

1 Structural basis for the conformational changes of

2 insulin receptor induced by three different hormone

3 ligands

4 Xi Zhang^{1,7}, Ting Zhang^{1,7}, Cang Wu^{2,7}, Yuanzhu,Gao^{3,7}, Shuo
5 Zhang^{6,7}, Zhenglin Li², Linshan Zhong¹, Chenyu Xia², Liuqing,Yang¹,
6 Fengquan Dong^{4*}, Qing Shu^{5*}, Yang Fu^{1*}, Renhong,Yan^{1*}

8 ¹Department of Biochemistry, SUSTech Homeostatic Medicine
9 Institute, School of Medicine, Key University Laboratory of
10 Metabolism and Health of Guangdong, Institute for Biological
11 Electron Microscopy, Southern University of Science and
12 Technology, Shenzhen, 518055, Guangdong, China.

14 ²Department of Biology, School of Life Sciences, Southern
15 University of Science and Technology, Shenzhen, 518055, China.

17 ³Cryo-EM Centre, Southern University of Science and Technology,
18 Shenzhen, 518055, China;

20 ⁴Cardiovascular medicine, Shenzhen University General Hospital,
21 Shenzhen, 518055, Guangdong, China.

23 ⁵Department of Gastroenterology, The First Affiliated Hospital of
24 Shenzhen University, Shenzhen People's Second Hospital,
25 Shenzhen, 518000, China.

27 ⁶School of Life Sciences, Zhengzhou University, Zhengzhou, Henan
28 Province, China

29

30 ⁷These authors contribute equally.

31 *To whom correspondence should be addressed: Fengquan Dong

32 Fengquan.dong@foxmail.com (F.D.); sq6060@163.com (Q.S.);

33 fuy@sustech.edu.cn (Y.F.); yanrh@sustech.edu.cn (R.Y.)

34 **Summary**

35 **The insulin receptor (IR) is central to the regulation of**
36 **glucose and lipid metabolism. Although insulin is its primary**
37 **ligand, insulin-like growth factors I and II (IGF-I and IGF-II)**
38 **also engage IR, albeit with reduced affinity. The structural**
39 **basis of cooperative ligand binding, however, has remained**
40 **poorly understood. Here, we report cryo-Electron Microscopy**
41 **(cryo-EM) structures of IR in complex with insulin, IGF-I, and**
42 **IGF-II, revealing that all three ligands engage the receptor at**
43 **overlapping binding sites and can induce a conserved T-**
44 **shaped quaternary assembly involving four ligand molecules**
45 **at site 1/1' and site 2/2'. Despite this shared overall**
46 **architecture, distinct ligand-specific conformational changes**
47 **were observed. Notably, IGF-I and IGF-II adopt different**
48 **binding sequence at site 1 and site 2 compared to insulin,**
49 **suggesting unique interaction dynamics. These structural**
50 **insights highlight divergent mechanisms of ligand**
51 **recognition and cooperative binding, providing a deeper**
52 **understanding of hormone-induced conformational**
53 **modulation of the IR.**

54

55 **Keywords: Insulin receptor, IGF-I, IGF-II, Cryo-electron**
56 **microscopy**

57

58 **Introduction**

59 The insulin receptor (IR) is a transmembrane receptor tyrosine
60 kinase (RTK) that plays a fundamental role in regulating glucose and
61 lipid homeostasis in humans, particularly by mediating insulin-
62 dependent signaling pathways that control glucose uptake,
63 metabolism, and storage in key tissues such as muscle, fat, and liver
64 cells[1-5]. Dysregulation of IR signaling is associated with metabolic
65 disorders including type 2 diabetes mellitus and insulin resistance
66 syndromes, making IR a critical therapeutic target[1, 3, 4].

67 Research suggests that the IR dimer comprises two identical
68 protomers (protomer A and protomer B), each composed of α - and β -
69 subunits linked by disulfide bonds and exhibiting a Λ -shaped
70 symmetric structure[6-8]. Upon insulin binding to the extracellular
71 domain (ECD) of IR, the signal is transmitted through the
72 transmembrane domain to the intracellular domain, inducing
73 phosphorylation of the tyrosine kinase domain (TK)[7-11]. Insulin
74 binds IR at two primary interaction sites, the site 1 and site 2, each
75 present on both protomers, resulting in a total of four potential
76 ligand-binding sites per receptor dimer (site 1/1' and site 2/2'). Cryo-
77 EM studies have revealed both asymmetric (T -shaped) and
78 symmetric (T -shaped) conformations of IR in complex with insulin,
79 corresponding to partially and fully active signaling states,
80 respectively[10,11].

81 In addition to insulin, IR can also bind insulin-like growth factors I
82 and II (IGF-I and IGF-II), although these interactions occur with
83 lower affinity[12]. Recent reviews have comprehensively
84 summarized advances in the structural and biochemical
85 understanding of insulin and IGF receptor activation
86 mechanisms[13, 14], highlighting the conserved architecture of the

87 insulin/IGF signaling axis. However, the molecular basis of ligand
88 recognition and cooperative binding, particularly for IGF-I and IGF-II
89 interaction with IR, remains incompletely understood. IGF-I and IGF-
90 II share high sequence and structural similarity with insulin and act
91 primarily through their cognate receptors, IGF-IR and IGF-IIR,
92 respectively[15-19] ([Fig.S1](#)). However, their capacity to engage IR,
93 particularly the IR-A isoform, which lacks exon 11 and is frequently
94 expressed in fetal tissues and cancer, suggests potential
95 physiological and pathological roles in modulating IR activity,
96 remains unclear[20-23]. Despite extensive structural studies have
97 elucidated IR-insulin complexes and, more recently, IGF-II bound IR
98 structures, establishing a general framework for receptor
99 activation[24,25], how IGF-I and IGF-II bind to full-length IR-A and
100 induce cooperative or distinct conformational changes remains
101 largely unexplored.

102 To address this gap, we determined cryo-EM structures of full-length
103 human IR-A bound to insulin, IGF-I, and IGF-II. While insulin- and
104 IGF-II-bound IR structures have been characterized previously[25],
105 the molecular basis of IGF-I recognition by full-length IR-A has
106 remained elusive. Previous structural information was limited to an
107 IR-B/IGF-1R hybrid receptor, in which a single IGF-I molecule
108 occupied site 1[26]. Here, we present the first cryo-EM structures of
109 full-length IR-A in complex with IGF-I, revealing that IR-A can
110 accommodate up to three IGF-I molecules at sites 1 and 2. Taken
111 together, these data uncover ligand-dependent local conformational
112 differences and provide a structural framework for understanding
113 ligand-specific IR activation and cooperativity.

114

115 **METHOD DETAILS**

116 **Protein expression and purification**

117 Full-length human IR-A (accession number: NM_001079817.3) with
118 3 X Flag-Affinity Tag at the C-terminal tail was subcloned into the
119 pCDNA3.1 expression vector. The receptor was expressed by
120 HEK293F cells that were grown at 37 °C in SMM-293T-II expression
121 medium (Sino Biological). When the cell density reached to 2-3 ×
122 10⁶ cells/ml, the cells were transiently transfected with 1 mg/l
123 endotoxin-free plasmid (mixed with polyethyleneimine, 1:3 [w/w]
124 ratio), maintained for 72 h at 30 °C, and harvested by centrifugation
125 (1500 × g, 3 min). The cells were resuspended in lysis buffer
126 containing 25 mM Tris-HCl pH 8.0, 200 mM NaCl, 1.0% (w/v) DDM
127 (ndodecyl-b-D-maltopyranoside, APExBIO), and protease inhibitor
128 cocktail (APExBIO) and harvested by centrifugation (100,000 × g, 1
129 h). The supernatant was collected and incubated with anti-
130 DYKDDDDK affinity beads (Smart-Lifesciences) and then washed
131 with more than 10 column volumes of washing buffer [PBS buffer
132 with 0.1% (w/v) DDM (n-dodecyl-b-D-maltopyranoside, APExBIO)
133 and 1X protease inhibitor cocktail]. Finally, the targeted protein was
134 eluted by 0.2 mg/ml Flag peptides and further purified by size
135 exclusion chromatography (Superose 6 10/300 GL, Cytiva
136 Healthcare) in PBS buffer with 0.03% (w/v) DDM. For cryo-EM
137 sample preparation, the IR protein was mixed with Amphipol A8-35
138 at 1:5 (w/w) with gentle rotation for approximately 12 h, and then
139 Bio-Beads SM-2 (BIO-RAD) was added to remove superfluous
140 detergent. Finally, the Bio-Beads were removed by centrifugation,
141 and the protein was further purified by a Superose 6 increase 10/300
142 GL size-exclusion column. Insulin (Sigma-Aldrich, Cat#91077C),
143 IGF-I (Sino Biological Cat#CU100) and IGF-II (Sino Biological, Cat#

144 FU100) dry powder were dissolved and further purified by size-
145 exclusion chromatography with PBS buffer.

146 **EM data acquisition, model building and refinement**

147 A 3 μ L concentrated samples (IR:insulin/IGF-I/IGF-II, with a molar
148 ratio of 1:1-6) were added to the glow-discharged Quantifoil R1.2/1.3
149 300-mesh gold holey carbon grids (Quantifoil). Grids were waited for
150 3.0 s and blotted for 3.0 s under 100% humidity at 4 °C before being
151 plunged into liquid ethane by a Vitrobot (FEI). Micrographs were
152 acquired on a Titan Krios microscope (FEI) operated at 300 kV with a
153 K3 Summit direct electron detector (Gatan), yielding a pixel size of
154 0.66 Å on images. The defocus range was set from -1.0 to -2.5 mm.
155 Each micrograph was dose-fractionated to 32 frames under a dose
156 rate of 20 e⁻/pixel/s, with a total exposure time of 1.08 s. All steps of
157 image processing were performed using cryoSPARC software
158 tools[27,28] (Fig. S3-S9). All resolutions were estimated by applying
159 a soft mask around the protein density using the gold-standard
160 Fourier shell correlation (FSC, 0.143)[29]. Models from the
161 (AlphaFold2AF-P06213-F1-model_v4.pdb) and previously reported
162 structures (PDB: 5U8Q, 6PXW, 6VWG and 6PXV) were initiated by
163 docking each domain derived into the cryo-EM map by UCSF
164 ChimeraX software, further adjusted in Coot[30-32]. Finally, the
165 model was refined by Phenix software[33].

166 **Data availability**

167 Atomic coordinates and cryo-EM density maps of the IR/IGF-I
168 complexes (PDB: 8XJS, whole map: EMD-38404; PDB: 8XK1, whole
169 map: EMD-38413; PDB: 8XKR, whole map: EMD-38423; PDB: 8XKM,
170 whole map: EMD-38420), the IR/insulin complexes (PDB: 8YYL,
171 whole map: EMD-39675; PDB: 8YY5, whole map: EMD-39677; PDB:

172 8YYT, whole map: EMD-39678), and the IR/IGF-II complexes (PDB:
173 8YSZ, whole map: EMD-39566) have been deposited to the Protein
174 Data Bank (<http://www.rcsb.org>) and the Electron Microscopy Data
175 Bank (<https://www.ebi.ac.uk/pdbe/emdb/>), respectively ([Table S1](#)).
176 And all maps and coordinates are available from the corresponding
177 authors upon reasonable request.

178

179 **RESULTS**

180 **Cryo-EM structures of the IR bound to different hormones**

181 To elucidate the structural basis of IGF-I binding to the IR, we
182 performed single-particle cryo-EM analysis of full-length IR in the
183 presence of saturating concentrations of IGF-I, using molar ratios of
184 1:6 and 1:12 (IR:IGF-I). These datasets revealed multiple
185 conformational states, with three or four IGF-I molecules bound. By
186 combining particles from both conditions, we obtained four distinct
187 reconstructions at resolutions of 3.24 Å, 3.53 Å, 5.00 Å, and 3.31 Å,
188 enabling detailed structural analysis ([Fig.1](#), [Fig. S2-S4](#)).

189 To capture lower-occupancy states, we also analyzed IR in the
190 presence of reduced IGF-I concentrations (1:3 molar ratio). Across
191 all tested conditions, two predominant conformations consistently
192 emerged: an asymmetric state with two IGF-I molecules bound, and a
193 symmetric T-shaped state with four IGF-I molecules bound ([Fig. S4](#)).

194 In the asymmetric conformation, IGF-I molecules occupy binding site
195 1 and site 2 on protomer A, while site 1' and site 2' on protomer B
196 remain unoccupied, resulting in increased flexibility in the CR-L1
197 domains of protomer A and the FnIII-1 to -3 domains of protomer B
198 ([Fig.1](#)). In contrast, the symmetric T-shaped conformation displays
199 all four IGF-I molecules bound at site 1/1' and site 2/2', stabilizing the
200 extracellular domains ([Fig.S8](#)).

201 We next investigated the interaction between IR and IGF-II, a
202 structurally homologous ligand of IGF-I. Cryo-EM analysis of IR in
203 complex with IGF-II at a 1:6 molar ratio revealed two main
204 conformations: an asymmetric state with two IGF-II molecules (3.35
205 Å, predominant class) and a symmetric T-shaped conformation with
206 four IGF-II molecules (approximately 8 Å). Although the latter
207 exhibited lower resolution, IGF-II densities near the FnIII-1 domains
208 were clearly discernible (Fig. S7). These conformations were largely
209 consistent with those observed in the IR/IGF-I complex (Fig. S3-S4).
210 Interestingly, in the asymmetric IR/IGF-II structure, the
211 FnIII-3/FnIII-3' domains showed tight inter-protomer contacts,
212 differing from a recently reported structure (Fig. S10). Attempts to
213 capture lower-occupancy states at reduced IGF-II concentrations
214 were unsuccessful, suggesting that IGF-II preferentially stabilizes
215 asymmetric T-shaped states over the symmetric T-shaped
216 conformation.

217 To directly compare ligand-induced binding patterns, we also
218 determined the cryo-EM structures of IR in complex with insulin at
219 molar ratios of 1:3 and 1:6 under identical experimental conditions
220 (Fig. 1 and Fig. S5-S6). As expected, increasing insulin
221 concentrations correlated with greater ligand occupancy, resulting
222 in three predominant conformational states: IR bound to one, two, or
223 four insulin molecules (Fig. S9). At low insulin concentrations (1:3), a
224 T-shaped conformation with insulin bound only to site 1 and site 1'
225 was readily detected (Fig. S6). In contrast, under saturating
226 conditions, only the fully active T-shaped conformation with four
227 insulin molecules bound was observed, consistent with previous
228 reports (Fig. S5)[10]. Notably, in the singly bound IR-insulin
229 structure, significant flexibility was observed in the FnIII-2' and

230 FnIII-3' domains of protomer B. In contrast, the T-shaped
231 conformations with two or four insulin molecules exhibited
232 comparable overall architectures, representing fully active states of
233 the receptors (Fig.S9)[11].

234 A comparative analysis of ligand binding sequences revealed distinct
235 ligand-specific dynamics. For IGF-I, occupation of site 1 is followed
236 by binding at site 2, with subsequent engagement of site 1' and site 2'
237 at higher ligand concentrations. This binding order contrasts with
238 that of insulin, which has been proposed to initially engage site 2' in
239 the membrane-proximal FnIII-1' domain before transitioning to site 1
240 formed by the L1 domain, α -CT', and FnIII-1', as proposed by
241 Nielsen[34]. Similarly, IR bound to IGF-II at a 1:6 molar ratio
242 exhibited two structural states, one with IGF-II molecules occupying
243 site 1 and site 2, and another with all four sites occupied, suggesting
244 a binding sequence analogous to that of IGF-I (Fig. S7, S10). These
245 ligand-specific binding behaviors likely contribute to their divergent
246 physiological roles and downstream signaling outputs[4, 19].

247

248 **Interaction interfaces for different hormones at binding site 1**

249 To elucidate the molecular determinants underlying hormone
250 recognition by the IR, we focused on the detailed interaction
251 interfaces at binding site 1, a critical region that initiates ligand-
252 induced conformational changes. In contrast, binding site 1' and site
253 2/2' exhibited relatively weak ligand densities (Fig. S8-S10),
254 highlighting the central role of site 1 in hormone engagement.

255 At binding site 1, a composite binding pocket is formed by three
256 structural elements: the L1 domain from protomer A, the α -CT' helix,
257 and the FnIII-1' domain from protomer B. Together, these elements
258 delineate a binding cavity composed of at least 20 interface residues

259 that accommodate hormone molecules[11]. In the IR/insulin
260 complex, key residues contributing to the binding pocket include
261 Asn42, Glu61, and Lys148 from the L1 domain; Arg744, Glu733, and
262 Glu738 from the α -CT' helix; and Asn568 from the FnIII-1' domain.
263 For the IR/IGF-I complex, the pocket is formed by Asn42, Arg41, and
264 Glu343 from the L1 domain; Asn738 and Arg744 from the α -CT'
265 helix; and Arg566 from the FnIII-1' domain. Similarly, in the IR/IGF-II
266 complex, the binding pocket comprises Asn42, Lys67, and Gly37
267 from the L1 domain; Arg744 and Glu738 from the α -CT' helix; and
268 Pro522 from the FnIII-1' domain (Fig. 2A-C).
269 Notably, Arg744 and Glu738 of the α -CT' helix, together with Asn42
270 from the L1 domain, are consistently involved in binding all three
271 hormones, indicating a conserved recognition mechanism at site 1.
272 Among the tested ligands, insulin demonstrated the highest binding
273 affinity, as reflected by the greater number of hydrogen bonds
274 formed, which is consistent with previous observations[15].

275

276 **The conformational changes of the IR/IGF-I and IR/Insulin 277 complexes**

278 We next examined the overall conformational changes of the IR upon
279 IGF-I binding. Notably, the transient occupancy of binding site 1/2,
280 an interface between sites 1 and 2, by a third and fourth IGF-I
281 molecule introduces substantial flexibility to surrounding domains
282 prior to the establishment of the canonical T-shaped conformation
283 (Fig. 3). This increased flexibility is particularly evident in the
284 FnIII-1, FnIII-2, and FnIII-3 domains of protomer A, as well as the L1
285 domain of protomer B, all of which undergo marked shifts despite the
286 inherent symmetry of the IR dimer (Fig. 3).

287 In contrast, the IR-insulin complex exhibits greater conformational

288 stability across different ligand-bound states. Specifically, the L1,
289 CR, and L2 domains of protomer A, together with the α -CT' helix and
290 FnIII-1' domain of protomer B, remain largely unaltered upon
291 binding one, two, or four insulin molecules, owing to insulin's high-
292 affinity engagement at binding site 1 (Fig. 4).

293 We further compared the fully ligand-bound T-shaped conformations
294 of the IR/IGF-I and IR/insulin complexes. Overall, the symmetric
295 structures are highly similar, particularly in the head region
296 encompassing the L1, CR, L2, FnIII-1 domains and α -CT helix.
297 However, when aligned by protomer A, clear differences emerge in
298 the relative positioning of the two FnIII domains, especially in their
299 interdomain distances (Fig. S11).

300 Interestingly, we did not observe any structures of IR bound with two
301 IGF-I or IGF-II molecules both occupying binding site 1 and site 1'.
302 Instead, an asymmetric conformation was consistently observed,
303 wherein the two hormone molecules occupy binding sites 1 and 2 of
304 protomer A, even at a 1:3 ligand-to-receptor ratio. These findings
305 suggest hormone-specific conformational dynamics during IR
306 activation, pointing to distinct mechanisms of receptor engagement
307 and activation by insulin, IGF-I, and IGF-II, which may underlie their
308 differential physiological functions.

309

310 **Discussion**

311 Insulin-like growth factors are secreted at relatively stable levels, in
312 contrast to the rapid and transient fluctuations of insulin. Consistent
313 with this physiological difference, our structures show that the
314 predominant conformations of the IR/IGF-I complex remain largely
315 unchanged across varying ligand concentrations. This
316 concentration-independent behavior suggests that IGF-I promotes a

317 more sustained and stable mode of receptor activation, potentially
318 supporting long-term cellular functions such as growth,
319 differentiation, and metabolism, rather than acute regulation of
320 glucose homeostasis.

321 It should be emphasized that the cryo-EM structures presented here
322 were obtained under *in vitro* conditions using elevated ligand
323 concentrations to stabilize distinct receptor-bound states. These
324 structures therefore define the conformational space accessible to
325 the insulin receptor upon ligand engagement, rather than
326 representing the dominant signaling states under physiological
327 conditions.

328 By comparison, the canonical T-shaped conformation of the
329 IR/insulin complex is only stabilized under saturating insulin
330 conditions, reflecting a concentration-dependent mechanism that
331 aligns with the rapid and tightly regulated demands of glucose
332 homeostasis. Although the overall assemblies of IR bound to insulin,
333 IGF-I, IGF-II, and insulin-like polypeptides appear similar, their
334 dynamic conformational transitions differ in a ligand-specific
335 manner[25,35,36].

336 An intriguing finding is that IGF-I can occupy all four receptor
337 binding sites more readily than insulin, despite insulin having a
338 higher overall binding affinity for IR. This apparent paradox may be
339 explained by differential site specific affinities, particularly at
340 binding site 1' and 2. Previous biochemical studies have established
341 that insulin receptor activation involves two spatially distinct but
342 functionally coupled binding surfaces and exhibits pronounced
343 negative cooperativity, such that differences in site-specific
344 engagement can substantially influence ligand occupancy and
345 conformational outcomes [37]. Moreover, recent structural and

346 functional analyses have suggested that insulin and IGF ligands
347 differ in their reliance on site-2 engagement, providing a mechanistic
348 basis for ligand-specific cooperativity and activation pathways[25].
349 Our structural data suggest that IGF-I binds to site 2 and site 1' more
350 efficiently than insulin, facilitating the formation of fully occupied
351 symmetric conformations even at lower ligand concentrations.
352 Based on these findings, we propose a dynamic combinatorial
353 binding model to account for the ligand-specific occupancy patterns
354 and conformational transitions of IR upon binding insulin, IGF-I, or
355 IGF-II (Fig.5). This model highlights the importance of individual
356 binding site affinities and local flexibility in shaping the overall
357 activation mechanism of the receptor.

358 Comparison with previously reported insulin receptor complexes
359 further contextualizes our findings. The insulin-bound
360 structures[10,11] and the IGF-II:IR-B complexes[25] collectively
361 revealed conserved features of ligand-induced activation, while the
362 hybrid IR-B/IGF-1R:IGF-I structures[26] demonstrated that IGF-I
363 engages only a single site on the hybrid receptor. Our full-length IR-
364 A:IGF-I structures extend these observations by showing multi-
365 ligand occupancy and a distinct mode of cooperative activation not
366 previously observed for IGF ligands.

367 These results, together with the binding sequence model proposed
368 by Nielsen[34] and the comprehensive structural perspectives
369 summarized in[13,14], provide an integrated view of ligand
370 recognition within the insulin receptor family. Collectively, this study
371 advances our understanding of how insulin, IGF-I, and IGF-II
372 differentially modulate IR activation and signaling specificity.

373 **ACKNOWLEDGMENTS**

374 We thank Shuman Xu, Lei Zhang, Yuanzhu Gao, and Peiyao Li at the
375 Cryo-EM Center of SUSTech for technical support in electron
376 microscopy data acquisition. Renhong Yan is an investigator of
377 SUSTech Institute for Biological Electron Microscopy. This project
378 was mainly supported by the National Natural Science Foundation of
379 China (32422039 to R.Y.), the Shenzhen Science and Technology
380 Program (RCYX20231211090342048 to R.Y.), the Shenzhen Medical
381 Research Fund (A2303046 and B2402043 to R.Y.), the Major Talent
382 Recruitment Program of Guangdong Province (2021QNO2Y167 to
383 R.Y.), the Medical Scientific Research Foundation of Guangdong
384 Province of China (No.A2021333 to F.Q.D.), Shenzhen Science and
385 Technology Innovation Commission Project
386 (No.JCYJ20190808120613189 to F.Q.D.), Shenzhen science and
387 technology research and development fund project
388 (NO.KCXFZ20201221173208023-1039027 to Q.S.), the Shenzhen
389 Pea-cock Team Project (KQTD20200909113758004 to Y.F.). And
390 Special thanks to the support of Taidu Biotech(Suzhou)Co.,Ltd. in
391 protein purification equipments.

392

393 **AUTHOR CONTRIBUTIONS**

394 R.Y. and X.Z. conceived the project. R.Y., Y.F, Q.S., and D.F.
395 supervised the project. R.Y., Y.F, Q.S., D.F., S.Z., and X.Z. designed
396 the experiments. T.Z. did the model analysis. All authors did the
397 experiments and contributed to data analysis. R.Y. and X.Z. wrote the
398 manuscript. R.Y., X.Z., and S.Z. revised the manuscript.

399

400

401 **DECLARATION OF INTERESTS**

402 The authors declare no competing interests.

403

404 **References**

- 405 1. Kasuga, Karlsson, Kahn. Insulin stimulates the phosphorylation
406 of the 95,000-dalton subunit of its own receptor. *Science*.
407 1982,215:185-187.
- 408 2. Ebina, Ellis, Jarnagin, Edery, Graf, Clauser, Ou, et al. The human
409 insulin receptor cDNA: the structural basis for hormone-activated
410 transmembrane signalling. *Cell*. 1985,40:747-758.
- 411 3. Zhang, Zhu, Bi, Huang, Zhou. The Insulin Receptor: An
412 Important Target for the Development of Novel Medicines and
413 Pesticides. *Int J Mol Sci*. 2022,23.
- 414 4. Lawrence. Understanding insulin and its receptor from their
415 three-dimensional structures. *Mol Metab*. 2021,52:101255.
- 416 5. Wei, Lu, Yao, Hong, Yang, Zhang, Yin, et al. Insight into Janus
417 Kinases Specificity: From Molecular Architecture to Cancer
418 Therapeutics. *MedComm - Oncology*. 2024,3.
- 419 6. McKern, Lawrence, Streltsov, Lou, Adams, Lovrecz, Elleman, et
420 al. Structure of the insulin receptor ectodomain reveals a folded-
421 over conformation. *Nature*. 2006,443:218-221.
- 422 7. Xiong, Blakely, Kim, Menting, Schafer, Schubert, Agrawal, et al.
423 Symmetric and asymmetric receptor conformation continuum
424 induced by a new insulin. *Nat Chem Biol*. 2022,18:511-519.
- 425 8. Li, Park, Mayer, Webb, Uchikawa, Wu, Liu, et al. Synergistic
426 activation of the insulin receptor via two distinct sites. *Nat Struct
427 Mol Biol*. 2022,29:357-368.
- 428 9. Choi, Bai. The Activation Mechanism of the Insulin Receptor: A
429 Structural Perspective. *Annu Rev Biochem*. 2023,92:247-272.
- 430 10. Uchikawa, Choi, Shang, Yu, Bai. Activation mechanism of the
431 insulin receptor revealed by cryo-EM structure of the fully
432 liganded receptor-ligand complex. *Elife*. 2019,8.

433 11. Scapin, Dandey, Zhang, Prosise, Hruza, Kelly, Mayhood, et al.
434 Structure of the insulin receptor-insulin complex by single-
435 particle cryo-EM analysis. *Nature*. 2018,556:122-125.

436 12. Firth, Baxter. Cellular actions of the insulin-like growth factor
437 binding proteins. *Endocr Rev*. 2002,23:824-854.

438 13. Van-Duyne, Blair, Sprenger, Moiseenkova-Bell, Plymate,
439 Penning. The androgen receptor. *Vitam Horm*. 2023,123:439-481.

440 14. Forbes. The three-dimensional structure of insulin and its
441 receptor. *Vitam Horm*. 2023,123:151-185.

442 15. Morrione, Valentinis, Xu, Yumet, Louvi, Efstratiadis, Baserga.
443 Insulin-like growth factor II stimulates cell proliferation through
444 the insulin receptor. *P Natl Acad Sci USA*. 1997,94:3777-3782.

445 16. Hawkes, Kar. The insulin-like growth factor-II/mannose-6-
446 phosphate receptor: structure, distribution and function in the
447 central nervous system. *Brain Res Rev*. 2004,44:117-140.

448 17. Kasprzak. Insulin-Like Growth Factor 1 (IGF-1) Signaling in
449 Glucose Metabolism in Colorectal Cancer. *Int J Mol Sci*. 2021,22.

450 18. Zhu, Chen, Song, Cui, Chen, Yu, Song. Insulin-like Growth
451 Factor-2 (IGF-2) in Fibrosis. *Biomolecules*. 2022,12.

452 19. LeRoith, Holly, Forbes. Insulin-like growth factors: Ligands,
453 binding proteins, and receptors. *Mol Metab*. 2021,52:101245.

454 20. Escribano, Beneit, Rubio-Longas, Lopez-Pastor, Gomez-
455 Hernandez. The Role of Insulin Receptor Isoforms in Diabetes and
456 Its Metabolic and Vascular Complications. *J Diabetes Res*.
457 2017,2017:1403206.

458 21. Vella, Giuliano, La Ferlita, Pellegrino, Gaudenzi, Alaimo,
459 Massimino, et al. Novel Mechanisms of Tumor Promotion by the
460 Insulin Receptor Isoform A in Triple-Negative Breast Cancer
461 Cells. *Cells*. 2021,10.

462 22. Denley, Wallace, Cosgrove, Forbes. The insulin receptor isoform
463 exon 11- (IR-A) in cancer and other diseases: a review. Horm
464 Metab Res. 2003,35:778-785.

465 23. Belfiore, Malaguarnera, Vella, Lawrence, Sciacca, Frasca,
466 Morrione, et al. Insulin Receptor Isoforms in Physiology and
467 Disease: An Updated View. Endocr Rev. 2017,38:379-431.

468 24. Choi, Duan, Bai. Regulation and function of insulin and insulin-
469 like growth factor receptor signalling. Nat Rev Mol Cell Biol.
470 2025,26:558-580.

471 25. An, Hall, Li, Hung, Wu, Park, Wang, et al. Activation of the
472 insulin receptor by insulin-like growth factor 2. Nat Commun.
473 2024,15:2609.

474 26. Xu, Margetts, Venugopal, Menting, Kirk, Croll, Delaine, et al.
475 How insulin-like growth factor I binds to a hybrid insulin receptor
476 type 1 insulin-like growth factor receptor. Structure.
477 2022,30:1098-1108 e1096.

478 27. Punjani, Rubinstein, Fleet, Brubaker. cryoSPARC: algorithms for
479 rapid unsupervised cryo-EM structure determination. Nat
480 Methods. 2017,14:290-296.

481 28. Punjani, Zhang, Fleet. Non-uniform refinement: adaptive
482 regularization improves single-particle cryo-EM reconstruction.
483 Nat Methods. 2020,17:1214-1221.

484 29. Rosenthal, Henderson. Optimal determination of particle
485 orientation, absolute hand, and contrast loss in single-particle
486 electron cryomicroscopy. J Mol Biol. 2003,333:721-745.

487 30. Goddard, Brilliant, Skillman, Vergenz, Tyrwhitt-Drake, Meng,
488 Ferrin. Molecular Visualization on the Holodeck. J Mol Biol.
489 2018,430:3982-3996.

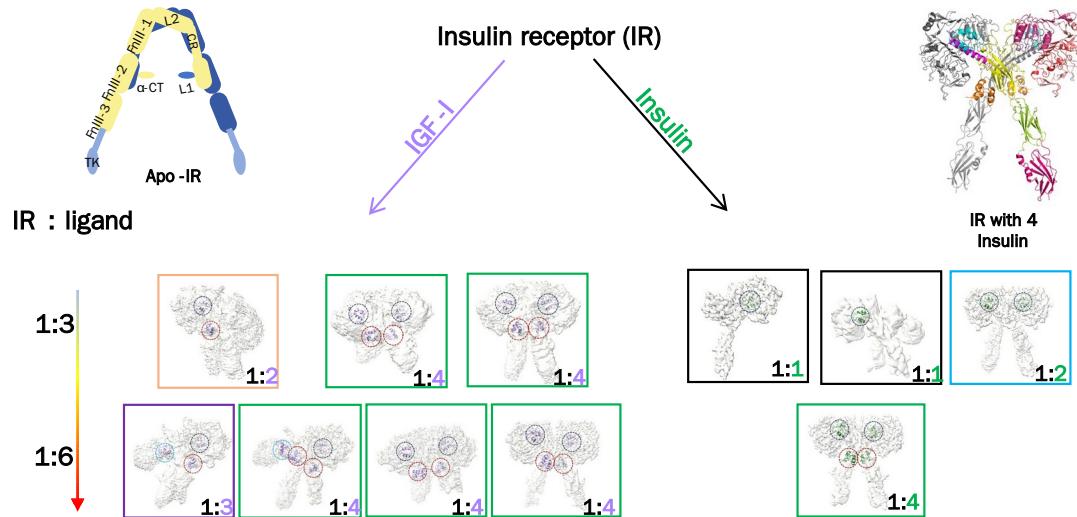
490 31. Jumper, Evans, Pritzel, Green, Figurnov, Ronneberger,
491 Tunyasuvunakool, et al. Highly accurate protein structure
492 prediction with AlphaFold. *Nature*. 2021, 596:583-589.

493 32. Emsley, Lohkamp, Scott, Cowtan. Features and development of
494 Coot. *Acta Crystallogr D Biol Crystallogr*. 2010, 66:486-501.

495 33. Liebschner, Afonine, Baker, Bunkoczi, Chen, Croll, Hintze, et al.
496 Macromolecular structure determination using X-rays, neutrons
497 and electrons: recent developments in Phenix. *Acta Crystallogr D*
498 *Struct Biol*. 2019, 75:861-877.

499 34. Nielsen, Brandt, Boesen, Hummelshoj, Slaaby, Schluckebier,
500 Nissen. Structural Investigations of Full-Length Insulin Receptor
501 Dynamics and Signalling. *J Mol Biol*. 2022, 434:167458.

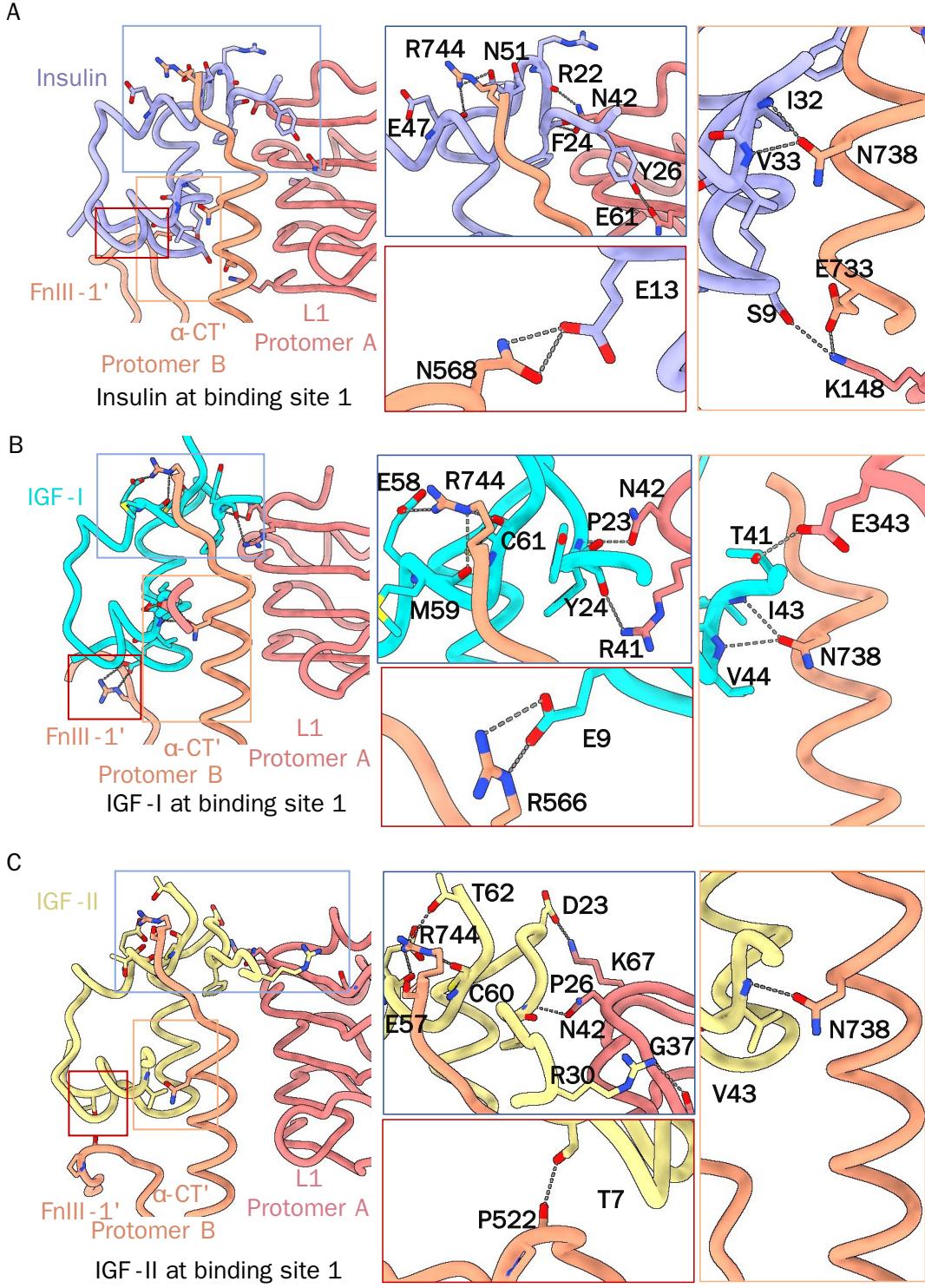
502 35. Viola, Frittmann, Jenkins, Shafi, De Meyts, Brzozowski.
503 Structural conservation of insulin/IGF signalling axis at the
504 insulin receptors level in and humans. *Nature Communications*.
505 2023, 14.


506 36. Chen, Chen, Zhao, Li, Ying, Yu, Yan, et al. Real-time artificial
507 intelligence assisted insulin dosage titration system for glucose
508 control in type 2 diabetic patients: a proof of concept study. *Oral*
509 *Science and Homeostatic Medicine*. 2023, 2.

510 37. De Meyts. Insulin/receptor binding: the last piece of the puzzle?
511 What recent progress on the structure of the insulin/receptor
512 complex tells us (or not) about negative cooperativity and
513 activation. *Bioessays*. 2015, 37:389-397.

514

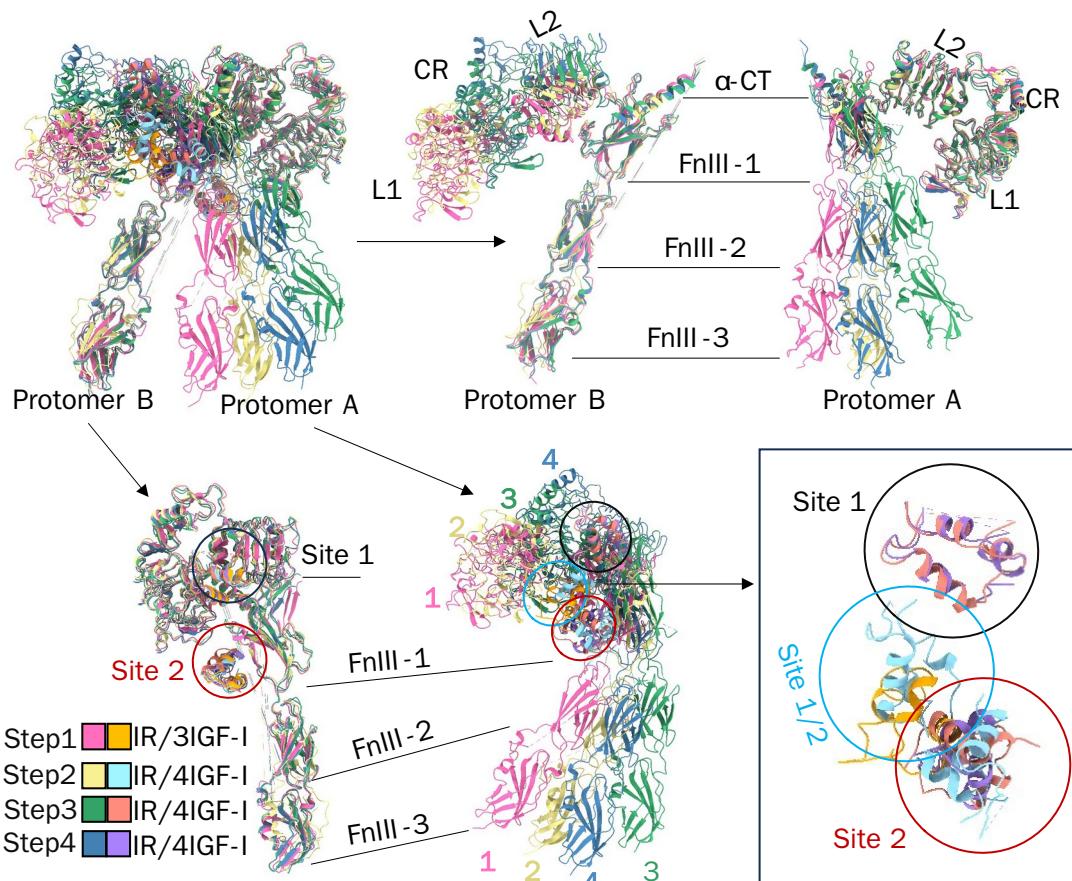
515


516 **Figure Legends**

517

518 **Fig. 1 Cryo-EM structures of the IR bound to insulin or IGF-I across a ligand concentration series.**

520 Representative reconstructions illustrate different ligand-
521 occupancy states of the IR dimer obtained under increasing
522 concentrations of insulin or IGF-I. The occupancy label (e.g., 1:2,
523 1:3, 1:4) denotes the number of bound ligands per IR dimer in the
524 corresponding structure.

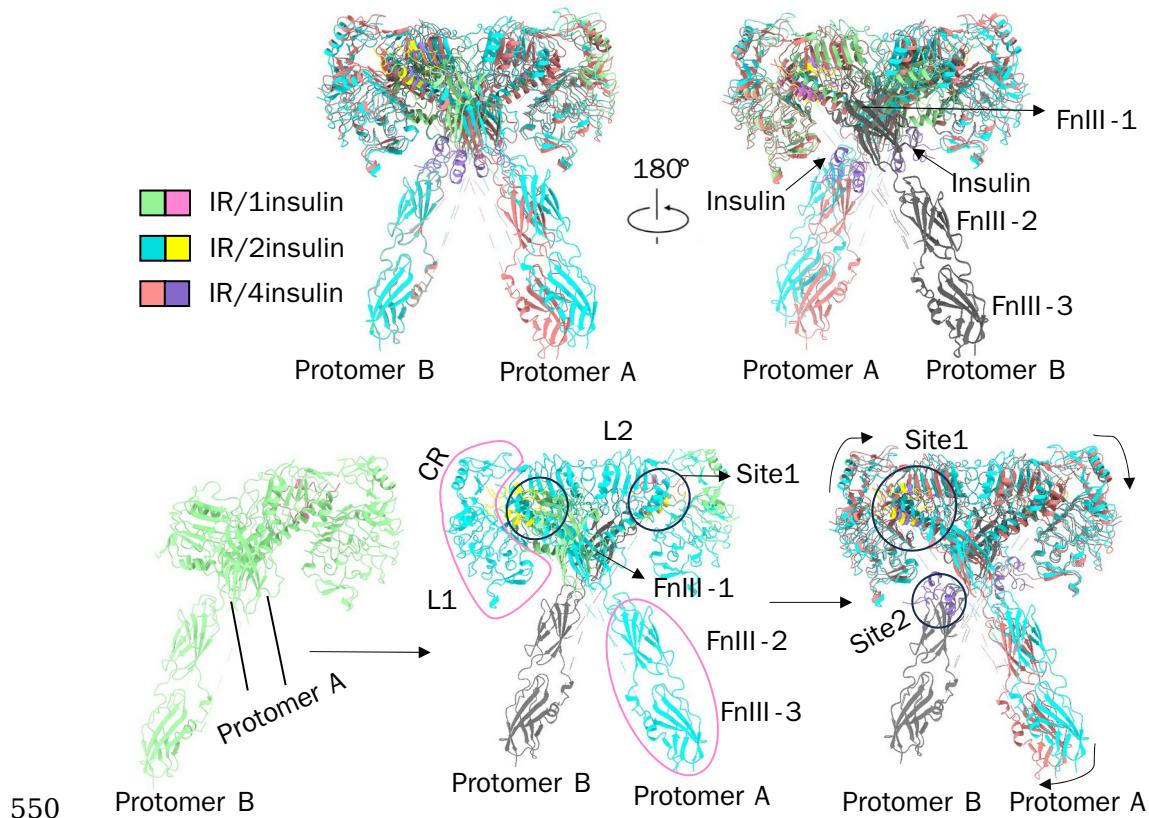


525

526 **Fig. 2 Interaction interfaces for different hormones at
527 binding site 1.**

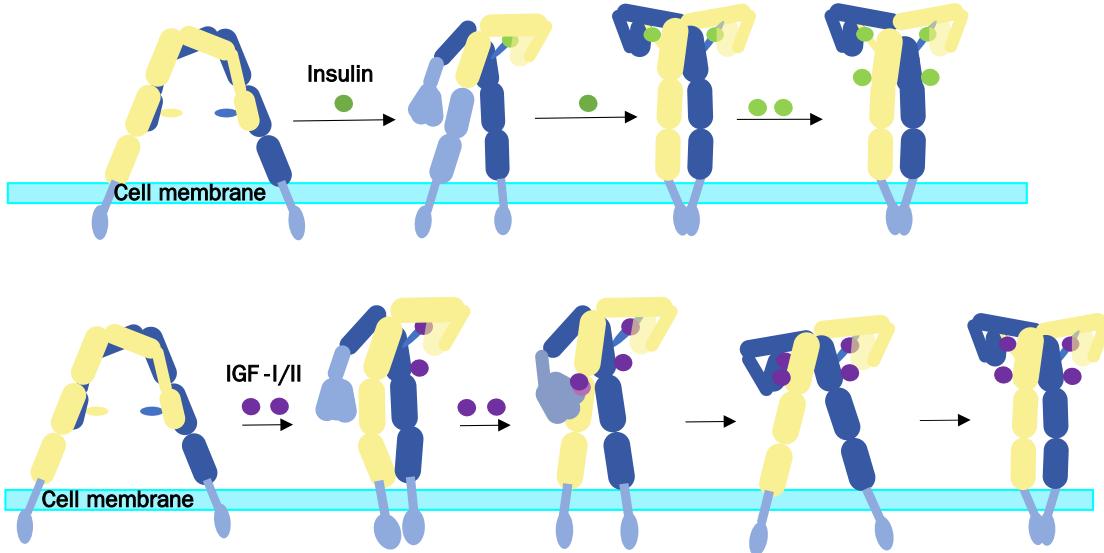
528 The insulin, IGF-I and IGF-II were colored as light purple, cyan and
529 yellow, while the protomer A and protomer B were marked as light

530 orange and light red, respectively.


532 **Fig. 3 Structural comparison of IR-IGF-I complexes in**
533 **different conformational states.**

534 Protomer A and protomer B of the IR dimer are indicated in all
535 panels. The IR protomers are shown in pink, yellow, green, and dark
536 blue, respectively, while the corresponding bound IGF-I molecules
537 are colored orange, cyan, salmon, and purple. Structural
538 superposition of IR-IGF-I complexes reveal a series of distinct
539 conformational states of the receptor associated with increasing
540 ligand occupancy.

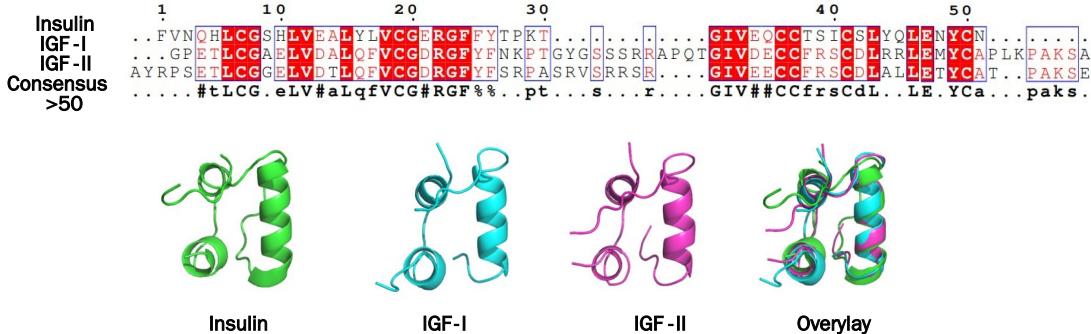
541 Based on these structures, a putative conformational progression is
542 proposed. **Step 1**, one IGF-I molecule is observed at the site 1/2
543 region. Steps 2-3, two IGF-I molecules bind at distinct positions
544 corresponding to site 1 and site 2, accompanied by local


545 rearrangements of the α CT helix and the FnIII-1 domain of protomer
546 B. Step 4, the extracellular “head” region (L1, CR, L2, FnIII-1, α CT
547 helix, and IGF-I) becomes stabilized, while the relative flexibility of
548 the FnIII-2 and FnIII-3 domains of protomer B is reduced.

549

551 **Fig. 4 Conformational changes of IR in complex with insulin.**
552 The IR dimers are shown in light green, cyan, and salmon, with the
553 corresponding bound insulin molecules colored pink, yellow, and
554 purple, respectively. Regions showing minimal conformational
555 changes among these insulin-bound states, including FnIII-1,
556 FnIII-2, and FnIII-3, are shown in gray.
557 During the transition from the one-insulin to the two-insulin
558 occupancy state, regions undergoing notable conformational
559 rearrangements are highlighted by pink boxes. In the four-insulin

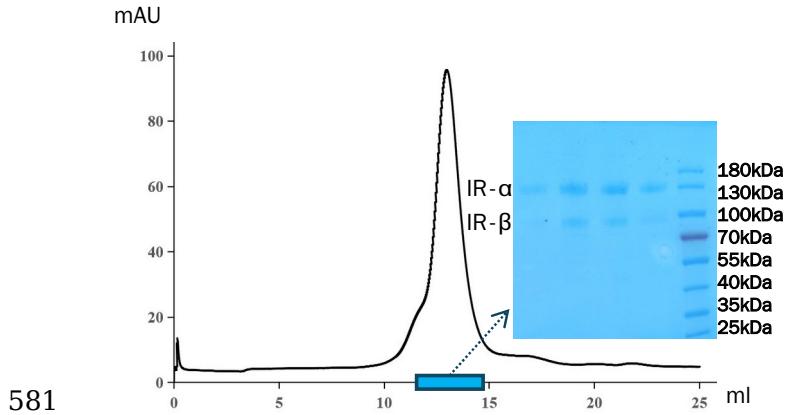
560 bound state, both protomer A and protomer B undergo coordinated
561 movements, resulting in a more stabilized overall receptor
562 conformation.


563

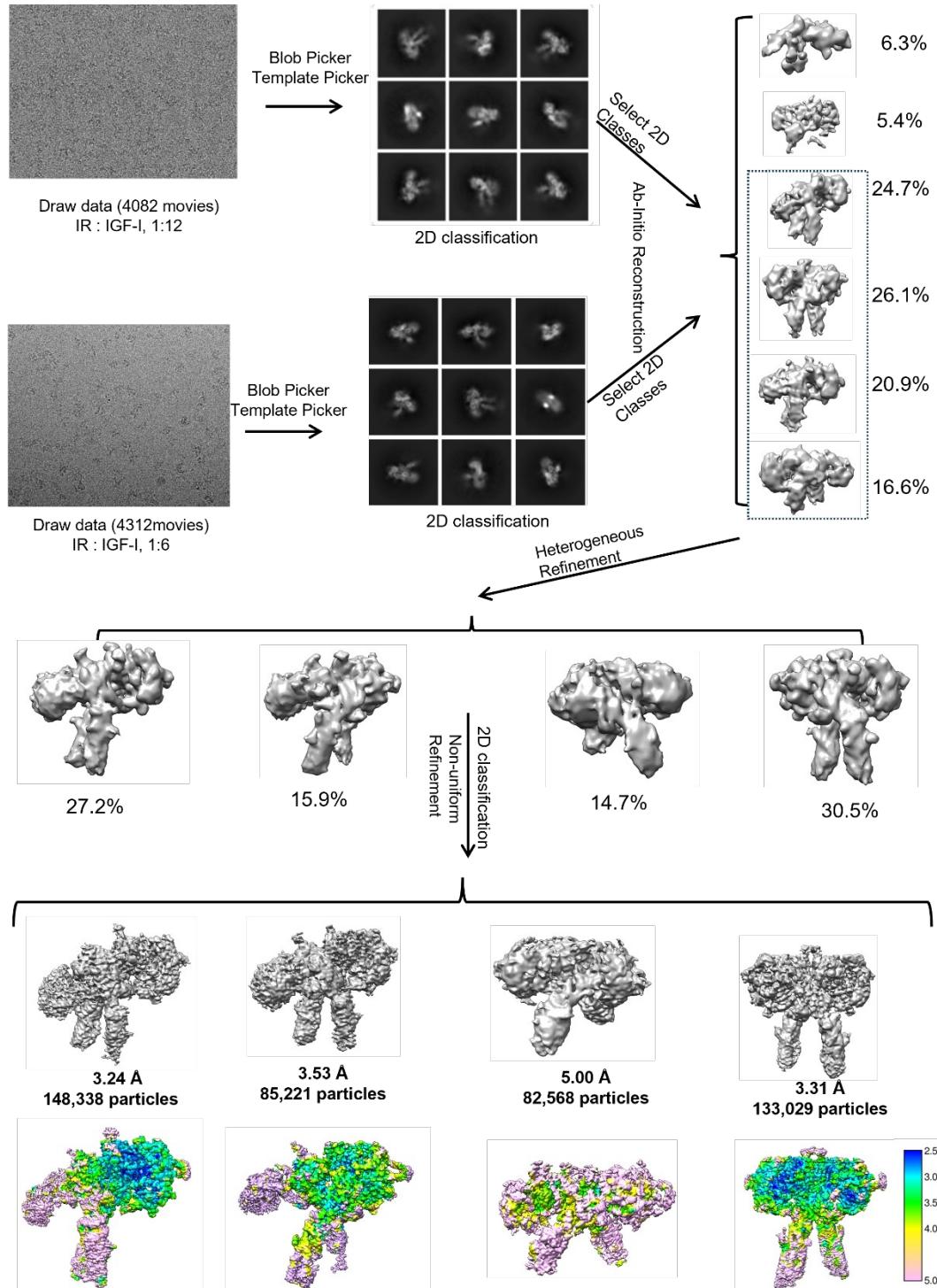
564 **Fig. 5 The working models of how different hormone ligands
565 binds to IR.**

566 Schematic models summarize the proposed activation of IR upon
567 binding insulin or insulin-like growth factors (IGF-I/IGF-II). Insulin
568 and IGFs are shown as green and purple spheres, respectively. The
569 light-blue region indicates flexible parts with lower local resolution
570 in the cryo-EM reconstructions.

571

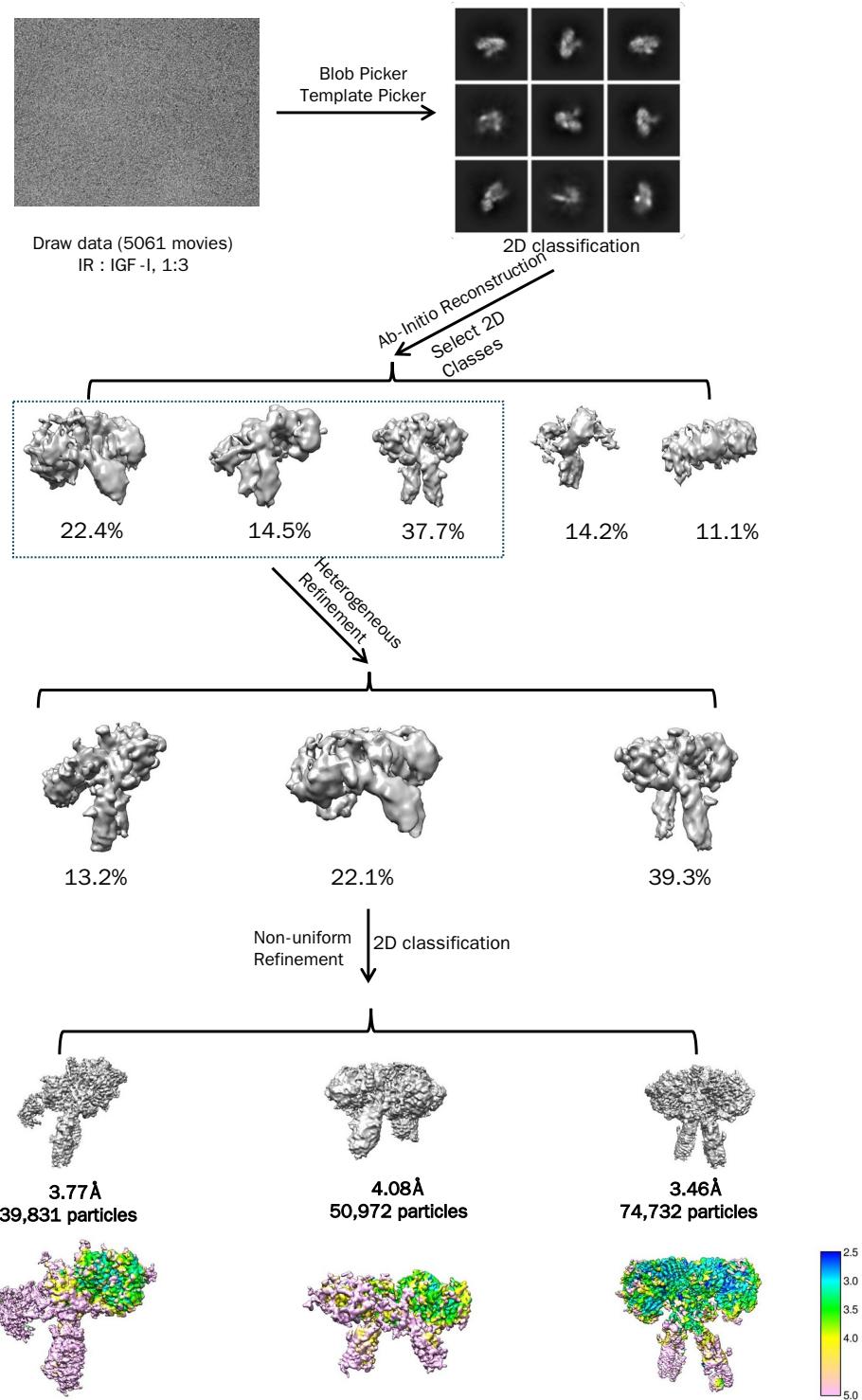

572 **Supplementary information**

574 **Fig. S1 Sequence alignment and structural comparison for insulin,**
575 **IGF-I, and IGF-II.**


576 Residues that are identical or conserved in two sequences are colored in
577 red, and the common conserved sequences are labeled with blue boxes.
578 Meanwhile, the structures of insulin, IGF-I, and IGF-II were colored as
579 green, cyan and pink, respectively.

580

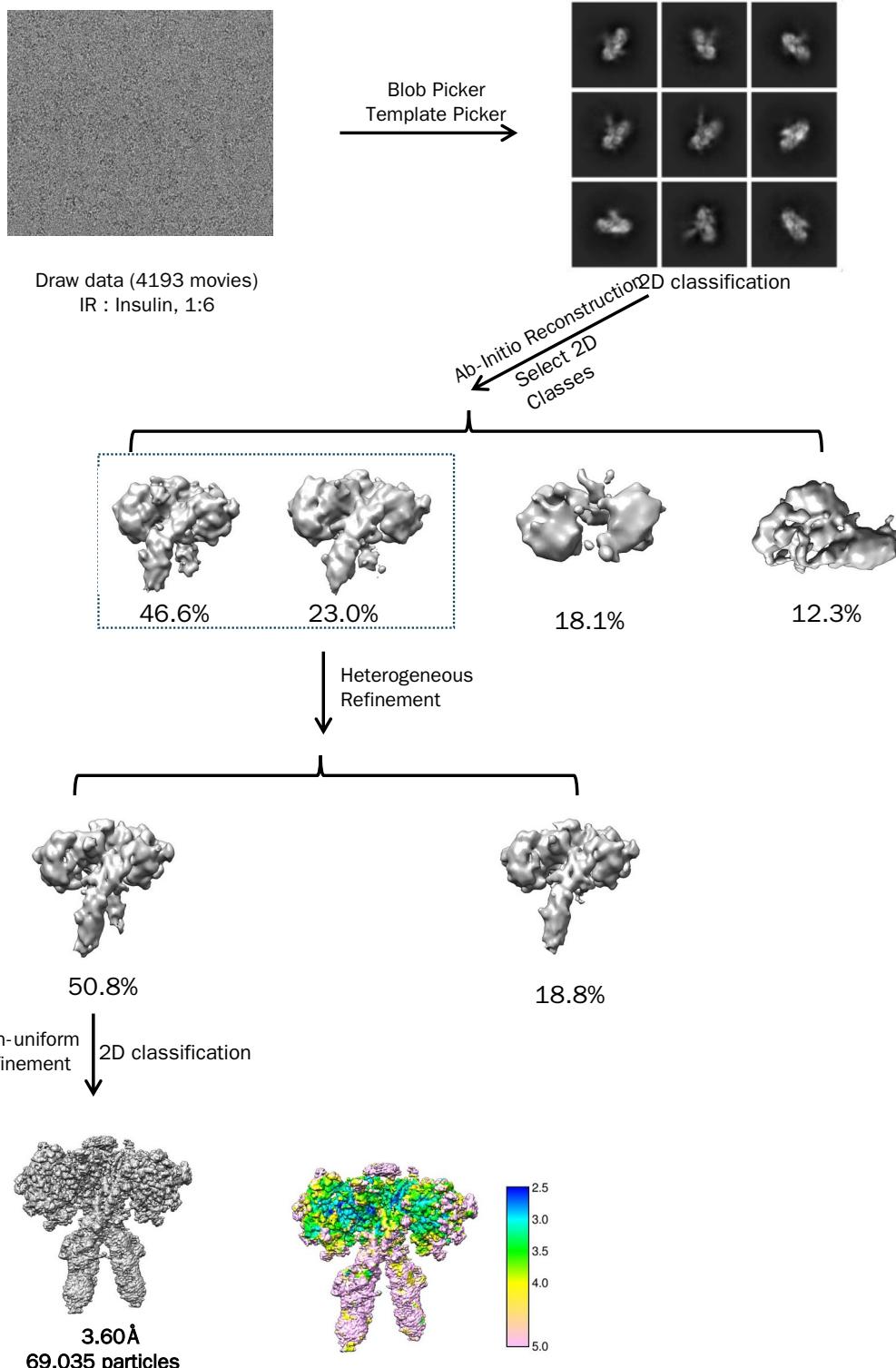
582 **Fig. S2 Protein purification of the full-length human IR.**


583 After the Size-exclusion chromatography, the purity of human IR protein
584 was examined by SDS- PAGE analysis.

586 **Fig. S3 Cryo-EM data processing flowchart of the IR/IGF-I mixture**
587 **at a molar ratio of 1:6 (12).**

588 The final three-dimensional reconstructed maps colored according to
589 local resolution were showed directly below the original maps,
590 respectively.

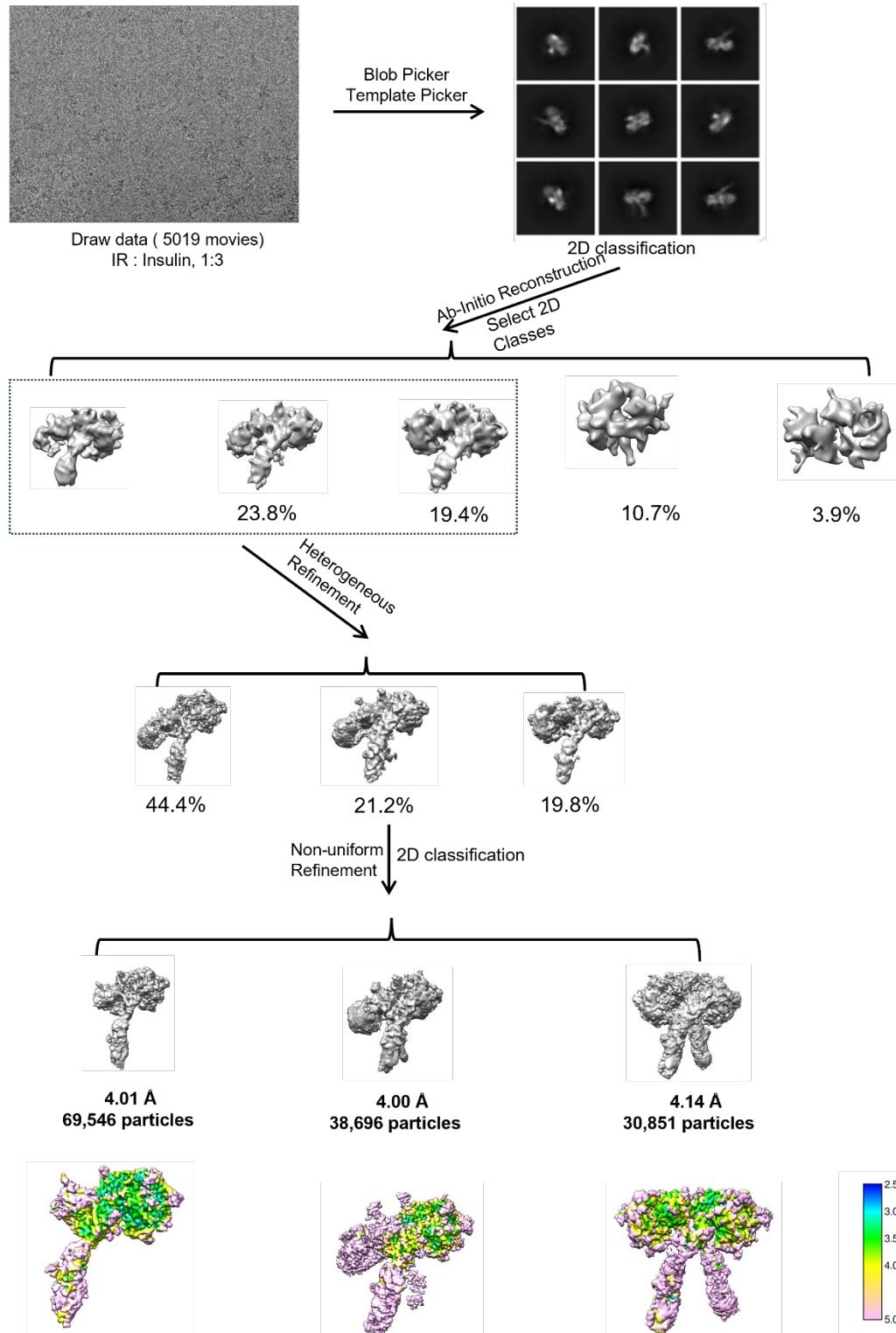
591



592

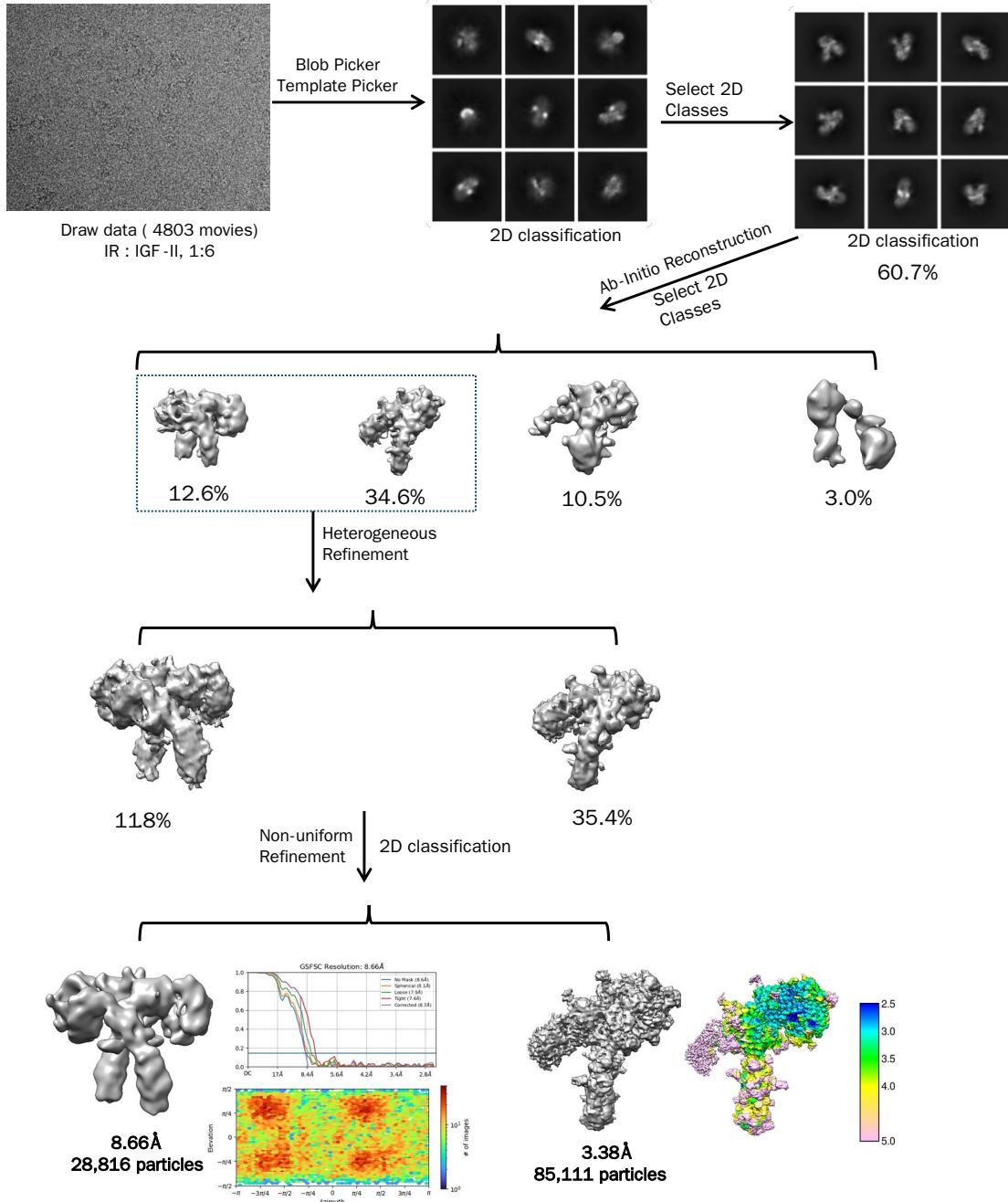
593 **Fig. S4 Cryo-EM data processing flowchart of the IR/IGF-I mixture**
594 **at a 1:3 molar ratio.**

595 The final three-dimensional reconstructed maps colored according to

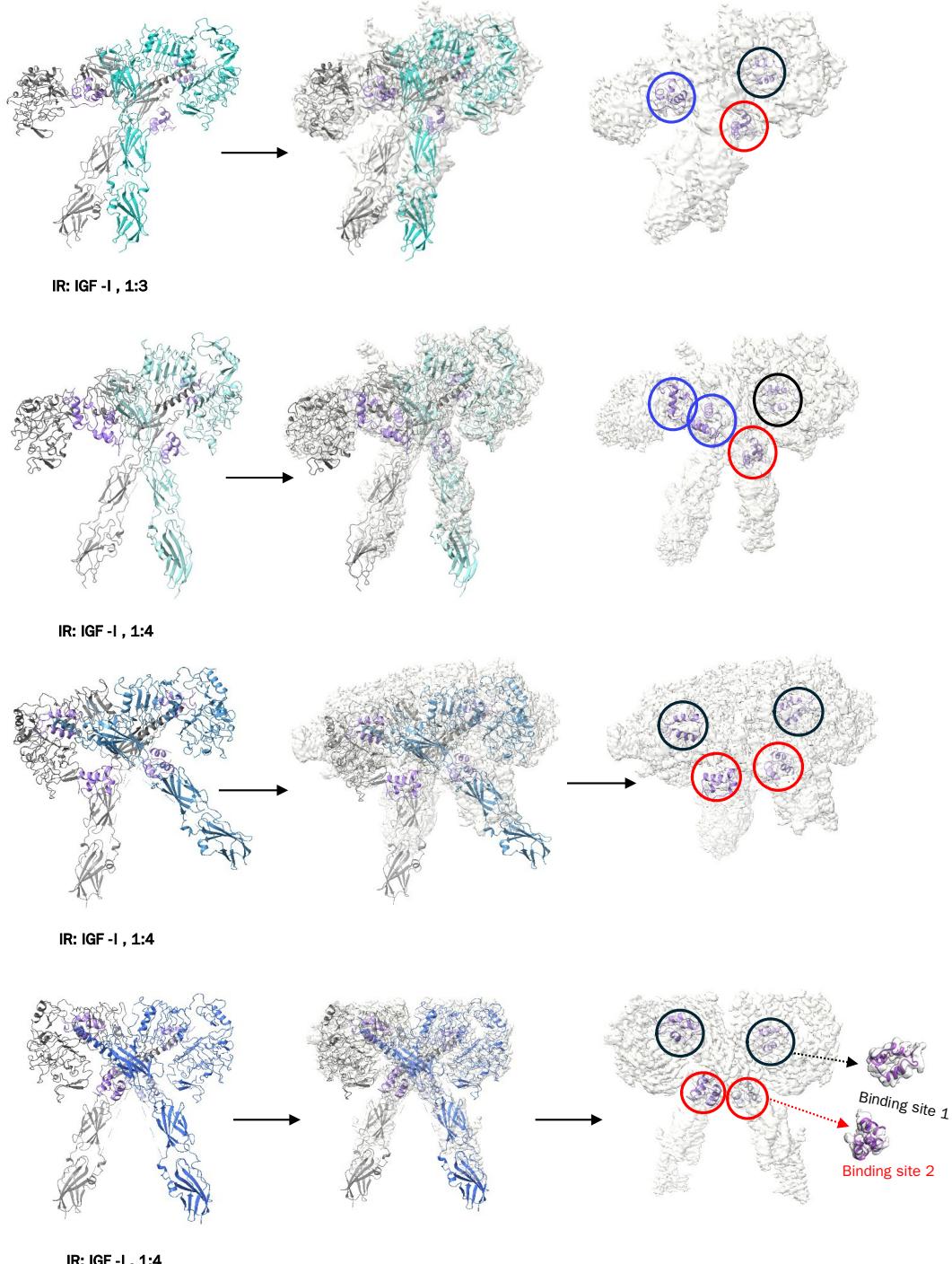

596 local resolution were showed directly below the original maps,
597 respectively.

598

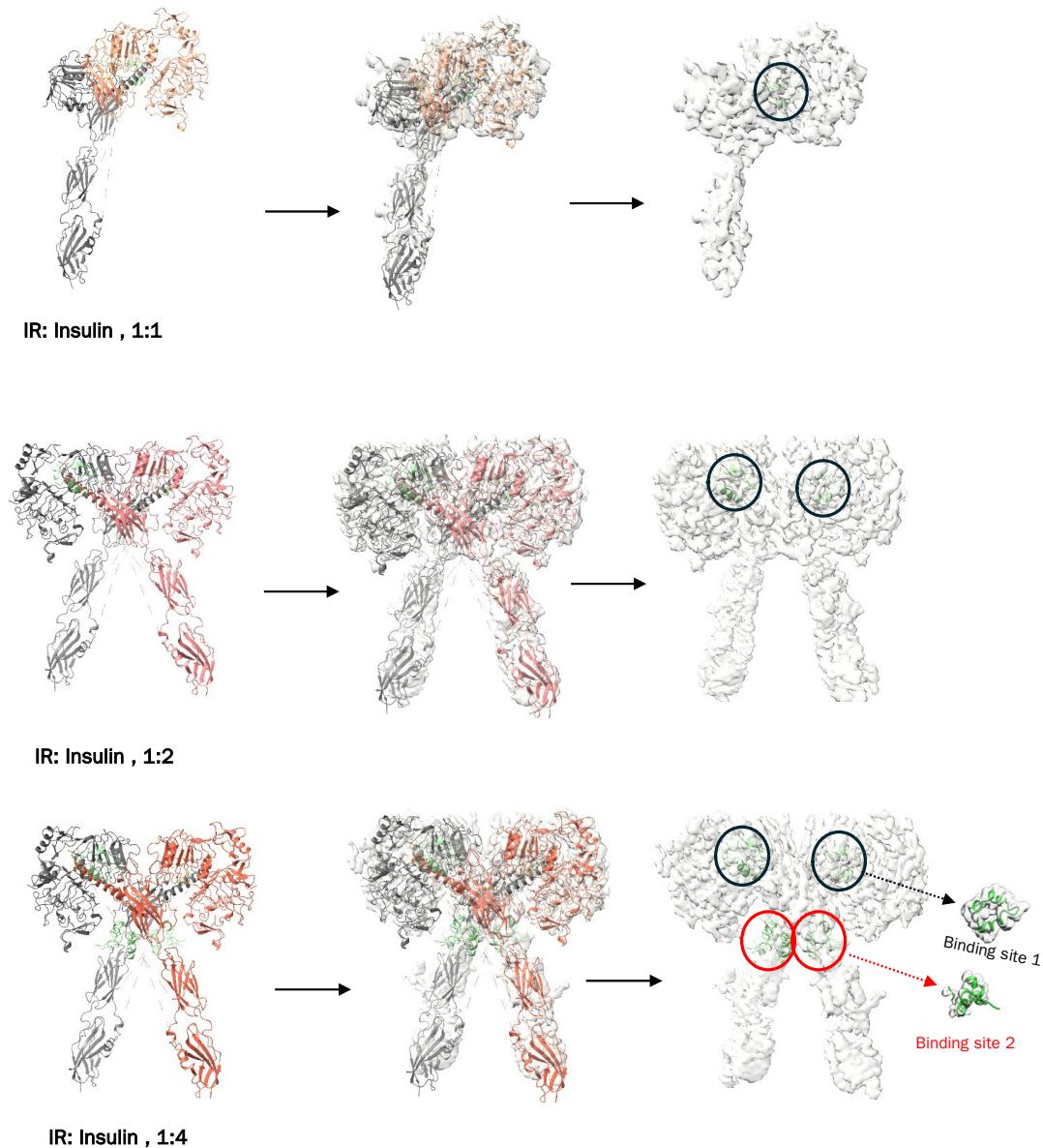
599 **Fig. S5 Cryo-EM data processing flowchart of the IR/insulin**
600 **mixture at a molar ratio of 1:6.**


601 The final three-dimensional reconstructed map colored according to local
602 resolution was showed next to the original map.

603


604 **Fig. S6 Cryo-EM data processing flowchart of the IR/insulin**
605 **mixture at a molar ratio of 1:3.**

606 The final three-dimensional reconstructed maps colored according to
607 local resolution were showed directly below the original maps,
608 respectively.

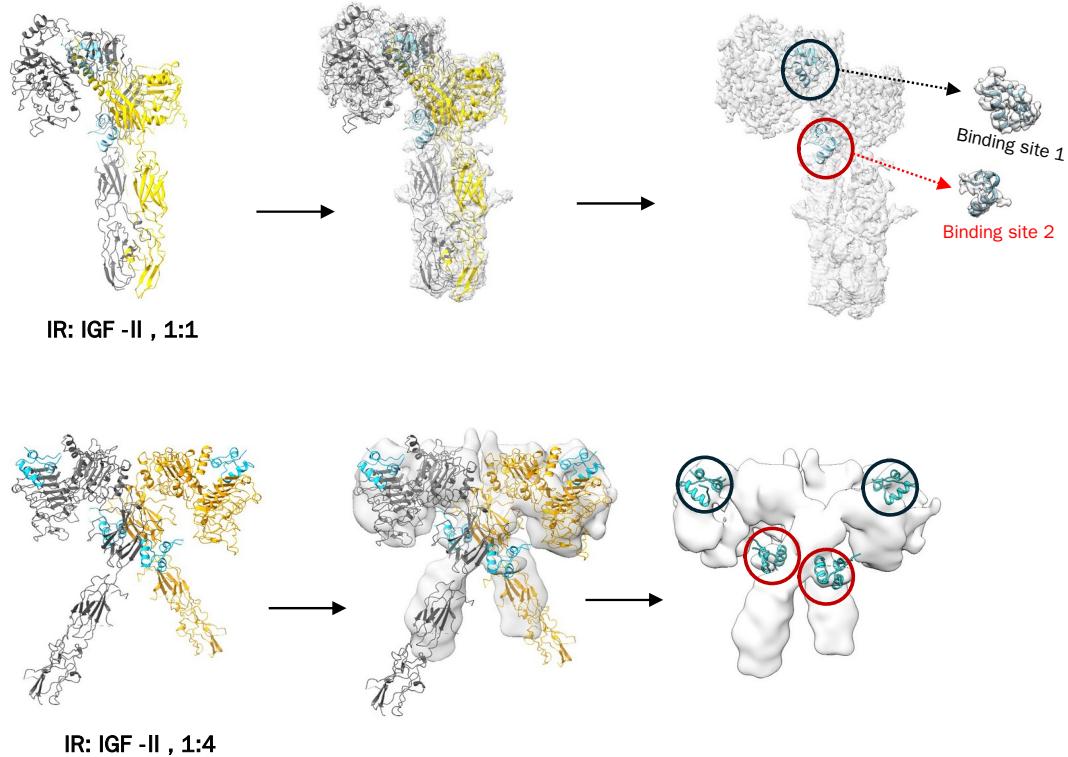

611 **Fig. S7 Cryo-EM data processing flowchart of the IR/IGF-II mixture
612 at a molar ratio of 1:6.**

613 The fourier shell correlation curve and direction distribution plot of the
614 final three-dimensional reconstructed map (low resolution) were showed
615 next to the classical T shaped map, and the final high-resolution map was
616 colored according to local resolution.

618 **Fig. S8 Overall cryo-EM structures of the IR/IGF-I complexes.**

619 The protomer A and IGF-I were colored as light gray and light purple,
620 respectively. And the protomer B were colored as different colors with the
621 conformational changes. Meanwhile, the IGF-I at binding site 1, site 2
622 and site 1/2 were marked by black, blue and red box, respectively.

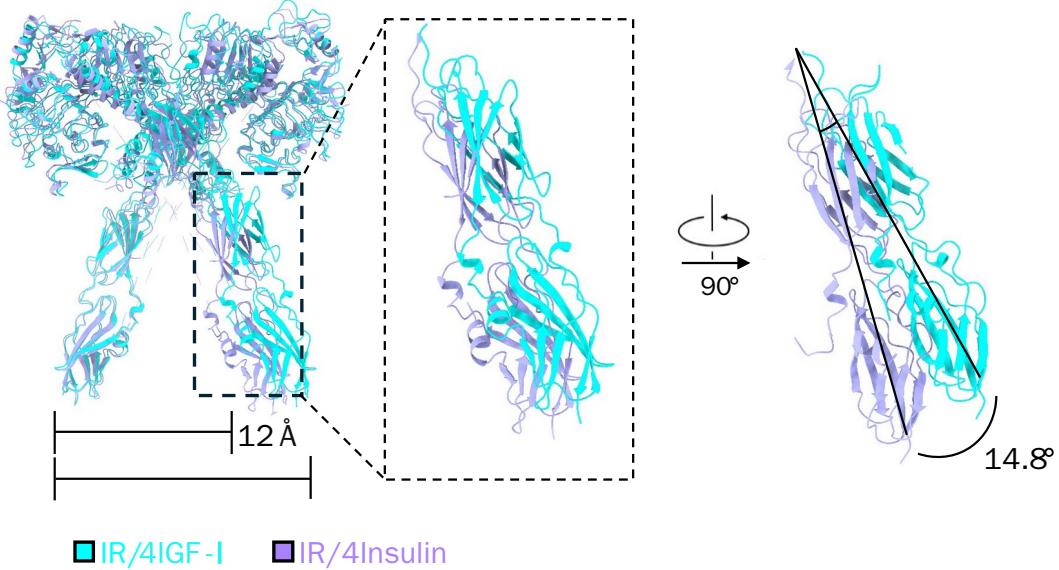
623


624 Fig. S9 Overall cryo-EM structures of the IR/insulin complexes.

625 The protomer A, protomer B and Insulin were colored as light gray,
626 orange and light green, respectively. And the insulin at binding site 1 and
627 site 2 were marked by black and red box, respectively.

628

629


630

632 **Fig. S10 Overall cryo-EM structures of the IR/IGF-II complexes.**

633 The protomer A, protomer B and IGF-II were colored as gray, yellow and
634 cyan, respectively. And the IGF-II at binding site 1 and site 2 were
635 marked by black and red box, respectively.

636

637

638 **Fig. S11 Comparison of symmetrical structures of the IR/4insulin**
639 **and IR/4IGF-I complexes.**

640 The IR/4insulin and IR/4IGF-I complexes were colored as cyan and light
641 purple, respectively.

642

643 **Table S1. Cryo-EM data collection, refinement and validation statistics for the IR/IGF-I,**

644 **IR/insulin and IR/IGF-II complex.**

	IR with 4 IGF-I, Conformation 1	IR with 4 IGF-I, Conformation 2	IR with 4 IGF-I, Conformation 3
IR with 3 IGF-I			
	1	2	3
<hr/>			
Data collection and processing			
Magnification	130,000	130,000	130,000
Voltage (keV)	300	300	300
Electron exposure (e ⁻ /Å ²)	50	50	50
Defocus range (μm)	1.5 to 2.5	1.5 to 2.5	1.5 to 2.5
Pixel size (Å)	0.66	0.66	0.66
Symmetry imposed	C1	C2	C1
Initial particle images (no.)	137,8578	137,8578	137,8578
Final particle images (no.)	148,338	133,029	85,221
Map resolution (Å)	3.24	3.31	3.53
FSC threshold	0.143	0.143	0.143
Map resolution range (Å)	2.2~999	2.2~999	2.2~999
<hr/>			
Refinement			
Initial model used (PDB code)	AlphaFold2	AlphaFold2	AlphaFold2
Model resolution (Å)	3.7	3.6	4.0
FSC threshold	0.5	0.5	0.5

Map sharpening *B* factor
(Å²)

-93.5	-81.9	-72.5	-88.4
-------	-------	-------	-------

Model composition

Continued Table

	IR with 3 IGF-I	IR with 4 IGF-1	IR with 4 IGF-2	IR with 4 IGF-3
Non-hydrogen atoms	14,171	14,724	14,455	14,019
Protein residues	1,765	1,834	1,802	1,742
Nucleotide base	0	0	0	0
<i>B</i> factor (Å ²)				
Protein	186.16	200.02	341.74	412.12
Nucleotide	0	0	0	0
R.m.s. deviations				
Bond lengths (Å)	0.002	0.003	0.002	0.003
Bond angles (°)	0.526	0.726	0.654	0.724
Validation				
MolProbity score	1.71	2.01	2.15	2.41
Clash score	7.39	12.16	14.57	24.08
Poor rotamers (%)	0.13	0.30	0.19	0.95
Ramachandran plot				
Favored (%)	95.69	93.85	92.21	90.91
Allowed (%)	4.31	6.15	7.79	9.09

Disallowed (%)	0	0	0	0
PDB	8XJS	8XK1	8XKR	8XKM
EMDB	EMD-38404	EMD-38413	EMD-38423	EMD-38420

645 Continued Table

	IR with 1 insulin	IR with 2 insulin	IR with 4 insulin	IR with 2 IGF-II
<hr/>				
Data collection and processing				
Magnification	130,000	130,000	130,000	130,000
Voltage (keV)	300	300	300	300
Electron exposure (e ⁻ /Å ²)	50	50	50	50
Defocus range (μm)	1.5 to 2.5	1.5 to 2.5	1.5 to 2.5	1.5 to 2.5
Pixel size (Å)	0.66	0.66	0.66	0.66
Symmetry imposed	C1	C2	C2	C1
Initial particle images (no.)	58,2138	58,2138	51,2641	679,506
Final particle images (no.)	69,546	30,851	69,035	85,111
Map resolution (Å)	4.01	4.14	3.60	3.38
FSC threshold	0.143	0.143	0.143	0.143
Map resolution range (Å)	2.2~999	2.2~999	2.2~999	2.2~999
<hr/>				
Refinement				
Initial model used (PDB code)	AlphaFold2	AlphaFold2	AlphaFold2	AlphaFold2
Model resolution (Å)	4.2	4.4	4.1	3.7

FSC threshold	0.5	0.5	0.5	0.5
Map sharpening <i>B</i> factor (Å ²)	-53.1	-85.5	-98.2	-67.9
Model composition				
Non-hydrogen atoms	9,107	13,710	14,147	10,912
Protein residues	1,126	1,702	1,757	1356

Continued Table

	IR with 1 insulin	IR with 2 insulin	IR with 4 insulin	IR with 2 IGF-II
Nucleotide base	0	0	0	0
<i>B</i> factor (Å ²)				
Protein	233.25	486.01	246.25	150.74
Nucleotide	0	0	0	0
R.m.s. deviations				
Bond lengths (Å)	0.003	0.004	0.003	0.004
Bond angles (°)	0.676	0.979	0.684	0.966
Validation				
MolProbity score	1.77	2.11	2.04	1.82
Clash score	11.58	11.99	14.57	6.23
Poor rotamers (%)	0.20	0.26	0.00	0.41
Ramachandran plot				
Favored (%)	96.88	91.12	94.65	92.34

Allowed (%)	3.12	8.88	5.35	7.66
Disallowed (%)	0	0	0	0
PDB	8YYL	8YY5	8YYT	8YSZ
EMDB	EMD-39675	EMD-39677	EMD-39678	EMD-39566
