in APP/PS1 mice. *Nature* 493: 674-678
866 Hochheiser IV, Pils M, Hagelueken G, Moecking J, Marleaux M, Brinkschulte R, Latz E, 867 Engel C, Geyer M (2022) Structure of the NLRP3 decamer bound to the cytokine 868 release inhibitor CRID3. *Nature* 604: 184-189
869 Hoffman HM, Mueller JL, Broide DH, Wanderer AA, Kolodner RD (2001) Mutation of a 870 new gene encoding a putative pyrin-like protein causes familial cold autoinflammatory 871 syndrome and Muckle-Wells syndrome. *Nat Genet* 29: 301-305
872 Hollis A, Lukens JR (2025) Role of inflammasomes and neuroinflammation in epilepsy. 873 *Immunol Rev* 329: e13421
874 Hou TJ, Wang JM, Li YY, Wang W (2011) Assessing the Performance of the MM/PBSA and 875 MM/GBSA Methods. 1. The Accuracy of Binding Free Energy Calculations Based on 876 Molecular Dynamics Simulations. *J Chem Inf Model* 51: 69-82
877 Jorgensen WL, Maxwell DS, TiradoRives J (1996) Development and testing of the OPLS 878 all-atom force field on conformational energetics and properties of organic liquids. *J 879 Am Chem Soc* 118: 11225-11236
880 Kaplan A, Gaschler MM, Dunn DE, Colligan R, Brown LM, Palmer AG, 3rd, Lo DC, 881 Stockwell BR (2015) Small molecule-induced oxidation of protein disulfide isomerase is 882 neuroprotective. *Proc Natl Acad Sci U S A* 112: E2245-2252
883 Karki R, Kanneganti TD (2019) Diverging inflammasome signals in tumorigenesis and 884 potential targeting. *Nat Rev Cancer* 19: 197-214
885 Karki R, Kanneganti TD (2021) The 'cytokine storm': molecular mechanisms and 886 therapeutic prospects. *Trends Immunol* 42: 681-705
887 Karki R, Lee E, Place D, Samir P, Mavuluri J, Sharma BR, Balakrishnan A, Malireddi RKS, 888 Geiger R, Zhu Q *et al* (2018) IRF8 Regulates Transcription of Naips for NLRC4 889 Inflammasome Activation. *Cell* 173: 920-933 e913
890 Karki R, Lee E, Sharma BR, Banoth B, Kanneganti TD (2020) IRF8 Regulates Gram- 891 Negative Bacteria-Mediated NLRP3 Inflammasome Activation and Cell Death. *J 892 Immunol* 204: 2514-2522
893 Karki R, Man SM, Kanneganti TD (2017) Inflammasomes and Cancer. *Cancer Immunol 894 Res* 5: 94-99
895 Karki R, Man SM, Malireddi RKS, Kesavardhana S, Zhu Q, Burton AR, Sharma BR, Qi X, 896 Pelletier S, Vogel P *et al* (2016) NLRC3 is an inhibitory sensor of PI3K-mTOR pathways 897 in cancer. *Nature* 540: 583-587
898 Karki R, Sharma BR, Tuladhar S, Williams EP, Zalduondo L, Samir P, Zheng M, 899 Sundaram B, Banoth B, Malireddi RKS *et al* (2021a) Synergism of TNF-alpha and IFN- 900 gamma Triggers Inflammatory Cell Death, Tissue Damage, and Mortality in SARS- 901 CoV-2 Infection and Cytokine Shock Syndromes. *Cell* 184: 149-168 e117
902 Karki R, Sundaram B, Sharma BR, Lee S, Malireddi RKS, Nguyen LN, Christgen S, Zheng 903 M, Wang Y, Samir P *et al* (2021b) ADAR1 restricts ZBP1-mediated immune response 904 and PANoptosis to promote tumorigenesis. *Cell Rep* 37: 109858

905 Kayagaki N, Stowe IB, Lee BL, O'Rourke K, Anderson K, Warming S, Cuellar T, Haley B,
906 Roose-Girma M, Phung QT *et al* (2015) Caspase-11 cleaves gasdermin D for non-
907 canonical inflammasome signalling. *Nature* 526: 666-671
908 Kayagaki N, Warming S, Lamkanfi M, Vande Walle L, Louie S, Dong J, Newton K, Qu Y,
909 Liu J, Heldens S *et al* (2011) Non-canonical inflammasome activation targets
910 caspase-11. *Nature* 479: 117-121
911 Kim JE, Lee JY, Kang MJ, Jeong YJ, Choi JA, Oh SM, Lee KB, Park JH (2015) Withaferin A
912 Inhibits Helicobacter pylori-induced Production of IL-1beta in Dendritic Cells by
913 Regulating NF-kappaB and NLRP3 Inflammasome Activation. *Immune Netw* 15: 269-
914 277
915 Kim W, Kim S, Woo H, Jojare RA, Mall R, Nicotra A, Py BF, Ngo C, Man SM, Patel CN *et al*
916 (2025) A potent NLRP3 inhibitor effective against both MCC950-sensitive and
917 -resistant inflammation. *Cell Chem Biol* 32: 1125-1139 e1127
918 Lamkanfi M, Dixit VM (2014) Mechanisms and functions of inflammasomes. *Cell* 157:
919 1013-1022
920 Li L, Xu T, Qi X (2025) Balanced regulation of ROS production and inflammasome
921 activation in preventing early development of colorectal cancer. *Immunol Rev* 329:
922 e13417
923 Lomenick B, Hao R, Jonai N, Chin RM, Aghajan M, Warburton S, Wang J, Wu RP, Gomez
924 F, Loo JA *et al* (2009) Target identification using drug affinity responsive target stability
925 (DARTS). *Proc Natl Acad Sci U S A* 106: 21984-21989
926 Man SM, Kanneganti TD (2024) Innate immune sensing of cell death in disease and
927 therapeutics. *Nat Cell Biol* 26: 1420-1433
928 Man SM, Karki R, Malireddi RK, Neale G, Vogel P, Yamamoto M, Lamkanfi M, Kanneganti
929 TD (2015) The transcription factor IRF1 and guanylate-binding proteins target
930 activation of the AIM2 inflammasome by Francisella infection. *Nat Immunol* 16: 467-
931 475
932 Man SM, Karki R, Sasai M, Place DE, Kesavardhana S, Temirov J, Frase S, Zhu Q,
933 Malireddi RKS, Kuriakose T *et al* (2016) IRGB10 Liberates Bacterial Ligands for Sensing
934 by the AIM2 and Caspase-11-NLRP3 Inflammasomes. *Cell* 167: 382-396 e317
935 Mangan MSJ, Olhava EJ, Roush WR, Seidel HM, Glick GD, Latz E (2018) Targeting the
936 NLRP3 inflammasome in inflammatory diseases. *Nat Rev Drug Discov* 17: 588-606
937 Martinon F, Petrilli V, Mayor A, Tardivel A, Tschopp J (2006) Gout-associated uric acid
938 crystals activate the NALP3 inflammasome. *Nature* 440: 237-241
939 Massova I, Kollman PA (2000) Combined molecular mechanical and continuum solvent
940 approach (MM-PBSA/GBSA) to predict ligand binding. *Perspect Drug Discov* 18: 113-
941 135
942 Mathur A, Kay C, Xue Y, Pandey A, Lee J, Jing W, Enosi Tuipulotu D, Lo Pilato J, Feng S,
943 Ngo C *et al* (2023) *Clostridium perfringens* virulence factors are nonredundant
944 activators of the NLRP3 inflammasome. *EMBO Rep* 24: e54600
945 Oh S, Lee J, Oh J, Yu G, Ryu H, Kim D, Lee S (2023) Integrated NLRP3, AIM2, NLRC4,
946 Pyrin inflammasome activation and assembly drive PANoptosis. *Cell Mol Immunol* 20:
947 1513-1526
948 Okondo MC, Rao SD, Taabazuing CY, Chui AJ, Poplawski SE, Johnson DC, Bachovchin DA
949 (2018) Inhibition of Dpp8/9 Activates the Nlrp1b Inflammasome. *Cell Chem Biol* 25:
950 262-267 e265
951 Pandey A, Li Z, Gautam M, Ghosh A, Man SM (2025) Molecular mechanisms of
952 emerging inflammasome complexes and their activation and signaling in inflammation
953 and pyroptosis. *Immunol Rev* 329: e13406
954 Patel CN, Mall R, Bensmail H (2023) AI-driven drug repurposing and binding pose meta
955 dynamics identifies novel targets for monkeypox virus. *J Infect Public Heal* 16: 799-807
956 Price DJ, Brooks CL (2004) A modified TIP3P water potential for simulation with Ewald
957 summation. *J Chem Phys* 121: 10096-10103

958 Rathinam VA, Jiang Z, Waggoner SN, Sharma S, Cole LE, Waggoner L, Vanaja SK,
959 Monks BG, Ganesan S, Latz E *et al* (2010) The AIM2 inflammasome is essential for host
960 defense against cytosolic bacteria and DNA viruses. *Nat Immunol* 11: 395-402
961 Schmid-Burgk JL, Chauhan D, Schmidt T, Ebert TS, Reinhardt J, Endl E, Hornung V
962 (2016) A Genome-wide CRISPR (Clustered Regularly Interspaced Short Palindromic
963 Repeats) Screen Identifies NEK7 as an Essential Component of NLRP3 Inflammasome
964 Activation. *J Biol Chem* 291: 103-109
965 Sharif H, Wang L, Wang WL, Magupalli VG, Andreeva L, Qiao Q, Hauenstein AV, Wu Z,
966 Nunez G, Mao Y *et al* (2019) Structural mechanism for NEK7-licensed activation of
967 NLRP3 inflammasome. *Nature* 570: 338-343
968 Sharma BR, Kanneganti TD (2021) NLRP3 inflammasome in cancer and metabolic
969 diseases. *Nat Immunol* 22: 550-559
970 Shi HX, Wang Y, Li XH, Zhan XM, Tang M, Fina M, Su LJ, Pratt D, Bu CH, Hildebrand S *et*
971 *al* (2016) NLRP3 activation and mitosis are mutually exclusive events coordinated by
972 NEK7, a new inflammasome component. *Nat Immunol* 17: 250-258
973 Shi J, Zhao Y, Wang K, Shi X, Wang Y, Huang H, Zhuang Y, Cai T, Wang F, Shao F (2015)
974 Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death.
975 *Nature* 526: 660-665
976 Shi J, Zhao Y, Wang Y, Gao W, Ding J, Li P, Hu L, Shao F (2014) Inflammatory caspases
977 are innate immune receptors for intracellular LPS. *Nature* 514: 187-192
978 Swanson KV, Deng M, Ting JP (2019) The NLRP3 inflammasome: molecular activation
979 and regulation to therapeutics. *Nat Rev Immunol* 19: 477-489
980 Tapia-Abellán A, Angosto-Bazarrá D, Martínez-Banaclocha H, de Torre-Minguela C,
981 Ceron-Carrasco JP, Pérez-Sánchez H, Arostegui JI, Pelegrín P (2019) MCC950 closes the
982 active conformation of NLRP3 to an inactive state. *Nat Chem Biol* 15: 560-564
983 Teske KA, Corona C, Wilkinson J, Mamott D, Good DA, Zambrano D, Lazar DF, Cali JJ,
984 Robers MB, O'Brien MA (2024) Interrogating direct NLRP3 engagement and functional
985 inflammasome inhibition using cellular assays. *Cell Chem Biol* 31: 349-360 e346
986 van der Fits L, Mourits S, Voerman JS, Kant M, Boon L, Laman JD, Cornelissen F, Mus AM,
987 Florencia E, Prens EP *et al* (2009) Imiquimod-induced psoriasis-like skin inflammation
988 in mice is mediated via the IL-23/IL-17 axis. *J Immunol* 182: 5836-5845
989 Vande Walle L, Lamkanfi M (2024) Drugging the NLRP3 inflammasome: from signalling
990 mechanisms to therapeutic targets. *Nat Rev Drug Discov* 23: 43-66
991 Vande Walle L, Stowe IB, Sacha P, Lee BL, Demon D, Fossoul A, Van Hauwermeiren F,
992 Saavedra PHV, Simon P, Subrt V *et al* (2019) MCC950/CRID3 potently targets the
993 NACHT domain of wild-type NLRP3 but not disease-associated mutants for
994 inflammasome inhibition. *PLoS Biol* 17: e3000354
995 Wang JM, Hou TJ, Xu XJ (2006) Recent Advances in Free Energy Calculations with a
996 Combination of Molecular Mechanics and Continuum Models. *Curr Comput-Aid Drug* 2:
997 287-306
998 Wannamaker W, Davies R, Namchuk M, Pollard J, Ford P, Ku G, Decker C, Charifson P,
999 Weber P, Germann UA *et al* (2007) (S)-1-((S)-2-[1-(4-amino-3-chloro-phenyl)-
1000 methanoyl]-amino-3,3-dimethyl-butanoyl)-pyrrolidine-2-carboxylic acid ((2R,3S)-2-
1001 ethoxy-5-oxo-tetrahydro-furan-3-yl)-amide (VX-765), an orally available selective
1002 interleukin (IL)-converting enzyme/caspase-1 inhibitor, exhibits potent anti-
1003 inflammatory activities by inhibiting the release of IL-1 β and IL-18. *J Pharmacol Exp
1004 Ther* 321: 509-516
1005 Xiao L, Magupalli VG, Wu H (2023) Cryo-EM structures of the active NLRP3
1006 inflammasome disc. *Nature* 613: 595-600
1007 Xu H, Yang J, Gao W, Li L, Li P, Zhang L, Gong YN, Peng X, Xi JJ, Chen S *et al* (2014)
1008 Innate immune sensing of bacterial modifications of Rho GTPases by the Pyrin
1009 inflammasome. *Nature* 513: 237-241
1010 Xu J, Nunez G (2023) The NLRP3 inflammasome: activation and regulation. *Trends
1011 Biochem Sci* 48: 331-344

1012 Yin H, Guo Q, Li X, Tang T, Li C, Wang H, Sun Y, Feng Q, Ma C, Gao C *et al* (2018)
1013 Curcumin Suppresses IL-1beta Secretion and Prevents Inflammation through Inhibition
1014 of the NLRP3 Inflammasome. *J Immuno* 200: 2835-2846
1015 Yu X, Matico RE, Miller R, Chauhan D, Van Schoubroeck B, Grauwen K, Suarez J, Pietrak
1016 B, Haloi N, Yin Y *et al* (2024) Structural basis for the oligomerization-facilitated NLRP3
1017 activation. *Nat Commun* 15: 1164
1018 Zangiabadi S, Akram A, Abdul-Sater AA (2022) Detection of ASC Oligomerization by
1019 Western Blotting. *Methods Mol Biol* 2459: 73-78
1020 Zhang DW, Lazim R (2017) Application of conventional molecular dynamics simulation
1021 in evaluating the stability of apomyoglobin in urea solution. *Sci Rep-Uk* 7
1022 Zheng M, Wang P, Song W, Lau SY, Liu S, Huang X, Mok BW, Liu YC, Chen Y, Yuen KY *et*
1023 *al* (2015) An A14U Substitution in the 3' Noncoding Region of the M Segment of Viral
1024 RNA Supports Replication of Influenza Virus with an NS1 Deletion by Modulating
1025 Alternative Splicing of M Segment mRNAs. *J Viro* 89: 10273-10285
1026 Zhou X, Li G, Kaplan A, Gaschler MM, Zhang X, Hou Z, Jiang M, Zott R, Cremers S,
1027 Stockwell BR *et al* (2018) Small molecule modulator of protein disulfide isomerase
1028 attenuates mutant huntingtin toxicity and inhibits endoplasmic reticulum stress in a
1029 mouse model of Huntington's disease. *Hum Mol Genet* 27: 1545-1555
1030

1031 **Figure legends**

1032

1033 **Fig 1 LOC14 inhibits canonical NLRP3 inflammasome activation. A** Schematic
1034 representation of the high-throughput screening procedure used to identify potential
1035 inhibitors of NLRP3 inflammasome activation. **B** Heatmap depicting the efficiency of
1036 1,140 drugs in inhibiting cell death induced by LPS plus nigericin, indicated by the % of
1037 inhibition relative to untreated BMDMs, quantified by propidium iodide. **C, D** Real-time
1038 analysis (**C**) and representative images of cell death at 0 h and 1.5 h (**D**) in LOC14 or
1039 CRID3-treated wild-type (WT) and *Nlrp3*^{-/-} bone marrow-derived macrophages
1040 (BMDMs) stimulated with LPS plus nigericin. Scale bar, 100 μ m. **E** Immunoblot analysis
1041 of pro- (P45) and cleaved (P20) CASP1, pro- (P53) and cleaved (P30) GSDMD, LDH, and
1042 HMGB1 in WT and *Nlrp3*^{-/-} BMDMs stimulated with LPS plus nigericin, with or without
1043 LOC14 or CRID3. **F** Measurement of IL-1 β release in WT and *Nlrp3*^{-/-} BMDMs stimulated
1044 with LPS plus nigericin, with or without LOC14 or CRID3. **G** Immunoblot analysis of pro-
1045 (P45) and cleaved (P20) CASP1, and pro- (P53) and cleaved (P30) GSDMD in WT and
1046 *Nlrp3*^{-/-} BMDMs treated with LPS plus imiquimod (IMQ), with or without LOC14 or
1047 CRID3. GAPDH was used as the internal control (**E, G**). Data are representative of at
1048 least three independent experiments. Data are shown as mean \pm SEM (**C, F**).

1049

1050 **Fig 2 LOC14 does not inhibit AIM2 and NLRP1 inflammasome activation. A, B**
1051 Real-time analysis (**A**) and Immunoblot analysis of pro- (P45) and cleaved (P20) CASP1,
1052 and pro- (P53) and cleaved (P30) GSDMD (**B**) in wild-type (WT) and *Aim2*^{-/-} bone
1053 marrow-derived macrophages (BMDMs) infected with *Francisella novicida* for 16 h,
1054 with or without LOC14. **C, D** Real-time analysis (**C**) and immunoblot analysis of pro-
1055 (P45) and cleaved (P20) CASP1, and pro- (P53) and cleaved (P30) GSDMD (**D**) in WT
1056 and *Aim2*^{-/-} BMDMs transfected with poly(dA:dT) for 4 h, with or without LOC14. **E-G**
1057 Real-time analysis (**E**), representative images of cell death at 0 h and 16 h (**F**), and

1058 immunoblot analysis of pro- (P45) and cleaved (P20) CASP1, and pro- (P53) and
1059 cleaved (P30) GSDMD in WT BMDMs treated with Val-boroPro for 16 h (**G**), with or
1060 without LOC14. Scale bar, 100 μ m. GAPDH was used as the internal control (**B, D, G**).
1061 Data are representative of at least three independent experiments. Data are shown as
1062 mean \pm SEM (**A, C, E**).
1063

1064 **Fig 3 LOC14 suppresses inflammasome activation by targeting NLRP3 and**
1065 **NEK7. A, B** Semi-denaturing detergent agarose gel electrophoresis (SDD-AGE)
1066 indicating NLRP3 oligomers (**A**) and Sodium dodecyl-sulfate polyacrylamide gel
1067 electrophoresis (SDS-PAGE) indicating ASC oligomers (**B**) in LOC14-treated wild-type
1068 (WT) or *Nlrp3*^{-/-} bone marrow-derived macrophages (BMDMs) following stimulation
1069 with LPS plus ATP for 30 min and LPS plus nigericin for 1 h. **C** Glide extra precision (XP)
1070 Gscore analysis from molecular docking of LOC14 and CRID3 binding to NLRP3, with or
1071 without NEK7. **D** Immunoblot analysis of NLRP3, CASP1, and ASC in LPS-primed bone
1072 marrow-derived macrophages (BMDMs) treated with or without LOC14 and pronase. **E**
1073 Immunoblot analysis of Flag in HEK293T cells expressing full-length NLRP3 treated
1074 with or without LOC14 and pronase. **F** An NLRP3 target engagement assay using
1075 HEK293FT cells treated with a concentration of 0.05, 0.5, 1, 5, 10, 15, 20 and 40 μ M of
1076 LOC14, CRID3, or qVD. The normalized Bioluminescence Resonance Energy Transfer
1077 (BRET) signal indicates the % of the signal from the NanoBRET tracer on NLRP3 that
1078 were being displaced by the inhibitors. The half maximal inhibitory concentration
1079 (IC50) indicates the concentration of inhibitor required to reduce the NanoBRET tracer
1080 signal by 50%. Each symbol represents an individual concentration. **G** Immunoblot
1081 analysis of NEK7 and NLRP3 following immunoprecipitation (IP) with anti-NLRP3 or IgG
1082 control antibodies in LPS-primed THP1 cells treated with nigericin, with or without
1083 LOC14 (5 μ M). GAPDH (**B**) and β -actin (**D, E, G**) were used as internal controls. Data
1084 are representative of two to three independent experiments.

1085

1086 **Fig 4 LOC14 binds the LRR domain of NLRP3. A** Schematic of the different
1087 domains of NLRP3 overexpressed in HEK293T cells. **B, C** Immunoblot analysis of Flag
1088 in HEK293T cells expressing either LRR (**B**), NACHT, or PYD (**C**) domains of NLRP3,
1089 treated with or without LOC14 (5 μ M) and pronase. **D, E** Molecular docking of LOC14
1090 with NLRP3-NEK7 (6NPY): 3D representation (**D**) and 2D representation (**E**) showing
1091 ligand interactions via H-bonds and hydrophobic interactions with the active site of the
1092 protein. β -actin was used as the internal control (**B, C**). Data are representative of at
1093 least three independent experiments.

1094

1095 **Fig 5 Isothiazol-3(2H)-one moiety is the inhibitory component of LOC14. A**
1096 Chemical structures of LOC14, 1,2-Benisothiazol-3(2H)-one (BITO) and 1-
1097 (cyclopropylcarbonyl)piperazine-3(2H)-one (PCP). **B, C** Percentage of cell death (**B**)
1098 and immunoblot analysis of pro- (P45) and cleaved (P20) CASP1, and pro- (P53) and
1099 cleaved (P30) GSDMD in wild type (WT) bone marrow-derived macrophages (BMDMs)
1100 stimulated with LPS plus nigericin for 1 h (**C**), with or without LOC14, BITO, or PCP. **D**
1101 Chemical structures of isothiazol-3(2H)-one (ITO), isothiazole (IT), thiazole (T), or
1102 imidazole (I). **E, F** Real-time analysis (**E**) and representative images of cell death in WT
1103 BMDMs stimulated with LPS plus nigericin for 1 h (**F**), without or without ITO, IT, T, or I.
1104 Scale bar, 100 μ m. **G** Immunoblot analysis of pro- (P45) and cleaved (P20) CASP1, and
1105 pro- (P53) and cleaved (P30) GSDMD in WT BMDMs stimulated with LPS plus nigericin
1106 for 1 h, with or without ITO, IT, T, or I. **H** IC50 values of LOC14, BITO, ITO, or CRID3 in
1107 inhibiting cell death triggered by LPS plus nigericin for 1 h. GAPDH was used as the
1108 internal control (**C, G**). Data are representative of at least three independent
1109 experiments. Data are shown as mean \pm SEM (**B, E, H**).

1110

1111 **Fig 6 LOC14 inhibits the priming step of the NLRP3 inflammasome. A, B**
1112 Immunoblot analysis of ASC, NLRP3, and pro-IL-1 β (**A**), and phosphorylated I κ B α (p-
1113 I κ B α), total p-I κ B α (t-I κ B α), phosphorylated ERK1/2 (p-ERK), total ERK1/2 (t-ERK),
1114 phosphorylated JNK (p-JNK), and total JNK (t-JNK) (**B**) in LPS-stimulated WT BMDMs
1115 treated with LOC14 for the indicated times. **C, D** Immunoblot analysis of ASC, NLRP3,
1116 and pro-IL-1 β (**C**), and phosphorylated I κ B α (p-I κ B α), total I κ B α (t-I κ B α),
1117 phosphorylated ERK1/2 (p-ERK), total ERK1/2 (t-ERK), phosphorylated JNK (p-JNK), and
1118 total JNK (t-JNK) (**D**) in Pam3CSK4 (Pam3)-stimulated WT BMDMs treated with LOC14
1119 for the indicated times. GAPDH (**B**) and β -actin (**A, C, D**) were used as internal controls.
1120 Data are representative of at least three independent experiments.

1121
1122 **Fig 7 LOC14 ameliorates DSS-induced colonic inflammation in mice. A** Body
1123 weight change of wild-type (WT) mice administered with vehicle or LOC14 during
1124 dextran sulfate sodium (DSS) treatment. **B** Representative images of the colon from
1125 WT mice administered with vehicle or LOC14, 9 days after DSS administration. **C**
1126 Levels of IL-1 β and IL-18 in colons of WT mice administered with vehicle or LOC14, 9
1127 days after DSS administration. **D** Representative hematoxylin and eosin (H&E) staining
1128 of colon sections. Scale bar, 100 μ m. Sections include a whole scan and specific
1129 regions (proximal, middle, and distal colon). Each symbol represents an individual
1130 mouse (**C**). Data are shown as mean \pm SEM (**A, C**). *P < 0.05, and ***P < 0.001. One-
1131 way ANOVA (**A**); and two-way ANOVA (**C**). Data are from one experiment
1132 representative of two independent experiments (**A-D**).
1133

1134 **Fig 8 LOC14 alleviates IMQ-induced skin inflammation in mice. A**
1135 Representative images of mice developing psoriasis-like skin inflammation, 6 days
1136 after Aldara application and 5 days after administration of LOC14 or CRID3. **B** Psoriasis
1137 area and severity index (PASI) in mice, 6 days after Aldara application. Each symbol

1138 represents an individual mouse. **C** Representative hematoxylin and eosin (H&E)
1139 staining of skin sections. Scale bar, 100 μ m. **D** Measurement of epidermal thickness of
1140 skin sections in **(C)**. **E** Immunoblot analysis of pro- (P53) and cleaved (P30) GSDMD in
1141 the skin of mice, 6 days after Aldara application. β -actin was used as the internal
1142 control. Data are shown as mean \pm SEM **(B, D)**. **P < 0.01, ***P < 0.001, and ****P <
1143 0.0001; one-way ANOVA **(B, D)**. Data are from one experiment representative of two
1144 independent experiments **(A-E)**.

1145 **Supplemental figure legends**

1146

1147 **Supplementary Figure 1. LOC14 inhibits the canonical NLRP3 inflammasome.**

1148 **a, b,** Real-time analysis (a) and representative images of cell death at 0 h and 1.5 h (B)
1149 in LPS-primed wild type (WT) and *Nlrp3*^{-/-} bone marrow-derived macrophages (BMDMs)
1150 stimulated with ATP plus LOC14 or CRID3. Scale bar, 100 μ m. **c,** Immunoblot analysis
1151 of pro- (P45) and cleaved (P20) CASP1, pro- (P53) and cleaved (P30) GSDMD, and LDH
1152 in LPS-primed WT and *Nlrp3*^{-/-} BMDMs with or without LOC14 or CRID3, 1 h after ATP
1153 stimulation. **d,** IL-1 β release in LPS-primed WT and *Nlrp3*^{-/-} BMDMs treated with ATP
1154 plus LOC14 or CRID3 for 1 h. **e,** Immunoblot analysis of cleaved CASP1 and GSDMD
1155 from supernatants or full-length CASP1 and GSDMD from cell lysates of LPS-primed
1156 THP1 cells treated with nigericin plus LOC14 or CRID3 for 1 h. **f,** Immunoblot analysis of
1157 cleaved CASP1 p20 and GSDMD p30 of primary peripheral blood mononuclear cells
1158 (PBMCs) from three healthy human donors treated with Pam3CSK4 for 2.5 h followed
1159 by 1.5 h nigericin in the presence of DMSO, LOC14 or CRID3. **g,** IL-1 β release from
1160 primary human PBMCs as in F, with each symbol representing an individual healthy
1161 human donor. GAPDH (c) and β -actin (e, f) were used as internal controls. ****P <
1162 0.0001; one-way ANOVA (g). Data are representative of at least three independent
1163 experiments. Data are shown as mean \pm SEM (a, d, g).

1164

1165 **Supplementary Figure 2. PDIA3 is not required for NLRP3 inflammasome**

1166 **activation. a, b,** Cell death rate and representative images (a) and immunoblot
1167 analysis of PDIA3, pro- (P45) and cleaved (P20) CASP1, and pro- (P53) and cleaved
1168 (P30) GSDMD (b) in PDIA3 or control siRNA-transfected BMDMs stimulated with LPS
1169 plus ATP for 0.5 h. **c, d,** Cell death rate and representative images (c) and immunoblot
1170 analysis of PDIA3, pro- (P45) and cleaved (P20) CASP1, and pro- (P53) and cleaved
1171 (P30) GSDMD (d) in PDIA3 or control siRNA-transfected BMDMs stimulated with LPS

1172 plus nigericin for 1 h. **e, f**, Immunoblot analysis of phosphorylated I κ B α (p-I κ B α), total
1173 I κ B α (t-I κ B α), phosphorylated ERK1/2 (p-ERK), total ERK1/2 (t-ERK), phosphorylated
1174 JNK (p-JNK), and total JNK (t-JNK) (e) and NLRP3, pro-IL-1 β , and PDIA3 (f) in LPS-
1175 stimulated WT BMDMs upon transfection with PDIA3 or control siRNA. GAPDH (b, d)
1176 and β -actin (e, f) were used as internal controls. Data are representative of at least
1177 three independent experiments. Data are shown as mean \pm SEM (a, c).

1178

1179 **Supplementary Figure 3. LOC14 inhibits the non-canonical NLRP3**
1180 **inflammasome. a**, Immunoblot analysis of pro- (P45) and cleaved (P20) CASP1, pro-
1181 (P53) and cleaved (P30) GSDMD, and LDH in LPS-transfected WT BMDMs treated with
1182 LOC14 or CRID3 for 6 h. **b**, IL-1 β release in WT BMDMs 6 h after LPS transfection, with
1183 or without LOC14 or CRID3. **c, d**, Real-time analysis (c) and representative images of
1184 cell death at 0 h and 6 h (d) in LPS-transfected WT BMDMs with or without LOC14. Scale
1185 bar, 100 μ m. GAPDH was used as an internal control (a). Data are representative of at
1186 least three independent experiments. Data are shown as mean \pm SEM (b, c).

1187

1188 **Supplementary Figure 4. LOC14 does not affect AIM2, NLRC4 and Pyrin**
1189 **inflammasome activation. a, b**, Immunoblot analysis of IRF1 in wild-type (WT) bone
1190 marrow-derived macrophages (BMDMs) infected with 100 MOI of *Francisella novicida*
1191 (a) and stimulated with IFN- β (b) in the presence of LOC14 for the indicated times. **c, d**,
1192 Real-time analysis (c) and immunoblot analysis of pro- (P45) and cleaved (P20) CASP1,
1193 and pro- (P53) and cleaved (P30) GSDMD (d) in WT and *Nlrc4* $^{-/-}$ BMDMs infected with 1
1194 MOI of *Salmonella enterica* subspecies *enterica* serovar Typhimurium for 6 h in the
1195 presence of LOC14. **e, f**, Real-time analysis (e) and immunoblot analysis of pro- (P45)
1196 and cleaved (P20) CASP1, and pro- (P53) and cleaved (P30) GSDMD (f) in WT and
1197 *Mefv* $^{-/-}$ BMDMs incubated with *Clostridium difficile* supernatant for 20 h in the presence

1198 of LOC14. GAPDH was used as the internal control (a, b, d, f). Data are representative
1199 of at least three independent experiments. Data are shown as mean \pm SEM (c, e).

1200

1201 **Supplementary Figure 5. LOC14 reduces ASC speck formation in LPS-primed**
1202 **THP1-ASC-GFP cells.** Fluorescence microscopy images of LPS-primed THP1-ASC-GFP
1203 cells treated with nigericin plus LOC14 or CRID3 for 1 h. Scale bar, 50 μ m. Data are
1204 representative of at least three independent experiments.

1205

1206 **Supplementary Figure 6. LOC14 exhibits a higher degree of spontaneity in its**
1207 **interaction with NLRP3-NEK7. a, b,** Structural analysis of NLRP3-NEK7 active site.
1208 **c,** MM/GBSA profiles of LOC14 in interaction with NLRP3 bound to NEK7.

1209

1210 **Supplementary Figure 7. LOC14 protects NLRP3 from proteolysis. a,**
1211 Immunoblot analysis of NLRP3 in HEK293T cells overexpressing mouse-NLRP3 treated
1212 with or without LOC14 and pronase. **b,** Immunoblot analysis of Flag in HEK293T cells
1213 expressing human-NLRP6 treated with or without LOC14 and pronase. β -actin was
1214 used as the internal control (a, b). Data are representative of at least three
1215 independent experiments.

1216

1217 **Supplementary Figure 8. LOC14 inhibits cell death induced by NLRP3**
1218 **mutants associated with cryopyrin-associated periodic syndrome. a, b,**
1219 Human monocytic cell line U937 expressing doxycycline-inducible NLRP3 gain-of-
1220 function mutants associated with cryopyrin-associated periodic syndrome, (a) D303H
1221 and (b) K568N, were treated with the vehicle control DMSO or LOC14. **c,** IL-1 β release
1222 in primary peripheral blood mononuclear cells (PBMCs) from a human patient with
1223 cryopyrin-associated periodic syndrome and the NLRP3 gain-of-function mutant
1224 R490K, left untreated or treated with LPS for 6 h in the presence of LOC14 or CRID3.

1225 Data represent one of two independent experiments (a, b), or pooled from three
1226 independent fresh blood samples taken from the same human patient (c). **P < 0.01;
1227 ***P < 0.001; one-way ANOVA (a-c).

1228

1229 **Supplementary Figure 9. Isothiazol-3(2H)-one moiety inhibits the NLRP3**
1230 **inflammasome. a,** Percentage of cell death in WT BMDMs stimulated with LPS plus
1231 nigericin for 1 h with or without ITO, benzisothiazol-3(2H)-one (BITO), or LOC14 at a
1232 concentration of 2 μ M. **b,** Immunoblot analysis of pro- (P45) and cleaved (P20) CASP1,
1233 and pro- (P53) and cleaved (P30) GSDMD in influenza A virus (IAV)-infected wild type
1234 (WT) and *Nlrp3*^{-/-} bone marrow-derived macrophages (BMDMs) treated with or without
1235 isothiazol-3(2H)-one (ITO) or CRID3 for 16 h. **c, e,** Real-time analysis and **d, f,**
1236 representative images of cell death at 0 h and 1.5 h in LPS-primed WT BMDMs
1237 stimulated with ATP plus (c,d) 4,5-dichloro-2-n-octyl-4-isothiazoline-3-one (DCOIT) or
1238 (e, f) methylisothiazolinone (M-ITO). Scale bar, 100 μ m. GAPDH was used as the
1239 internal control (b). Data are representative of at least three independent
1240 experiments. Data are shown as mean \pm SEM (a, c, e).

1241

1242 **Supplementary Figure 10. LOC14 inhibits NLRP3 inflammasome priming. a,**
1243 Schematic diagram showing LOC14 treatment during priming or activation events of
1244 NLRP3 inflammasome activation. **b,** Real-time analysis of cell death in LPS plus LOC14-
1245 or CRID3-treated wild-type (WT) and *Nlrp3*^{-/-} bone marrow-derived macrophages
1246 (BMDMs) with nigericin stimulation after 4 h. **c,** IL-1 β release in LPS plus LOC14- or
1247 CRID3-treated WT and *Nlrp3*^{-/-} BMDMs with nigericin stimulation after 4 h for 1 h. **d,**
1248 Immunoblot analysis of pro- (P45) and cleaved (P20) CASP1 and pro- (P53) and cleaved
1249 (P30) GSDMD in LPS plus LOC14- or CRID3-treated WT and *Nlrp3*^{-/-} BMDMs with
1250 nigericin stimulation after 4 h for 1 h. **e,** Real-time analysis of cell death in LPS plus

1251 LOC14- or CRID3-treated WT and *Nlrp3*^{-/-} BMDMs with ATP stimulation after 4 h. **f**, IL-1 β
1252 release in LPS plus ATP- or CRID3-treated WT and *Nlrp3*^{-/-} BMDMs with ATP stimulation
1253 after 4 h for 1h. **g**, Immunoblot analysis of pro- (P45) and cleaved (P20) CASP1 and pro-
1254 (P53) and cleaved (P30) GSDMD in LPS plus LOC14- or CRID3-treated WT and *Nlrp3*^{-/-}
1255 BMDMs with ATP stimulation after 4 h for 1 h. GAPDH was used as the internal control
1256 (d, g). Data are representative of at least three independent experiments. Data are
1257 shown as mean \pm SEM (b, c, e, f).

1258

1259 **Supplementary Figure 11. LOC14 delays priming of NLRP3. a**, RT-PCR analysis
1260 of Nlrp3 expression in wild-type (WT) bone-marrow-derived macrophages (BMDMs)
1261 stimulated with LPS, Pam3CSK4 (Pam3), or Poly I:C (I:C) in the presence of LOC14 for
1262 the indicated times. **b, c**, Immunoblot analysis of ASC, NLRP3, and pro-IL-1 β (b) and
1263 phosphorylated I κ B α (p-I κ B α), total I κ B α (t-I κ B α), phosphorylated ERK1/2 (p-ERK), total
1264 ERK1/2 (t-ERK), phosphorylated JNK (p-JNK), and total JNK (t-JNK) (c) in WT BMDMs
1265 stimulated with I:C in the presence of LOC14 for the indicated times. **d**, Immunoblot
1266 analysis of NLRP3 and pro-IL-1 β in LPS-stimulated BMDMs treated with ITO, BITO or
1267 LOC14 at a concentration of 2 μ M for the indicated times. **e**, Immunoblot analysis of
1268 phosphorylated I κ B α (p-I κ B α), total I κ B α (t-I κ B α), phosphorylated ERK1/2 (p-ERK), total
1269 ERK1/2 (t-ERK), phosphorylated JNK (p-JNK), and total JNK (t-JNK) in LPS-stimulated WT
1270 BMDMs in the presence of ITO, BITO, or LOC14 at a concentration of 2 μ M for the
1271 indicated times. GAPDH (b) and β -actin (c-e) were used as internal controls. Data are
1272 representative of at least three independent experiments. Data are shown as mean \pm
1273 SEM (a).

1274

1275 **Supplementary Figure 12. LOC14 inhibits inflammatory responses in mice. a**,
1276 Colon length of wild-type (WT) mice administered with vehicle or LOC14, 9 days after

1277 dextran sulfate sodium (DSS) administration. **b**, Levels of IL-1 β in the serum of WT
1278 mice administered with vehicle or LOC14, 4 h after LPS injection. Each symbol
1279 represents an individual mouse (a, b). Data are shown as mean \pm SEM (a, b). **P <
1280 0.01, and ***P < 0.001; two-way ANOVA (a), two-tailed t-test (b). Data are from one
1281 experiment representative of two independent experiments (a, b).

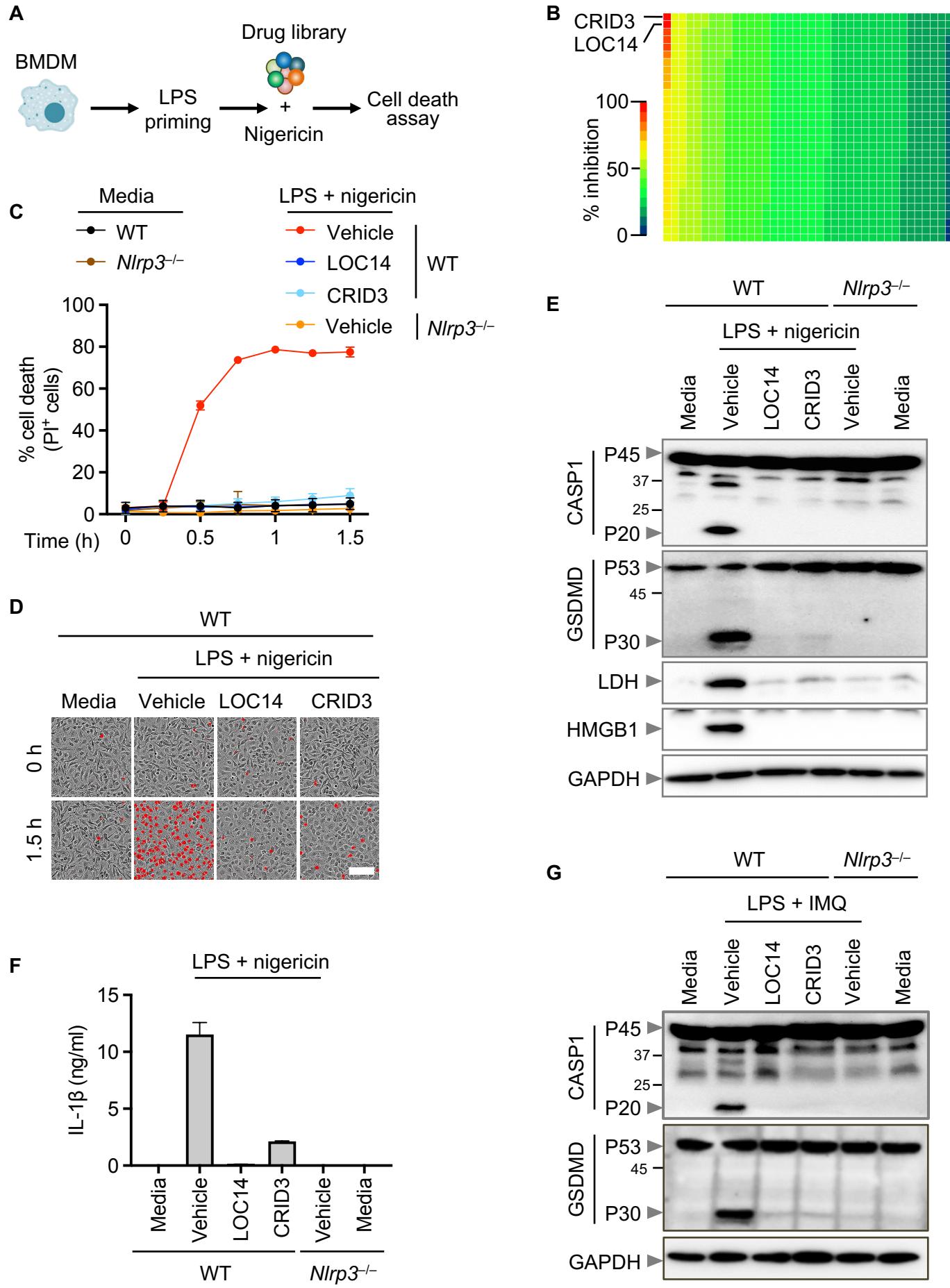


Figure 1

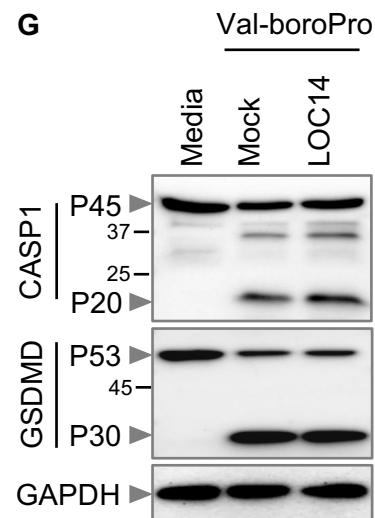
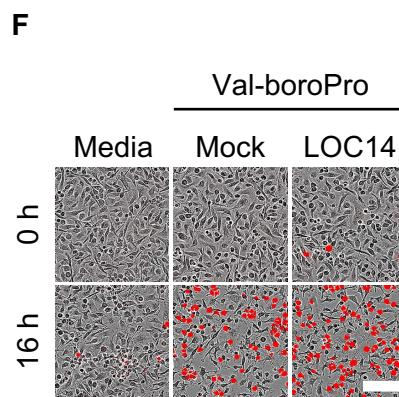
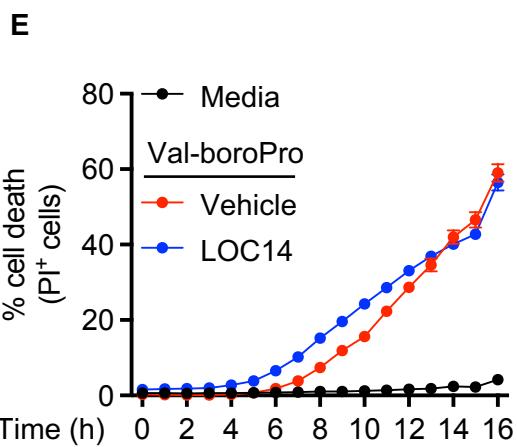
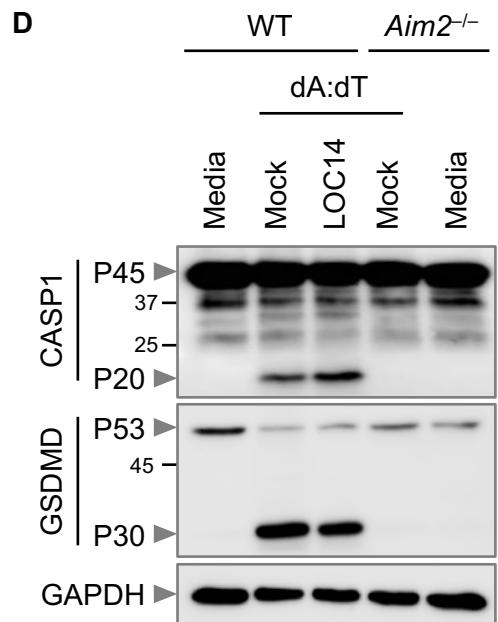
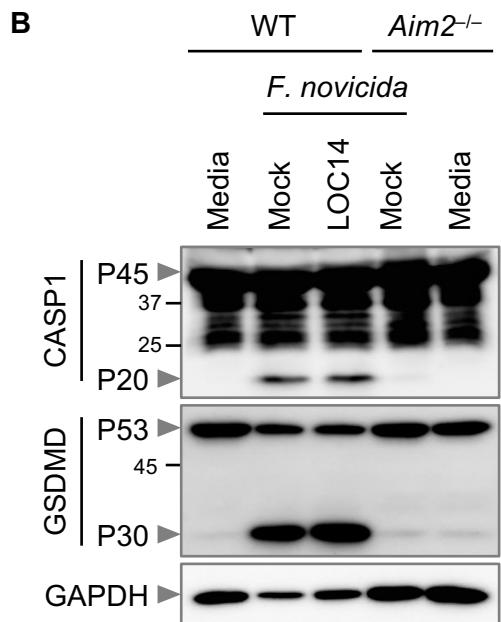
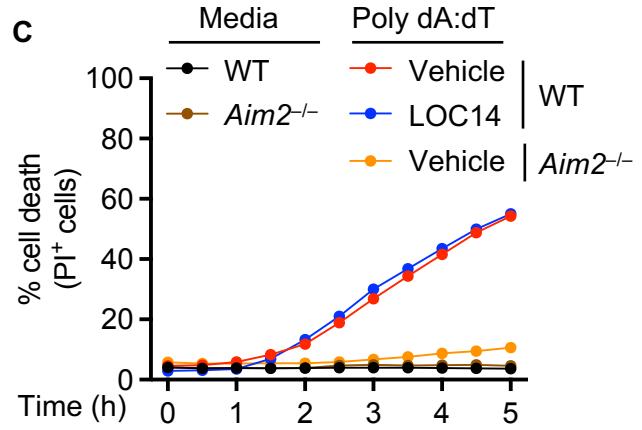
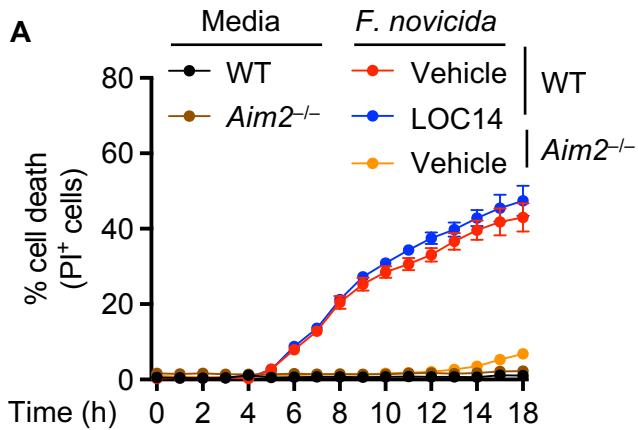
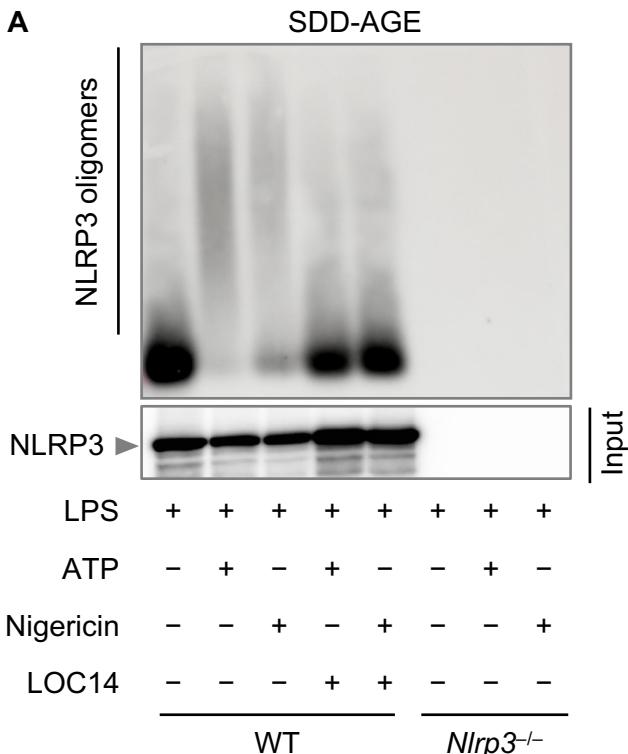
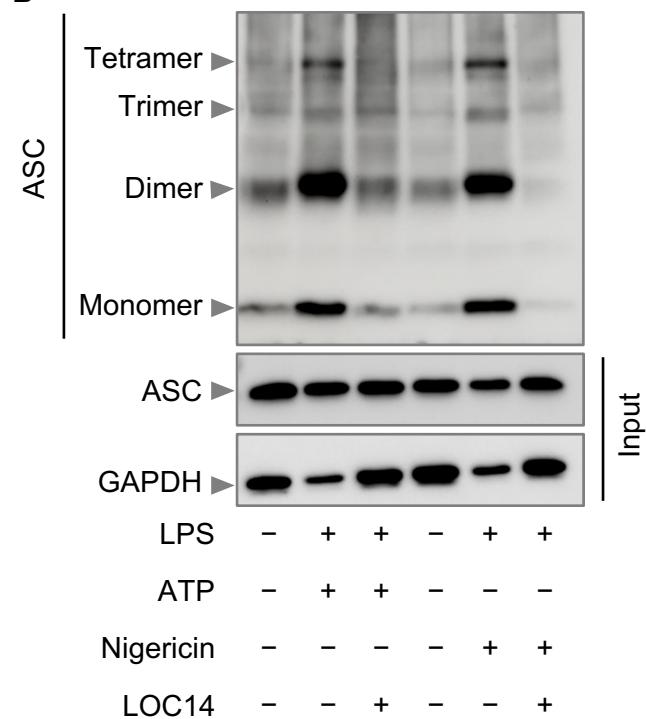
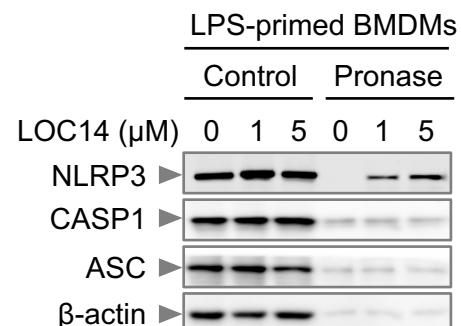
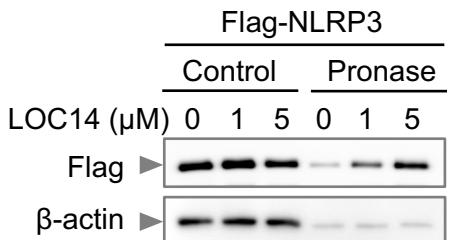
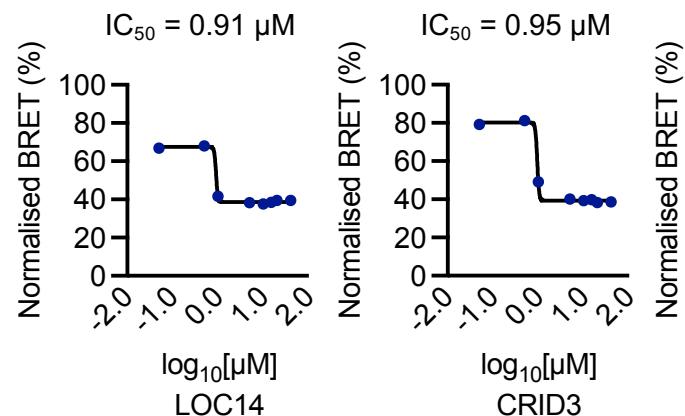
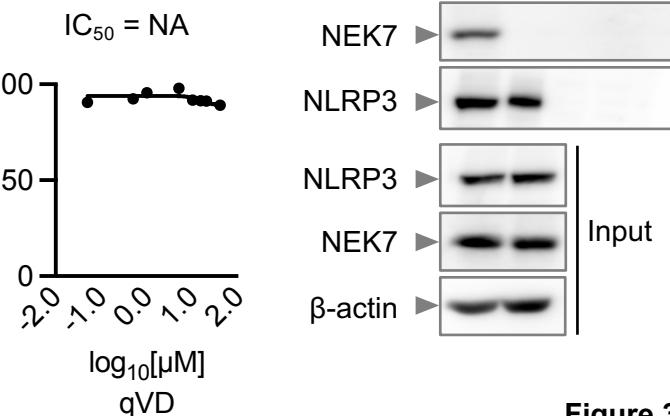
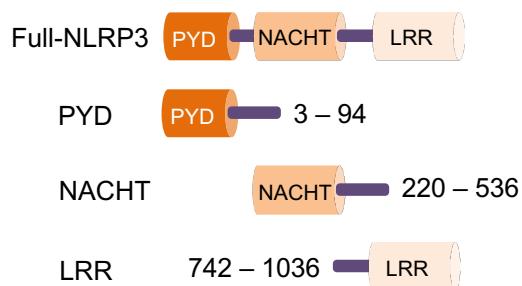
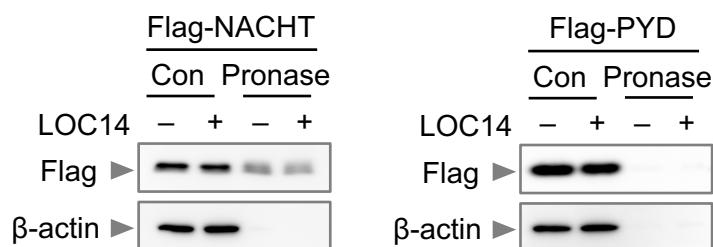
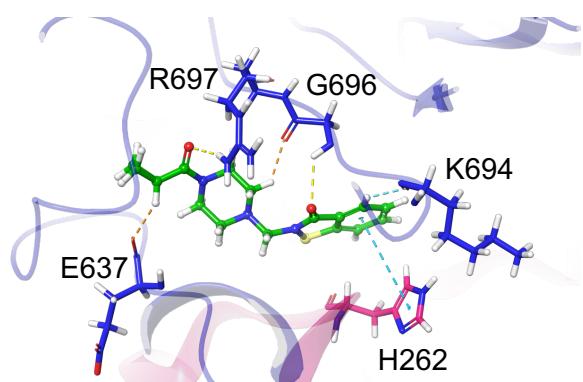
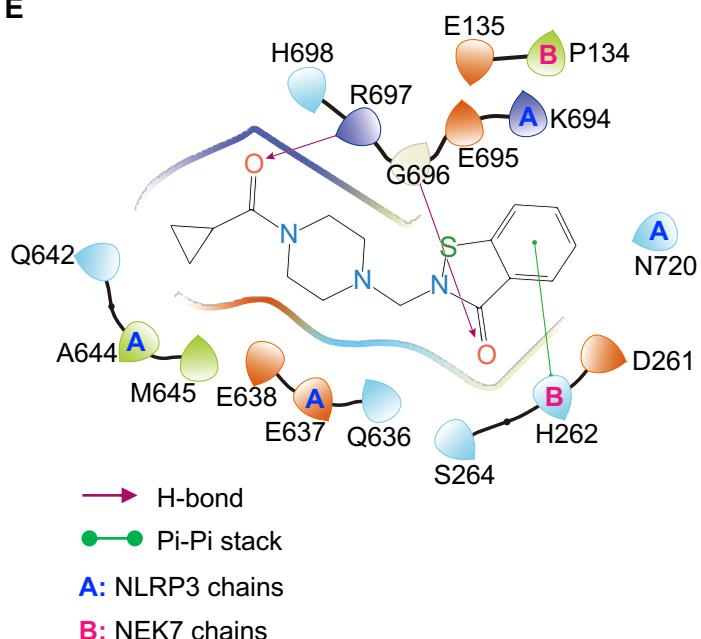













Figure 2


A**B****C**





	XP Gscore (Kcal/mol)	
	NLRP3	NLRP3 + NEK7
LOC14	-2.777	-5.012
CRID3	-2.871	-1.861

D**E****F**

Normalised BRET (%)

$\log_{10}[\mu M]$

Figure 3

A**B****C****D****E****Figure 4**

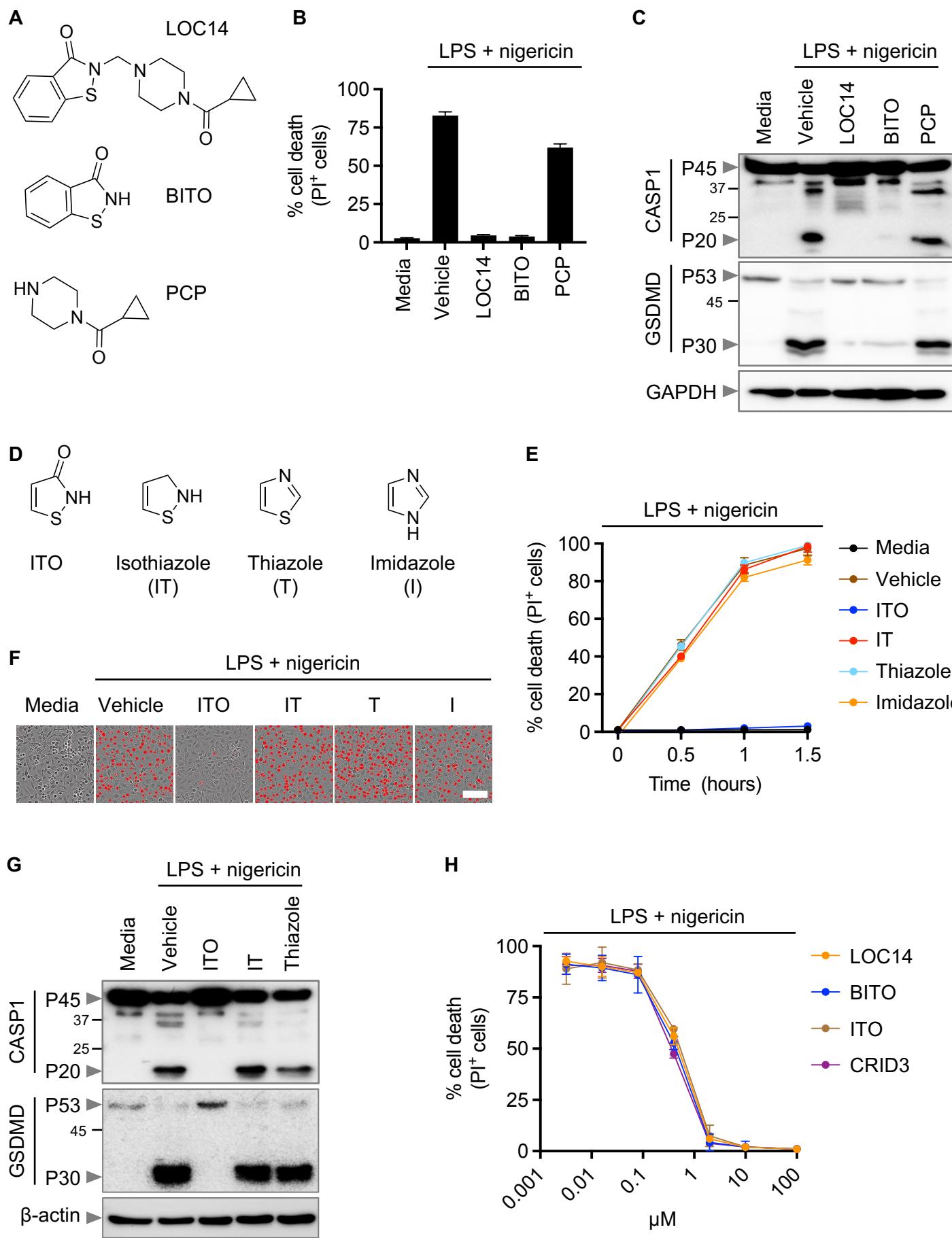
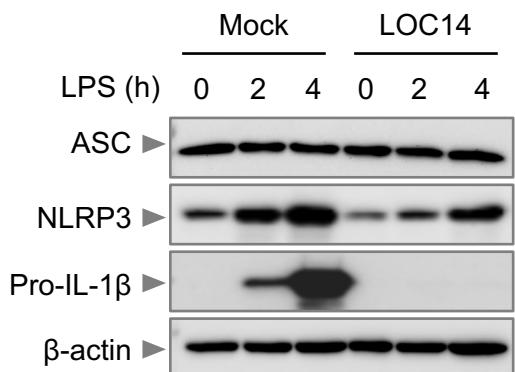
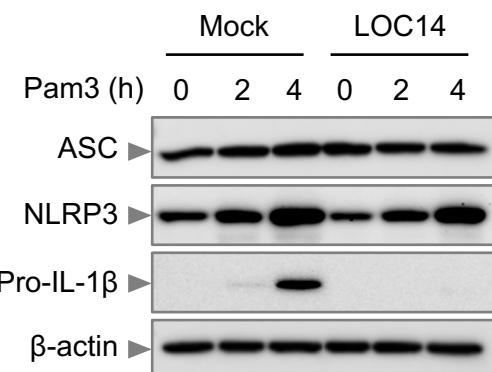
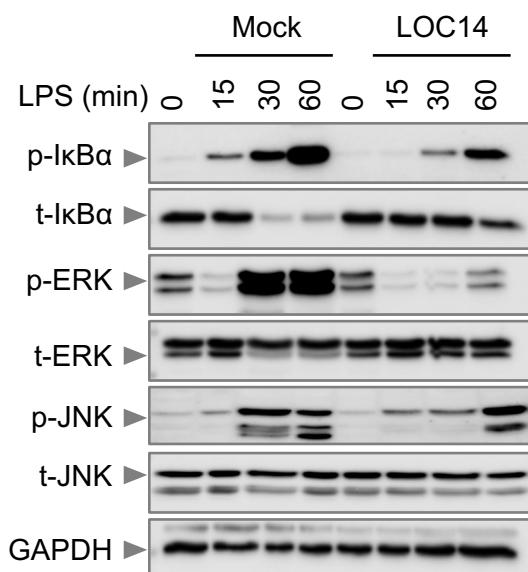
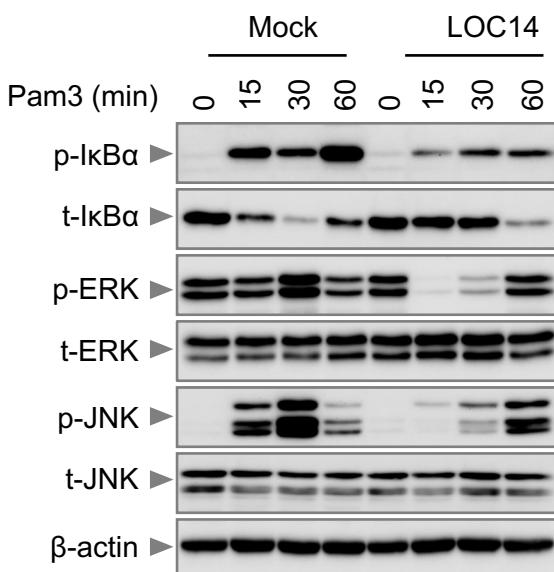
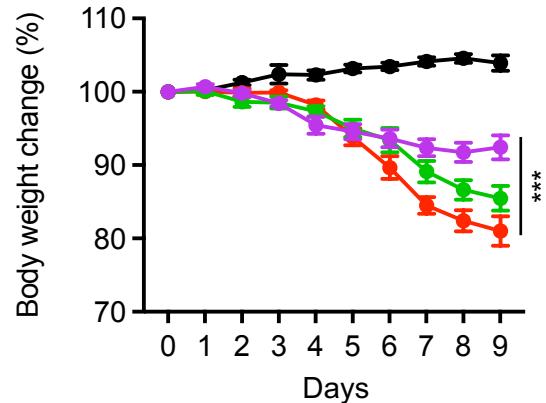
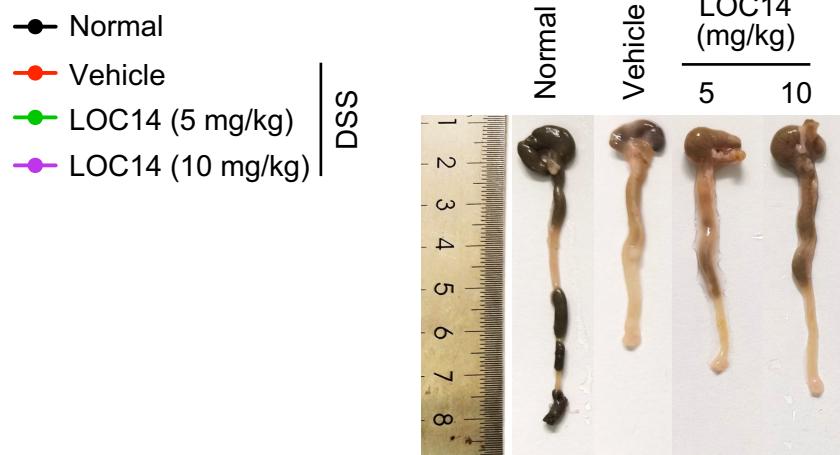
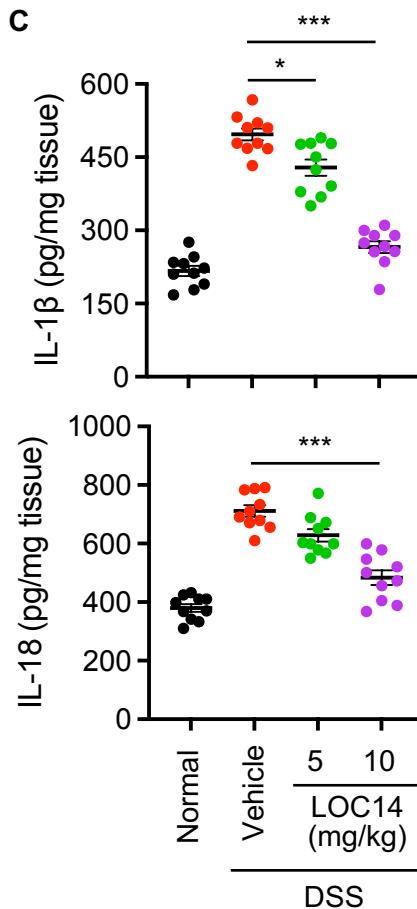
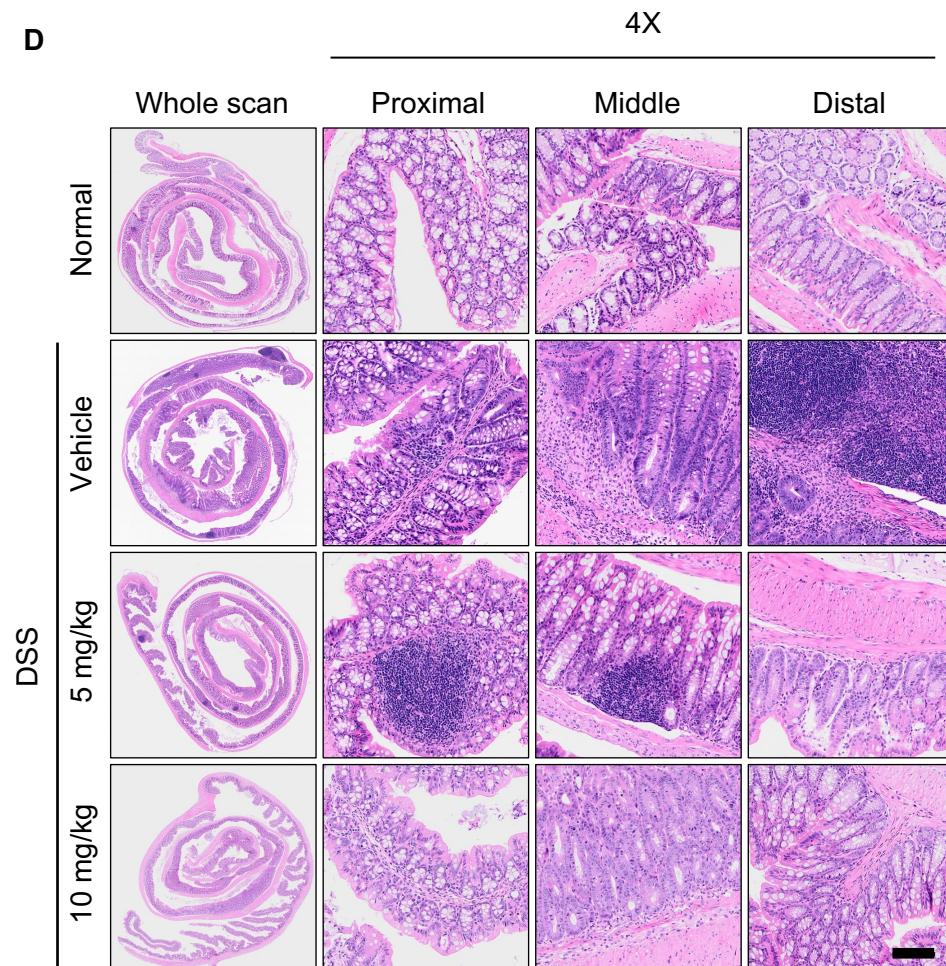
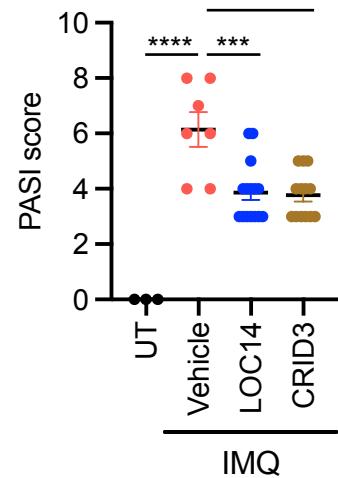
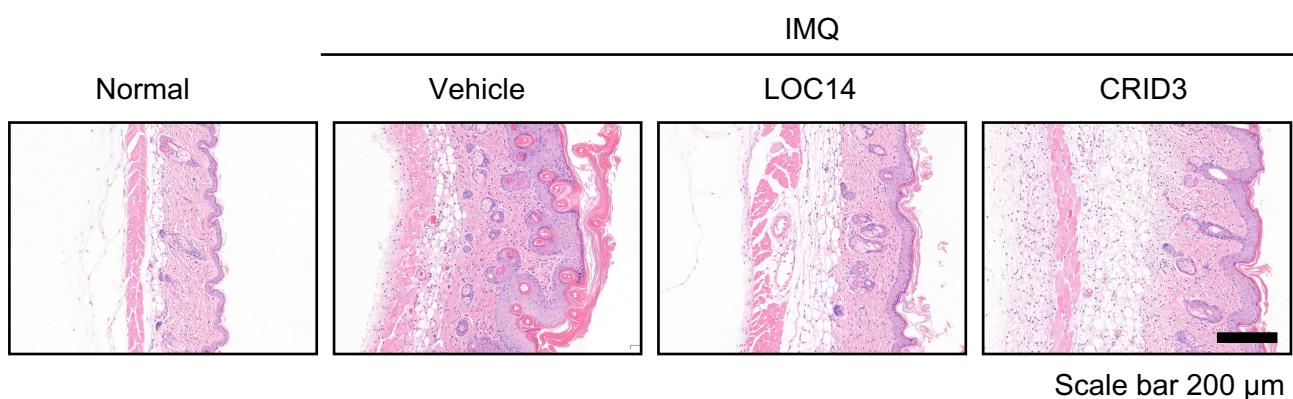
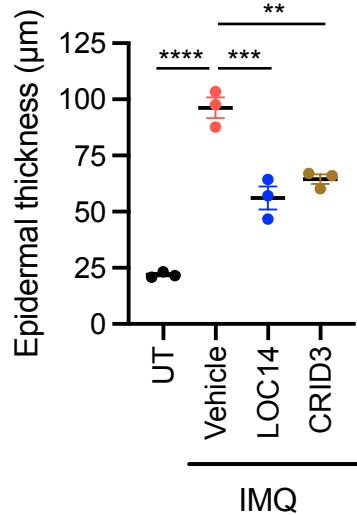
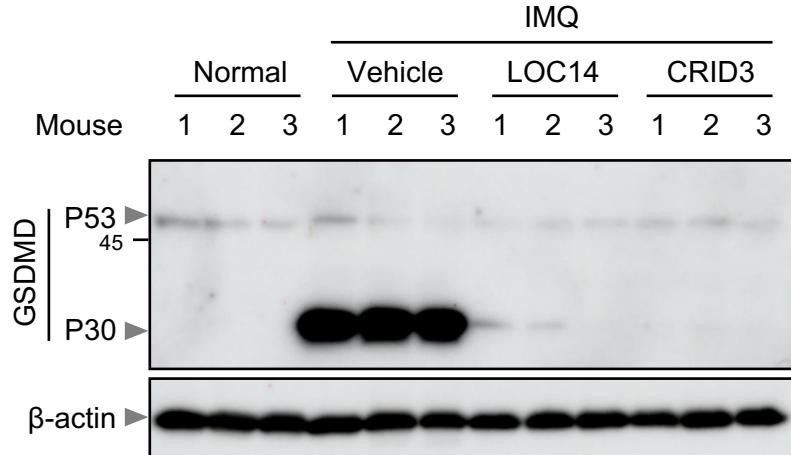














Figure 5

A**C****B****D****Figure 6**

A**B****C****D****Figure 7**

A**B****C****D****E****Figure 8**