

1 Tuning Endothelial Barrier Permeability with Ultrasound: A
2 Pulse-Length-Dependent Interplay Between Bubble Dynamics
3 and Cellular Bioeffects

4 **Authors**

5 Chaofeng Qiao^{a,b, #}, Siyu Luo^{b,c, #}, Zhihui Liu^{b, #}, Yicong Cai^b, Zhuoyan Liu^b,
6 Liying Wang^{a,*}, Claus Dieter Ohl^{d,*}, Fenfang Li^{b,*}

7 **Affiliations**

8 ^aSchool of Basic Medical Sciences, Beihua University, Jilin City, China

9 ^bInstitute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen,
10 China

11 ^cSchool of Biology and Biological Engineering, South China University of
12 Technology, Guangzhou 510006, China

13 ^dInstitute of Physics, Otto-von-Guericke University Magdeburg

14 [#] These authors contributed equally

15 ^{*}Corresponding authors: bhwly@beihua.edu.cn, fenfang.li@szbl.ac.cn,
16 claus-dieter.ohl@ovgu.de

17 **Abstract**

18 Ultrasound mediated microbubble cavitation holds great potential for non-
19 invasive and targeted drug delivery. However, the interplay between
20 acoustic parameters, bubble dynamics, and resulting cellular responses
21 remains unclear, hindering the safety improvement and optimization of the
22 technique. This study examined the effects of ultrasound pulse sequences
23 on microbubble dynamics and bioeffects in endothelial monolayer using an
24 acoustically coupled vessel-mimicking microchannels, where focused
25 ultrasound exposure and concurrent recording of Ca^{2+} signalling and
26 membrane perforation were performed at flow conditions. A reduction of
27 the total treatment time from 60 to 10 s avoided cell detachment.
28 Microbubbles demonstrated brief oscillation and displacement under each
29 of the 10 consecutive bursts of 40 μs short pulses with 1 ms interval while
30 more intense bubble clustering, coalescence and displacement were
31 observed under one continuous long pulse that lasted for around 9 ms. 10 s
32 long pulse generated higher percentage and larger extent of cell
33 membrane poration whereas short pulse induced wider spreading and
34 larger Ca^{2+} signalling across the cell population. Reactive oxygen species,
35 extracellular Ca^{2+} influx through mechanosensitive channels and internal
36 Ca^{2+} release were found critical in mediating Ca^{2+} responses in short pulse
37 condition. Further transwell experiments revealed that both pulse modes
38 enhanced transport of 10 kDa FITC-dextran while a longer treatment of 60
39 s improved delivery efficiency for larger FITC-dextran of 40 kDa. These

40 findings highlight the importance of pulse modes and total treatment time
41 in tailoring Ca^{2+} signalling mediated paracellular transport and
42 sonoporation mediated transcellular transport, offering insights for
43 optimizing ultrasound parameters for therapeutic drug delivery.

44 **Keywords**

45 Ultrasound pulses; Microbubble cavitation dynamics; Vessel-mimicking
46 microchannels; Membrane perforation; Ca^{2+} signalling; Reactive oxygen
47 species; Trans-endothelial molecular transport

48 **1. Introduction**

49 The interaction between ultrasound, microbubbles, and biological
50 barriers represents a quintessential sonomechanical and sonochemical
51 process at the bio-interface. When driven by acoustic fields, microbubbles
52 undergo cavitation, a phenomenon encompassing either inertial expansion
53 and collapse, or stable oscillation, and the generation of localized physical
54 and chemical conditions [1, 2]. These include acoustic microstreaming and
55 microjets that create shear stresses [3-6], and the production of reactive
56 oxygen species (ROS) [7, 8], which collectively modulate cellular behavior
57 and barrier function. The endothelial barrier is a critical regulator of
58 molecular exchange between the bloodstream and underlying tissues. In
59 the brain, this structure forms the blood-brain barrier (BBB), which tightly
60 controls cerebral homeostasis but also impedes the delivery of therapeutic
61 agents to the central nervous system [9, 10]. Focused ultrasound combined
62 with microbubbles has emerged as a promising strategy that harnesses
63 cavitation effects to enhance drug delivery [11], allowing transient and
64 local opening of the BBB for treatment of brain cancers [12] and
65 neurological disorders [13, 14]. A critical and underexplored frontier,
66 however, lies in deciphering how the temporal profile of different acoustic
67 pulse drives specific and distinct cavitation dynamics. These effects, in
68 turn, could differentially influence the endothelial barrier permeability,
69 e.g., by activating specific intracellular signaling cascades that ultimately
70 dictate biological outcomes.

71 Central among these cascades is Ca^{2+} signaling, a ubiquitous second
72 messenger in cellular signal transduction of mechanical and chemical
73 stimuli [15]. In endothelial cells, Ca^{2+} influx through mechanosensitive
74 channels or release from intracellular stores can trigger actomyosin
75 contraction and tight junction rearrangement, leading to reversible
76 increases in paracellular permeability [7, 16]. Ca^{2+} signaling can promote
77 exocytosis for cell plasma membrane repair after sonoporation while
78 overload of intracellular Ca^{2+} is toxic to cells, leading to cell apoptosis even
79 after membrane pores have resealed [4, 17]. While the mechanical forces

80 from cavitation are known to cause membrane poration (sonoporation) or
81 direct cell detachment [18-20], the concomitant sonochemical and
82 biochemical signaling events, particularly ROS generation and cellular
83 Ca^{2+} signaling are hypothesized to influence whether the cellular response
84 is adaptable and reversible, or irreversible and lethal [4, 21-23].

85 Long-pulse (LP) ultrasound sequences are employed in most preclinical
86 and clinical studies [24, 25], which are effective in disrupting the BBB but
87 have been associated with adverse effects such as erythrocyte
88 extravasation [26], edema [27], and inflammation [28]. These outcomes
89 suggest that prolonged acoustic exposure may exceed the endothelial
90 capacity for homeostatic recovery. In contrast, emerging short-pulse (SP)
91 ultrasound protocols, characterized by brief, repetitive bursts, deliver
92 significantly less energy and have shown promise in achieving more
93 uniform and reversible barrier opening with minimal tissue damage [29-
94 32]. However, the explicit link between ultrasound pulse parameters,
95 microbubble cavitation dynamics, the resulting sonoporation and Ca^{2+}
96 signaling characteristics and their downstream consequences on
97 endothelial barrier permeability remains incompletely understood,
98 especially under physiological flow conditions [22, 33, 34]. For instance,
99 while differences in microbubble cavitation behavior between pulse
100 lengths have been documented, direct high-speed optical observation is
101 limited and lacks spatiotemporal resolution on the single bubble scale [35,
102 36]. It is unclear how these distinct profiles of cavitation behavior translate
103 into differential patterns, e.g., amplitude, kinetics and spatial uniformity of
104 intracellular Ca^{2+} signaling and membrane poration in endothelial
105 monolayers, and whether sonochemical generated ROS and mechanically
106 activated ion channels contributed to initiating and shaping the Ca^{2+}
107 signals. This gap limits our ability to rationally design ultrasound protocols
108 that maximize therapeutic efficacy while minimizing size effects.

109 In this study, we investigate this question using a vessel-mimicking
110 microfluidic platform that permits high-resolution observation of Ca^{2+}
111 cavitation dynamics and real-time live-cell fluorescence imaging of Ca^{2+}
112 signaling and membrane poration. We focus on contrasting clinically
113 relevant LP and SP ultrasound at conditions that avoid cell detachment by
114 reducing the total treatment time from 60 s to 10 s. In this study, Long
115 Pulse (LP) ultrasound was applied as one continuous burst per second,
116 with each burst lasting 9.09 ms, repeated over a total treatment time of up
117 to tens of seconds. In contrast, Short Pulse (SP) ultrasound also consisted
118 of one burst per second, but each burst comprised 10 sub-pulses with a
119 duration of 40 μs each, separated by 1 ms intervals, for the same total
120 treatment duration as the LP mode. Our integrated experimental approach
121 revealed that LP ultrasound triggered more intense bubble displacement,
122 clustering, and coalescence, leading to higher percentage and larger

123 extent of cell membrane poration and heterogeneous Ca^{2+} transients. In
124 contrast, SP ultrasound induced brief oscillation and displacement of
125 bubbles under each of the 40 μs short pulse exposure, resulting in a wider
126 spreading, more uniform and larger Ca^{2+} elevation coupled with less
127 membrane poration. Pharmacological interrogation established ROS as a
128 critical sonochemical mediator linking cavitation to Ca^{2+} response for SP
129 exposure condition. Further transwell experiments revealed comparable
130 capability of both pulse conditions for molecular transport of 10 kDa and
131 40 kDa FITC-dextran across endothelial barrier at 10 and 60 s total
132 treatment time. By bridging the fields of acoustic cavitation physics,
133 sonochemistry, and cell signaling biology, this work advances the
134 fundamental understanding of how acoustic energy is converted into
135 biochemical cellular commands. It underscores that the therapeutic
136 window of ultrasound-mediated barrier opening is not only defined by
137 cavitation activity, but also by the nature of the signaling cascades it
138 activates. Our results thus contribute to the foundation for designing
139 smarter, signaling-aware ultrasonic stimuli for safer and more effective
140 drug delivery.

141 **2. Materials and methods**

142 *2.1 Design and fabrication of vessel-mimicking microchannels*

143 Microchannels mimicking blood vessels were designed using AutoCAD,
144 with the corresponding SU-8 master mold fabricated using standard soft
145 lithography techniques. A 10:1 mixture of polydimethylsiloxane (PDMS,
146 Sylgard 184 Silicone Elastomer Kit, Dow Corning (Dowsil), Midland, MI,
147 USA) was poured onto the mold, cured at 60 °C for 4 hours, and
148 subsequently bonded to #1 cover glass slides (25 × 50 mm^2) immediately
149 after a 50-second plasma treatment (Zepto one, Diener, Ebhausen,
150 Germany). The resulting microfluidic chips contains three separate
151 channels, each measuring 200 μm wide, 100 μm high, and 17000 μm long.
152 To ensure accurate alignment of the focus of the ring ultrasound
153 transducer with the microchannels, marker patterns were incorporated
154 into the design (Fig. 1A). The height of the PDMS layer was maintained at 3
155 mm to position the microchannels at the ultrasound beam's focal point
156 along the z-axis.

157 *2.2 Preparation and characterization of microbubbles*

158 Home-made microbubbles were prepared as previously described [37].
159 Their structure comprised a lipid shell encapsulating a perfluoropropane
160 (C_3F_8) gas core. The lipid formulation consisted of 1,2-distearoyl-sn-
161 glycero-3-phosphocholine (DSPC) and N-(carboxyl-methoxypolyethylene
162 glycol-2000)-1,2-distearoyl-sn-glycero-3-phosphoethanolamine(DSPE-
163 PEG2000) (Lipoid, Ludwigshafen, Germany) in a 9:1 molar ratio. After the

164 synthesis process, the microbubbles were diluted with Isoton II solution,
165 and their concentration and size distribution were measured using a
166 Coulter Counter Multisizer IV (Beckman Coulter Inc., USA). Their
167 morphology was then examined under a microscope (BX-53, Olympus
168 Corporation, Japan).

169 *2.3 Cell culture, preparations and handling*

170 Murine brain microvascular endothelial cells (bEnd.3) were maintained
171 in DMEM (Gibco, C11995500BT) supplemented with 10% heat-inactivated
172 fetal bovine serum and 1% penicillin-streptomycin, cultured at 37 °C in a
173 humidified atmosphere containing 5% CO₂. Cells between passages 5 and
174 12 were utilized for this study.

175 Before experiments, cells at approximately 90% confluence were
176 detached using trypsin, resuspended in prewarmed (37 °C) culture
177 medium at a concentration of 1 × 10⁷ cells/mL, and loaded into the
178 microchannels using a sterilized 1 mL syringe. Prior to cell seeding, the
179 microchannels were perfused with 1X PBS for 5 minutes, followed by
180 coating with 50 µg/mL fibronectin (Roche, 10838039001) for 15 minutes at
181 37 °C, and rinsing with 1X DPBS (Gibco, 14040133, with Ca²⁺). Once cells
182 were introduced into the microchannels and reached 60-70% density, the
183 inlet and outlet tubing were clamped, and the device was incubated under
184 static conditions for 30 minutes to promote cell adhesion. Subsequently,
185 the microchannels were examined every 30 minutes to assess cell viability
186 and confluence, and fresh culture medium was infused using a 1 mL
187 syringe at 2 µL/min with a syringe pump (KDS, R462) to replenish nutrients
188 and remove metabolic waste. After approximately 6 hours when cells form
189 a stable monolayer, the microchannels were perfused with DMEM
190 containing 5 µg/mL Hoechst 33342 (biosharp, BL803A) and 6 µM Fluo4-
191 AM (Invitrogen, F14201) to label cell nuclei and monitor intracellular Ca²⁺
192 fluctuations, respectively. Following a 15-minute incubation at 37°C in
193 darkness, excess dyes were gently washed out by 1X DPBS at 2 µL/min for
194 1 min. The microfluidic chip was then placed on the microscope stage,
195 where 1X DPBS (with Ca²⁺) containing microbubbles (diluted 1:20 v/v) and
196 propidium iodide (PI, Thermo Fisher Scientific, P21493) at a final
197 concentration of 100 µg/mL was perfused at 75 µL/min.

198 *2.4 Setup for recording bubble dynamics or cellular bioeffects in
199 microchannels*

200 For bubble dynamics, the home-made microbubbles were diluted 1:20
201 (v/v) in 1X DPBS and delivered into the microchannels at a flow rate of 75
202 µL/min using the syringe pump on an inverted microscope (Zeiss, Axio
203 Observer 7), as shown in Fig. 1. Sonication was performed with a custom-
204 built, ring-shaped ultrasound transducer operating at 1.125 MHz and
205 driven by a 50-dB power amplifier (2100 L, Electronics & Innovation, USA).

206 This transducer was positioned on top of the PDMS chip with high-vacuum
207 grease gel (Dow Corning) and aligned to the microchannels with reference
208 markers (Fig. 1). The driving ultrasound signals were produced by function
209 generator (DG972, RIGOL, China). Two distinct ultrasound protocols were
210 applied: a long-pulse scheme (one pulse per second, each pulse consisting
211 of a 9.09 ms continuous wave, total 10 pulses) and a rapid short-pulse
212 scheme (one pulse per second, total 10 pulses, each pulse containing 10
213 sub-pulses with a 1 ms interval between sub-pulses and a sub-pulse
214 duration of 40 μ s). Therefore, the short-pulse sequence has a smaller
215 integral exposure time and a reduced total acoustic energy compared to
216 the long-pulse mode. Bubble dynamics was recorded with a 63 \times objective
217 (LD PN 63 \times /0.75 Corr) using a high-speed camera (Nova S12, Photron)
218 that was synchronized to the ultrasound pulses (Fig.1). The high-speed
219 camera was operated at 25,000 frames per second (fps) with an exposure
220 time of 0.66 μ s.

221 For cellular bioeffects studies, the high-speed camera was replaced with
222 a sCMOS camera (EDGE 4.2; PCO) to capture bright-field or fluorescence
223 images of cells through a 5 \times microscope objective (N-Achroplan 5 \times /0.15),
224 allowing simultaneously recording the three parallel microchannels. The
225 sCMOS camera's 'exposure out' signal triggers a digital delay generator
226 (DG535, Stanford Research Systems), enabling the ultrasound system to
227 be activated after 20 s of baseline fluorescence recording. Fluorescence
228 (FL) imaging, with a total duration of 380 s and 100 ms exposure times for
229 concurrent PI and Fluo-4 recording, was performed using μ Manager
230 (version 2.0; open-source). The software synchronized the Cool LED
231 fluorescence excitation, the microscope's filter turret, and the PCO
232 camera. This configuration allowed alternating acquisitions of PI and
233 Fluo-4 fluorescence at an interval of approximately 1.1 s. Single-shot
234 bright-field images were acquired before and after the fluorescence
235 imaging to evaluate changes in cell morphology.

236 *2.5 Mechanistic studies of cellular Ca^{2+} Response induced by rapid short*
237 *pulse ultrasound*

238 The following treatments were performed for mechanistic studies after
239 Fluo-4 AM loading: Before the experiment, cells in the chip were incubated
240 for 15 minutes in the culture medium with either 3 μ M Thapsigargin to
241 deplete internal storage of Ca^{2+} , or 10 μ M ruthenium red (RR, R2751,
242 Sigma-Aldrich) to block mechanosensitive ion channels. Ascorbic acid was
243 used to quench reactive oxygen species (ROS) generated by the bubble
244 activity. During the experiment, 1X DPBS (with Ca^{2+}) containing
245 microbubbles (diluted 1:20 v/v) and 100 μ g/mL propidium iodide (PI,
246 Thermo Fisher Scientific, P21493) with either 3 μ M thapsigargin or 10 μ M

247 RR or 2 mM AA was perfused to the chip inlet at 75 μ L/min for 5 min before
248 and throughout sonication and image recording.

249 *2.6 Trans-endothelium diffusion analysis in the transwell*

250 *Cell culture and barrier formation:*

251 2×10^5 bEnd.3 cells were seeded on the underside of a transwell
252 membrane (Corning® Transwell®, 24 mm diameter, 0.4 μ m pore
253 polyester). Prior to seeding, the membrane was precoated with 0.1%
254 gelatin solution (Coolaber, SL94002, China) in 1X DPBS (containing Ca^{2+}).
255 Following a 2 h incubation for cell attachment, the inserts were transferred
256 to transwell plates. The chambers were filled with 2 mL of DMEM in both
257 the upper and lower compartments, and the model was cultured for 5 days
258 at 37°C with 5% CO_2 to form a barrier. The trans-endothelial electrical
259 resistance (TEER) were monitored each day using a Millicell ERS-2
260 volt/ohm meter. Subsequent experiments were initiated only after a stable
261 and consistent TEER was achieved.

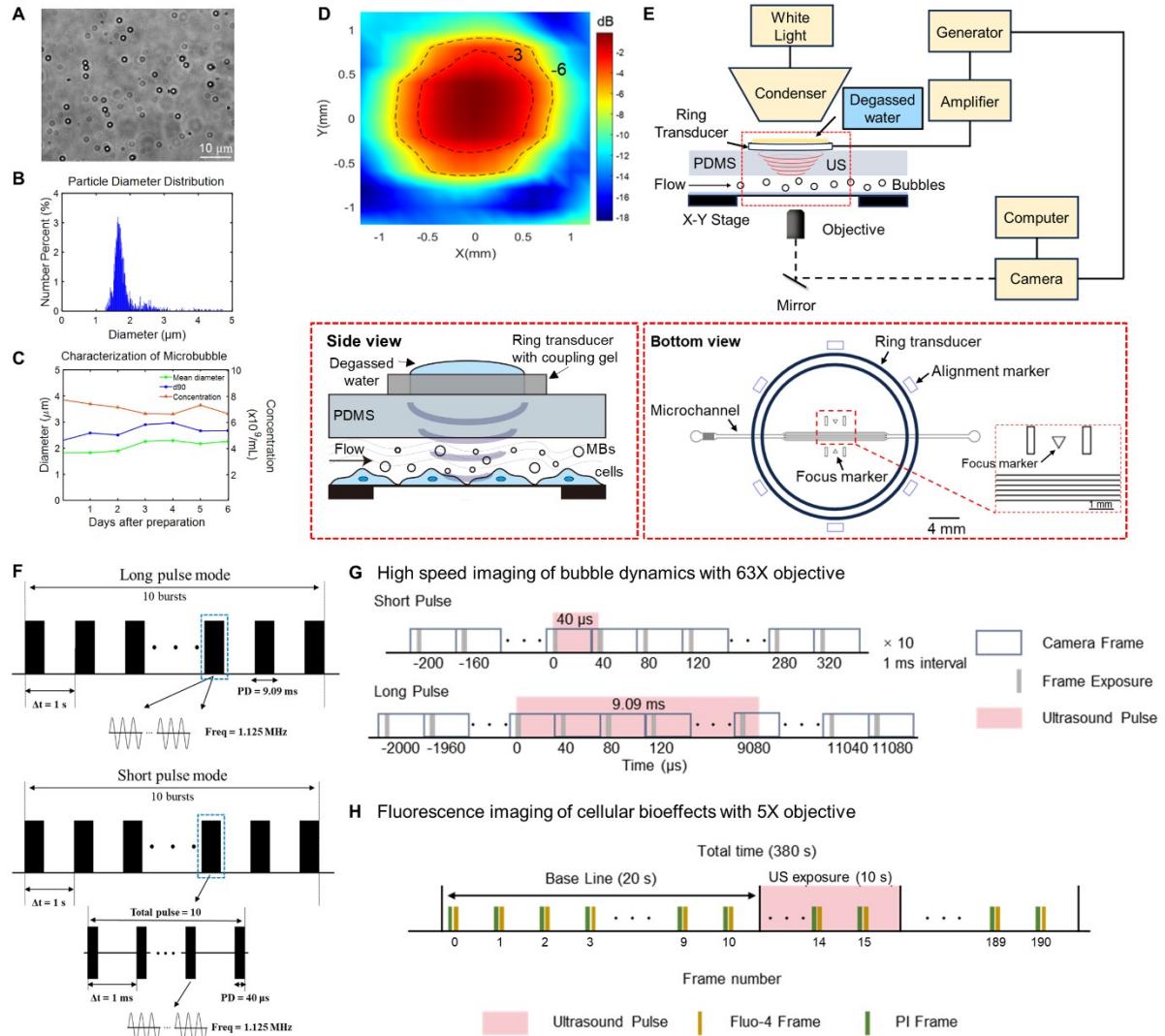
262 *Quantification of diffused FITC-Dextran with microplate reader:*

263 Serial dilutions of 10 and 40 kDa FITC-dextran were prepared to
264 generate standard curves, with fluorescence intensities measured on a
265 microplate reader (Synergy H1, BioTek). For permeability analysis across
266 cell barrier, both chambers of the transwell were washed twice with 1X
267 DPBS. The lower chamber was then filled with 2 mL of 1X DPBS, and the
268 upper chamber with 2 mL of 1X DPBS containing 12.5 μ g/mL FITC-Dextran
269 (10 or 40 kDa; Beyotime). Immediately prior to ultrasound treatment, a
270 200 μ L baseline sample was collected from the lower chamber for
271 microplate reader analysis, followed by the addition of 100 μ L 4x 10^9
272 microbubbles to the lower chamber. After long or short pulse ultrasound
273 treatment, the transwell was returned to the incubator for 1 hour, after
274 which a second 200 μ L sample was collected from the lower chamber. The
275 FITC-Dextran concentration in all collected samples was determined using
276 a microplate reader and the standard curves to assess the barrier
277 permeability.

278 *2.7 Image processing and data analysis*

279 High speed videos of bubble dynamics were imported into MATLAB (The
280 MathWorks, Natick, MA, USA, academic use) to analyze the diameter of
281 individual microbubbles and the total number of bubbles in each image
282 frame. All images were pre-processed with two bilinear interpolation for
283 image upscaling [38]. The centroid and the diameter of individual bubbles
284 in each image frame were then detected by circular Hough transform. And
285 the volume-weighted average bubble diameter was calculated for each
286 image frame: $v = \frac{\sum v_i d_i^3}{\sum v_i}$, Where v_i is the diameter of the i th bubble, v is the volume
287 of the i th bubble, and n is the total number of bubbles in the image frame.

288 To quantify the dynamics of the bubble population, relative bubble
289 diameter change was defined as $\frac{v_t - v_0}{v_0}$, and the number change was calculated
290 as. Here v_0 and v_t is the mean value of v and the average number of bubbles
291 over the 200 μ s baseline recording before ultrasound, respectively, v_{max} is
292 the maximum v during the ultrasound exposure, and v_{avg} is the average number
293 of bubbles over the 200 μ s imaging time after ultrasound exposure.

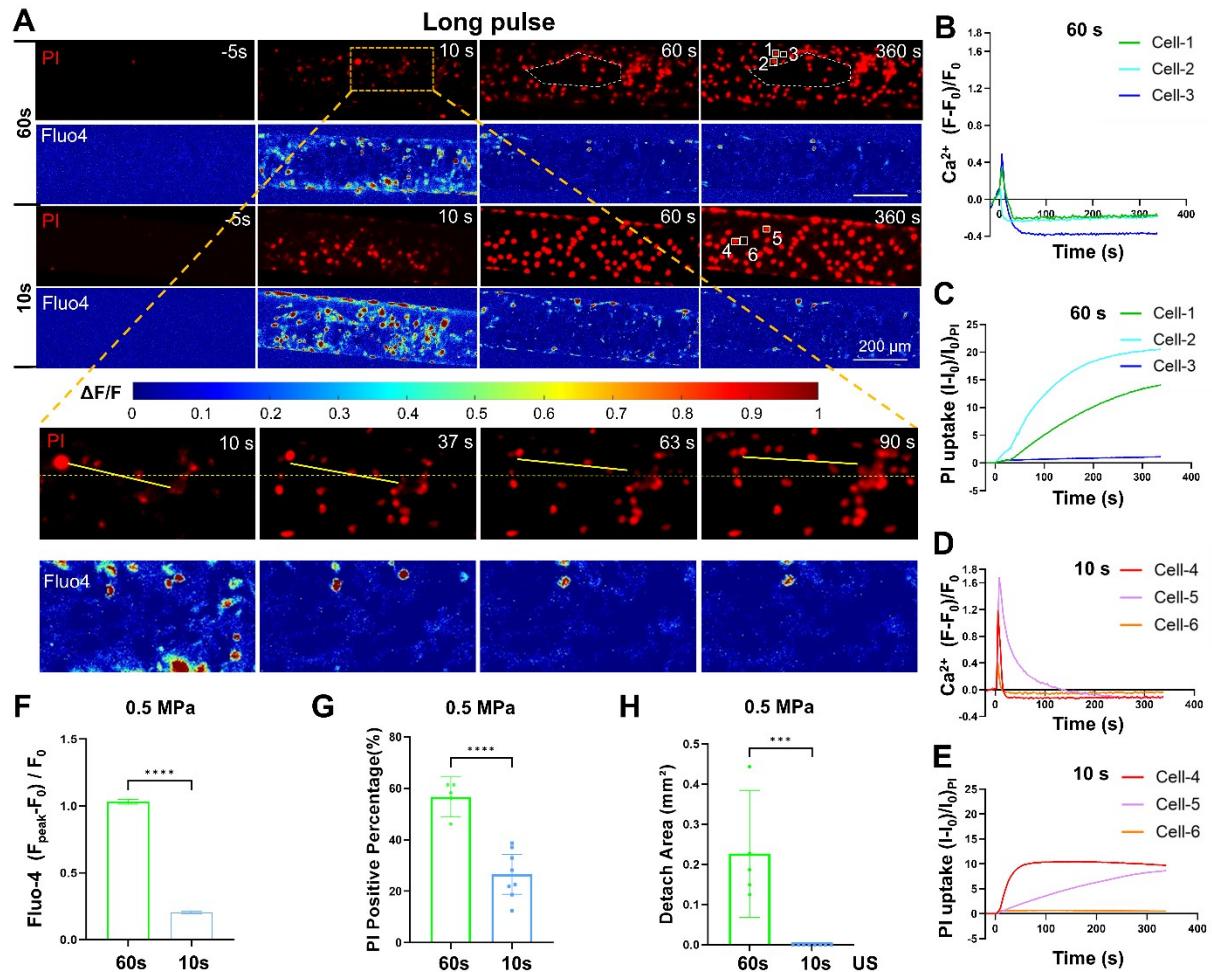

294 For the analysis of fluorescence images, we obtained the total number of
295 cells and their locations using automatic detection of the cell nuclei with
296 Stardist module of ImageJ 1.54f (NIH, USA) for the Hoechst staining
297 images before ultrasound exposure. Based on the localization of the cell
298 nuclei, we detected the number of PI positive cells before and after
299 ultrasound exposure and the change of PI and Fluo-4 fluorescence
300 intensity.

301 *2.8 Statistical analysis*

302 Significant differences were determined by un-paired Student t-test for
303 comparison between two groups. One-Way ANOVA was used for
304 comparison of three groups.

305 **3. Results**

306 *3.1. Experimental system and study design*


307

308 **Figure 1. Experimental setup and design.** (A) The morphology, (B) Size
 309 distribution and (C) Stability of home-made microbubbles with a lipid shell
 310 and perfluoropropane core, d90: the size below which 90% of the particles
 311 fall within. (D) Characterization of the acoustic field produced by the 1.125
 312 MHz ring ultrasound transducer in the X-Y focal plan. The acoustic
 313 pressure is shown in dB relative to the peak value. (E) Experimental setup
 314 for ultrasound stimulation, imaging of bubble dynamics and cellular
 315 bioeffects inside three parallel microchannels on an inverted microscope.
 316 The insets show the enlarged side view and bottom view of the alignment
 317 of the ring ultrasound transducer with the microchannels outlined by the
 318 red dashed box. (F) Schematic of the ultrasound waveforms used in the
 319 experiments: long pulse and rapid short pulse mode. (G) Recording
 320 sequences for high-speed imaging of the bubble dynamics and
 321 synchronization with ultrasound exposure in short and long pulse mode.
 322 (H) Concurrent fluorescent imaging of membrane poration (PI) and
 323 calcium signaling (Fluo-4), and synchronization with 10 s ultrasound

324 exposure in short and long pulse mode with a 20 s baseline recording.

325 The freshly synthesized microbubbles displayed a polydisperse nature,
326 with an average diameter of 1.8 μm and a concentration of $7.6 \times 10^9 \text{ mL}^{-1}$
327 (Fig. 1 A-C). Ninety percent of the microbubbles had diameters below
328 2.3 μm (d90). Over 6 days following preparation, the mean diameter
329 increased by 25%, while the concentration decreased by 13.2%, indicating
330 a rather stable population. We have integrated a custom-built 1.125 MHz
331 ring ultrasound transducer (thickness is 0.126 cm, outer and inner
332 diameter is 1.1 and 0.9 cm, respectively) with an inverted microscope to
333 deliver pulsed ultrasound to target bEnd.3 cell monolayer grown inside
334 vessel-mimicking microchannels. The acoustic pressure output by the ring
335 transducer was measured using a needle hydrophone (Onda, HNR-0500) in
336 a tank with degased water. The focus is at geometric center in the X-Y plane
337 with a -6 dB diameter of around 1.5 mm accounting for the attenuation in
338 PDMS (Fig. 1D) and 3 mm below its emitting surface in Z-direction. The
339 ultrasound ring transducer was carefully aligned to the vessel-mimicking
340 microchannels to actuate bubble activity with the focused ultrasound
341 beam, thus, to stimulate cells under flow conditions on the inverted
342 microscope (Fig. 1E). The hollow and compact structure of the ring
343 transducer doesn't affect the optical imaging, offers precise alignment
344 relative to the microfluidic device and a high degree of flexibility for the
345 experiments as compared to conventional bulkier ultrasound transducers.

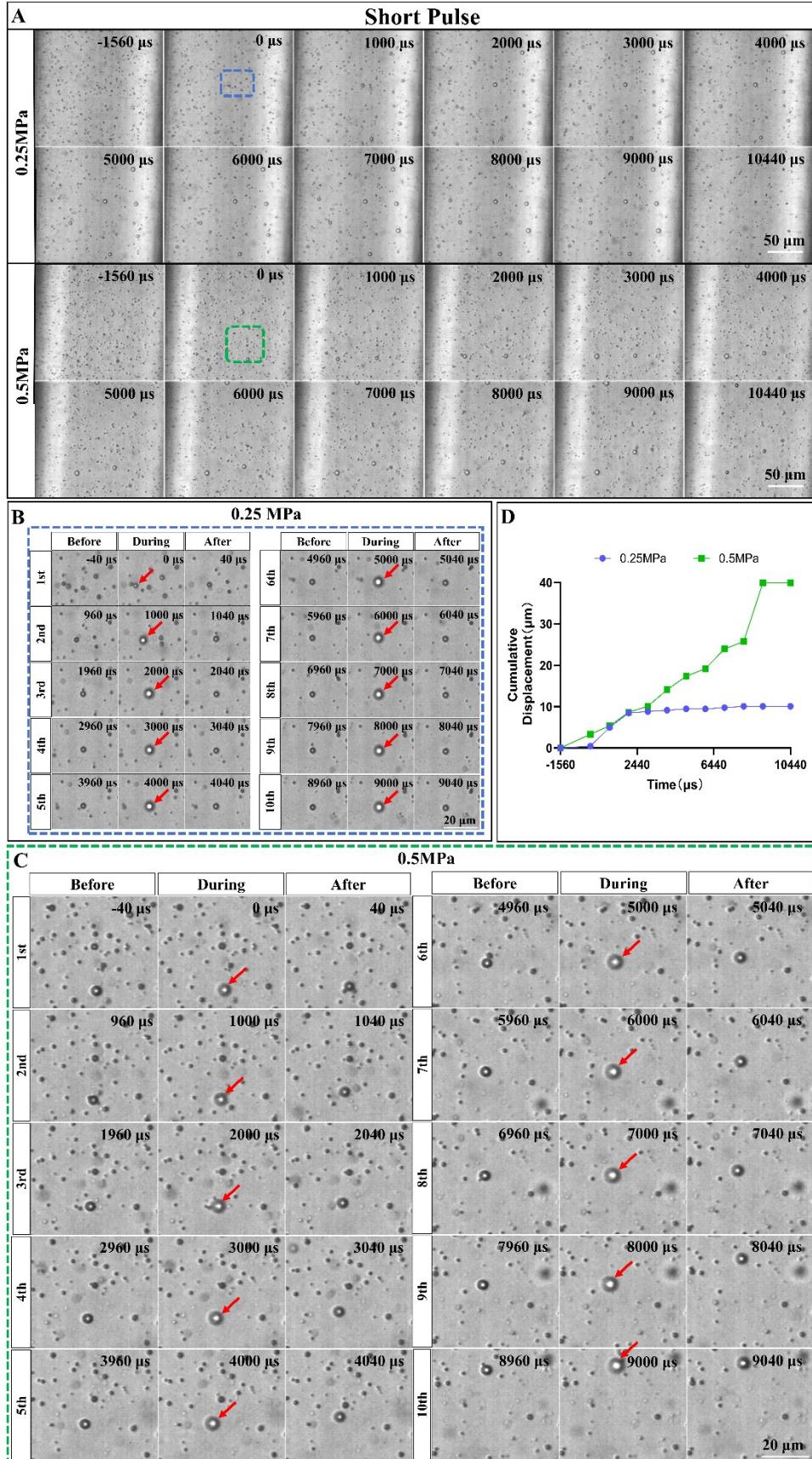
346 In the experiments, the ultrasound was operated for long (one burst per
347 second with 9.09-ms-long pulses for 10 bursts) or short pulses (10 bursts in
348 total with one burst per second, within each burst, the pulses were emitted
349 at a repetition frequency (PRF) of 1 kHz with a pulse length of 40 μs) mode
350 (Fig. 1F). The peak-negative acoustic pressure was 0.25 or 0.50 MPa after
351 attenuation through PDMS and the total treatment time was 10 s. The
352 effective exposure time of short-pulse ultrasound is whereas for long pulse
353 it is Bubble dynamics were recorded with the 63X objective by high-speed
354 imaging synchronized with the ultrasound pulses (Fig. 1G). Cellular
355 bioeffects were monitored by concurrent fluorescence imaging with
356 propidium iodide (membrane poration indicator) and Fluo-4 (Ca^{2+}
357 signaling indicator) loaded in the cells (Fig. 1H). Fluorescence imaging
358 was first recorded at baseline level for 20 s before the 10 s ultrasound
359 stimulation, followed by a sequence of fluorescence imaging for a total
360 time of around 380 s. Snapshots of the bright field (BF) images and
361 Hoechst fluorescence were captured both immediately before and after the
362 fluorescence recording.

363

364 **Figure 2. A comparative analysis of bioeffects induced by 60 s vs.**
365 **10 s long-pulse ultrasound stimulation with peak negative acoustic**
366 **pressure of 0.5 MPa.** (A) Image sequences showing PI uptake (red) and
367 Ca^{2+} signaling (Fluo-4, pseudo color) before, during (0-60 s or 0-10 s), and
368 after 0.5 MPa ultrasound exposure at long pulse mode. The inset shows the
369 enlarged view of PI and Fluo-4 fluorescence change from 10 s to 90 s inside
370 the yellow dashed rectangle for 60 s long-pulse ultrasound treatment,
371 demonstrating the movement and detachment of cells. The yellow line in
372 the inset of panel A highlights cellular displacement occurring at the edge
373 of the region where detachment has taken place. Ca^{2+} response and PI
374 uptake $(I-I_0)/I_0)_{PI}$ vs. time for exemplary cells labeled with 1,2, and 3 for the
375 60 s long pulse mode (B-C) and labeled by 4-6 at 10s long pulse mode (D &
376 E). (F) The peak change of Ca^{2+} transient from individual cells treated with
377 60 s and 10 s long pulse ultrasound, for $N=6275$ and $N=11300$ cells,
378 respectively. Statistical analysis of the percentage of cells showing PI
379 uptake (G) and the total detachment area (H) in each independent
380 microfluidic chip experiment. Here, 5 and 8 repeated and independent
381 microfluidic chip experiments were performed with 60 s and 10 s long

382 pulse ultrasound, respectively. The student t-test was used for statistical
383 analysis in F, G, and H panels.

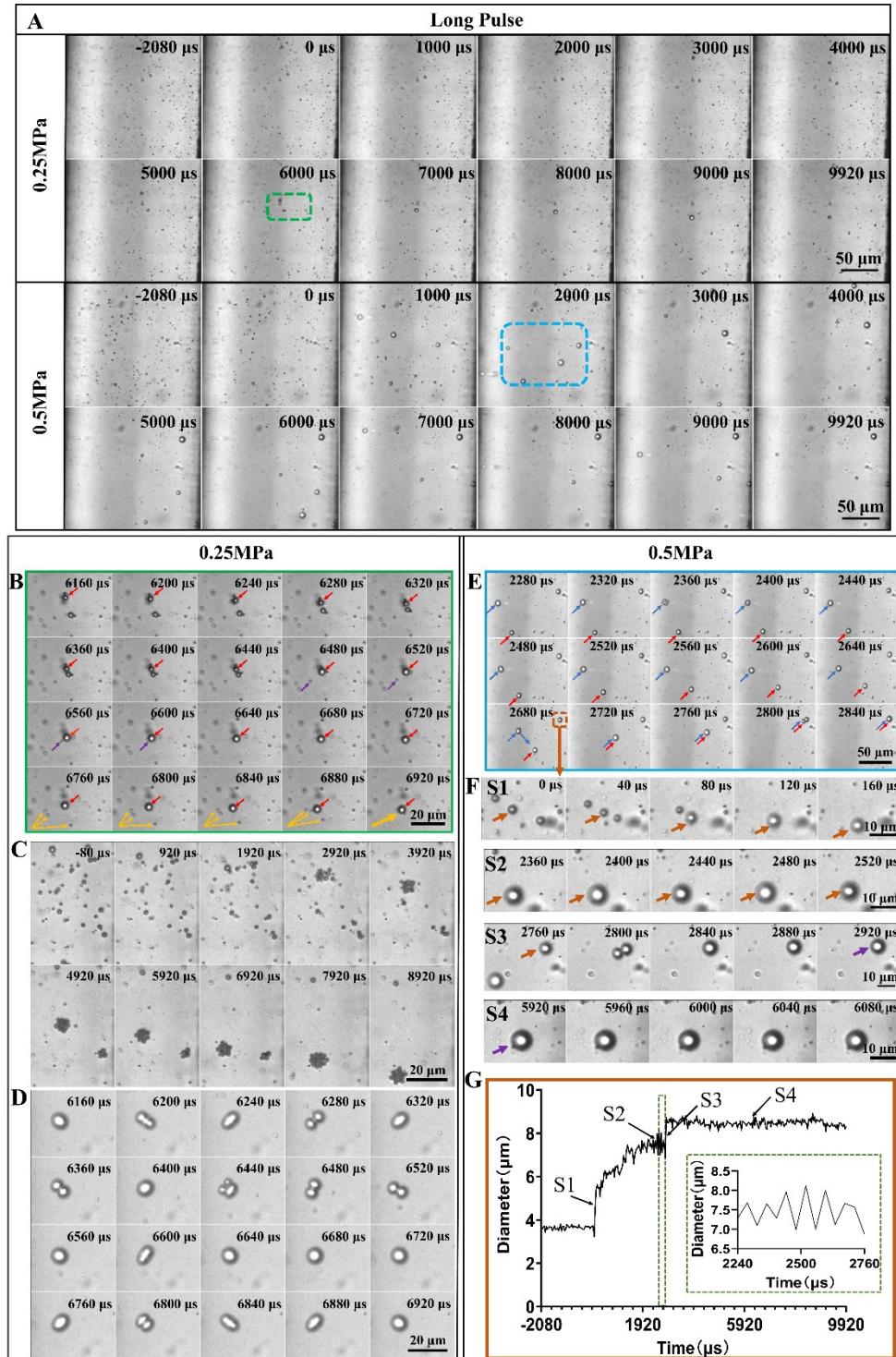
384 Our previous work established that prolonged (e.g., 60 s) long pulse
385 ultrasound stimulation causes severe and irreversible cellular damage,
386 including topical cell detachment. To mitigate this, we reduced the
387 ultrasound exposure duration to 10 s. Compared to the 60 s exposure, the
388 10 s long pulse protocol also resulted in significant cell membrane poration
389 and Ca^{2+} signaling but no discernable cell detachment (Fig. 2A). We
390 analyzed cells labeled 1 to 3 (60 s stimulation) and 4 to 6 (10 s stimulation).
391 The shorter ultrasound stimulation time was associated with a decrease in
392 PI uptake but a more robust Ca^{2+} response, with a higher peak signal than
393 in the 60 s group (Fig. 2 B-E). This may be caused by the Ca^{2+} indicator
394 leakage due to excessive membrane poration in cells labeled 1 and 2. A
395 quantitative analysis of the entire cohort revealed that the peak values of
396 Ca^{2+} transient from all individual cells were still significantly larger than in
397 the 60 s group (Fig. 2 F). This apparent contradiction is likely caused by
398 the higher percentage of PI positive cells in the 60 s group (Fig. 2G), as our
399 previous studies demonstrated that notable Ca^{2+} response could be evoked
400 by cell membrane poration. Notably, even 10 s long pulse ultrasound
401 stimulation was sufficient to elicit obvious Ca^{2+} signaling in bEnd.3 cells
402 without cell detachment (Fig. 2H) in the vessel-mimicking channel in
403 presence of a flow. Therefore, we conducted further experiments and
404 analysis of bubble dynamics and cellular bioeffects for 10 s long and short
405 pulse conditions.


406 *3.2. Bubble dynamics in microchannels at short pulse and long pulse*
407 *ultrasound exposures.*

408 First, we examined the bubble dynamics under short pulse condition by
409 recording 10 consecutive ultrasound pulse exposure (pulse length 40 μs ,
410 pulse interval 1 ms). At a lower peak negative pressure of -0.25 MPa,
411 microbubbles exhibited displacement due to acoustic radiation force and
412 mild coalescence. Increasing the acoustic pressure to 0.5 MPa results in
413 more pronounced bubble displacement and coalescence, which led to
414 larger bubbles and a reduced bubble number count (Fig. 3A).

415 We took a further look into the region enclosed by the blue and green
416 dashed box in Figure 3A. As pointed to by the red arrows, microbubble
417 expansion occurred with each ultrasound pulse at both 0.25 MPa and
418 0.5 MPa (Fig. 3 B-C). These two bubbles grew by attracting and
419 coalescence of nearby small bubbles due to the secondary Bjerknes force.
420 Additionally, they are also displaced due to the acoustic radiation force. We
421 find larger translation distances for the higher acoustic pressure of
422 0.5 MPa (Fig. 3 B-C). Quantitative analysis of the cumulative

423 displacements of the two exemplary bubbles confirmed that the
424 displacement at 0.5 MPa was 4 times that at 0.25 MPa (Fig. 3D).


425

427 **Figure 3. The dynamic behavior of microbubbles within**
428 **microchannels under short pulse ultrasound exposure with a flow**
429 **rate of 75 $\mu\text{L}/\text{min}$.** (A) High speed recordings of bubble population
430 dynamics and spatial distribution under 10 consecutive ultrasound pulse
431 exposure (pulse length 40 μs , pulse interval 1 ms) at 0.25 MPa and 0.5 MPa
432 acoustic pressure. (B-C) The enlarged view of the blue and green dashed
433 box in (A) showing the displacement, volume change and coalescence of
434 individual microbubbles immediately before and after the application of
435 each ultrasound pulse in a 10-pulse train at 0.25 MPa and 0.5 MPa acoustic
436 pressure, respectively. The ultrasound pulse arrives at $t=0$ and repeats
437 every 1000 μs . (D) The cumulative displacement of the two microbubbles
438 labeled with red arrows in (B) (0.25 MPa) and (C) (0.5 MPa) as a function of
439 time. The exemplary bubble at 0.25 MPa (as shown in B) stopped
440 displacement on the 3rd pulse after it grew to a certain size and then kept
441 oscillating at the same location.

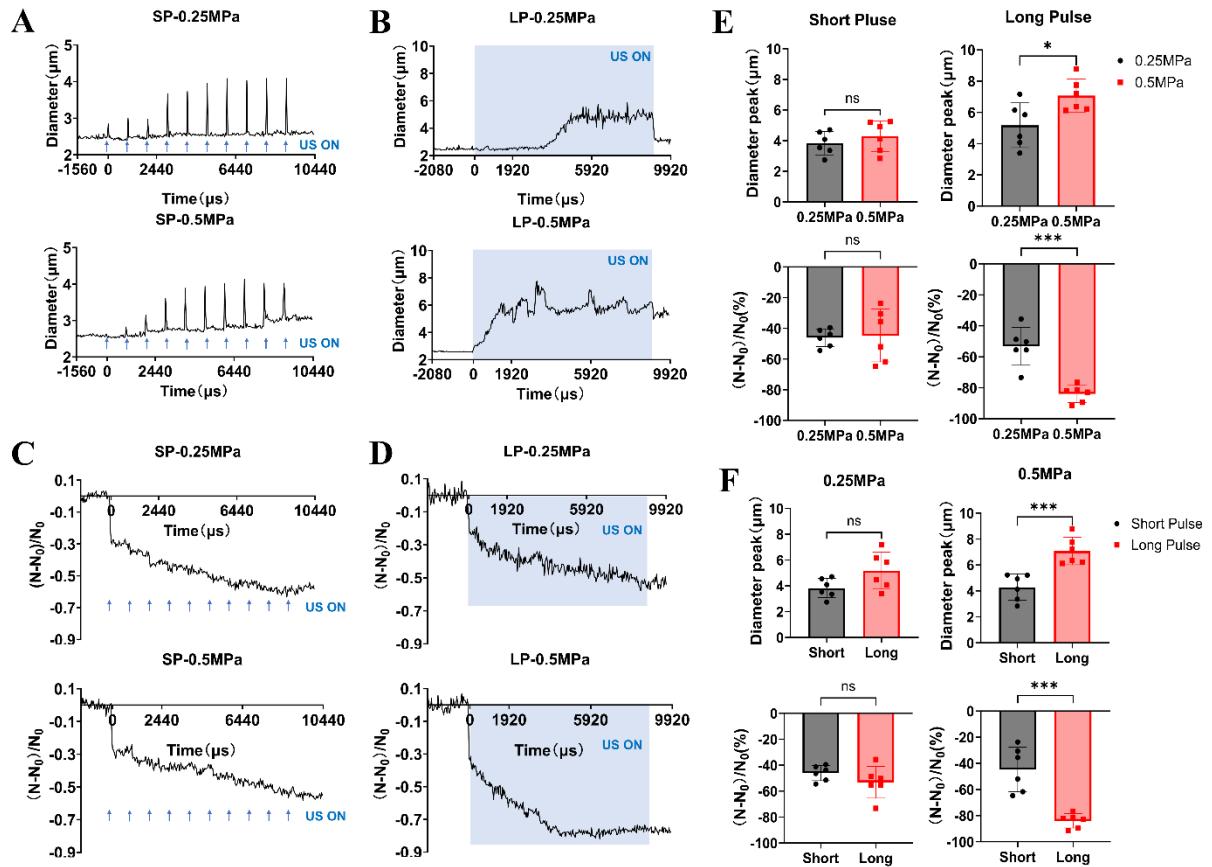
442 In the long pulse mode, where each ultrasound pulse lasted 9.09 ms,
443 microbubble displacement, clustering and coalescence were observed
444 (Fig. 4A) (ultrasound is on from 0-9.09 ms). The coalescence resulting in a
445 reduction of the number of bubbles at 0.5 MPa was strongly increased for
446 the long pulses as compared to the short pulses.

447 We examined in more detail the bubble dynamics at 0.25 MPa and
448 identified three types of bubble behavior. First, as shown in Fig. 4B, an
449 enlarged view of the region enclosed by the green box in Fig. 4A, the
450 microbubble labeled by the red arrow was displaced under ultrasound
451 exposure and subsequently was merged with another microbubble,
452 resulting in a larger bubble size. It further attracted and absorbed smaller
453 surrounding microbubbles (see the purple and orange arrows). Second, we
454 also find in some independent experiments that long pulses triggered
455 bubble clustering rather than coalescence (Fig. 4C). Third, in some
456 circumstances when bubbles coalesced over time to form larger bubbles,
457 they may undergo various surface oscillations (Fig. 4D). This phenomenon
458 is reported to be driven by the Faraday instability [6, 39], which may cause
459 the appearance of half-harmonic patterns, known as shape modes on
460 oscillating bubbles [40-43].

462

463 **Figure 4. The dynamic behavior of microbubbles within**
 464 **microchannels under long pulse ultrasound exposure at a flow rate**
 465 **of 75 μ L/min.** (A) High speed recordings of the bubble dynamics under
 466 one long pulse exposure (pulse length 0 - 9.090 ms) at 0.25 MPa and 0.5
 467 MPa acoustic pressure. Ultrasound begins at $t=0$. (B) The enlarged view of
 468 the bubble dynamics in the green dashed box in (A) showing the
 469 displacement and coalescence of microbubbles and (C) a typical example

470 showing the gradual clustering of microbubbles and (D) surface oscillation
471 of an individual microbubble during the long pulse ultrasound exposure at
472 0.25 MPa. (E) The enlarged view of the bubble dynamics in the blue dashed
473 box in (A) showing the displacement, oscillation and coalescence of
474 microbubbles during the long pulse ultrasound exposure at higher acoustic
475 pressure of 0.50 MPa. (F) Enlarged view of the evolution of the
476 microbubble outlined by brown color (E) at different timings and stages.
477 S1: the microbubble was generated by coalescence of bubble clusters. S2:
478 notable and stable oscillation of the microbubble in the acoustic field. S3:
479 coalescence of the microbubble with another nearby bubble. S4: no
480 discernable oscillation and displacement at this stage even though
481 ultrasound is still on. Please note that S3 has a smaller magnification. (G)
482 Time evolution of the measured bubble diameter corresponding to stage
483 S1-S4 shown in panel F. The inset shows the enlarged view of bubble
484 diameter oscillation in S2.


485 At higher acoustic pressure of 0.5 MPa in the long pulse mode, bubbles
486 showed displacement and coalescence already during the first 2 ms as
487 compared to 0.25 MPa amplitude, where coalescence and reduction of the
488 bubble number started only from 3 ms on. We further examined selected
489 individual bubble dynamics in the dashed blue box in Fig. 4A. There the
490 microbubble tracked by the blue arrow was first displaced and coalesced
491 with the one tracked by a red arrow (Fig. 4E) and finally merged with the
492 microbubble in the upper right corner (in brown dashed box) during
493 $t=2280-2840 \mu\text{s}$. We then took a closer look of the time evolution of the
494 microbubble in the brown box (labeled by the brown arrow in Fig. 4F). It
495 was formed through the coalescence of nearby bubbles during the first
496 160 μs of ultrasound exposure (stage S1) and then underwent periodic
497 oscillation during the interval $2360 \mu\text{s} < t < 2520 \mu\text{s}$ (stage S2). Later it
498 merged with another large microbubble nearby increasing its size further
499 (stage S3) and then demonstrated no discernable oscillation till the end of
500 the ultrasound pulse (stage S4). This may be due to the shift of its
501 resonance frequency. The temporal evolution of the volume-weighted
502 average diameter of the microbubble labeled in brown throughout the
503 ultrasound pulse exposure and its enlarged oscillation curve in stage S2 is
504 shown in Fig. 4G. It revealed the rapid growth of the bubble in stage S1
505 through coalescence up to stage S2 ($t < 2240 \mu\text{s}$), a stable oscillation in
506 stage S2 and further coalescence and growth in stage S3 before it became
507 almost quiescent in stage S4.

508

509

510

511

512

513 **Figure 5. Analysis and quantification of bubble size and number**
514 **under short and long pulse ultrasound exposure.** (A) The time
515 evolution of the volume-weighted diameter of microbubbles under 10
516 consecutive short pulses (SP) for 0.25 MPa and 0.50 MPa acoustic
517 pressure. The timing of each ultrasound pulse is indicated by blue arrows.
518 (B) The time evolution of the volume-weighted diameter of microbubbles
519 under one long pulse at 0.25 MPa and 0.50 MPa acoustic pressure.
520 Ultrasound exposure is indicated with the shaded areas. (C) The relative
521 bubble number change ($N - N_0$) / N_0 for 10 consecutive short pulses at
522 0.25 MPa and 0.50 MPa acoustic pressure. (D) The relative bubble number
523 change ($N - N_0$) / N_0 for one long pulse at 0.25 MPa and 0.50 MPa acoustic
524 pressure. (E) Statistical analysis and comparison of the relative bubble
525 number change and the peak value of the volume-weighted diameter
526 between 0.25 MPa and 0.5 MPa for the short pulse and long pulse mode.
527 (F) Statistical analysis and comparison of the relative bubble number
528 change and the peak value of the volume-weighted diameter between short
529 pulse and long pulse mode at 0.25 MPa or 0.5 MPa. Student t-test is

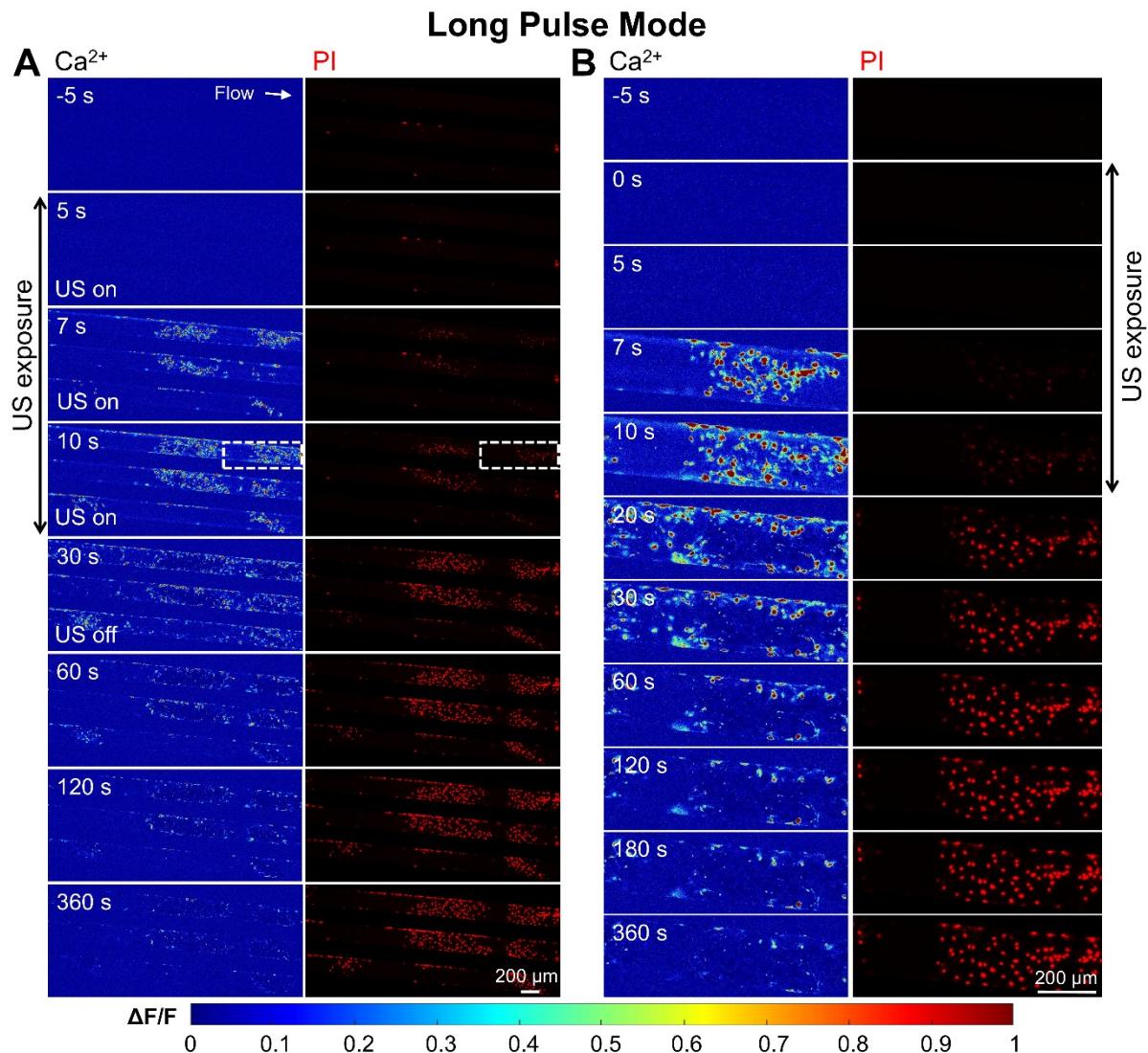
530 used, $N = 6$ independent chip experiments for each group: $*p < 0.05$, $***p < 0.001$.

532 Next, we calculated the volume-weighted diameter of the bubbles in
533 each image frame and their evolution over time (Fig. 5A and Fig. 5B) to
534 assess bubble expansion and coalescence. We further counted the total
535 number of microbubbles in each image frame and their change (over time
536 (Fig. 5C and Fig. 5D) for quantification of bubble coalescence or
537 destruction.

538 As shown in Figure. 5A, under short pulse mode, the average diameter of
539 the microbubbles increased and peaked during each brief ultrasound
540 exposure (40 μ s) 10 times, which is due to negative acoustic pressure
541 driven bubble volume expansion. These peaks showed an upward trend
542 with the number of ultrasound pulse exposure. The average bubble
543 diameter returned back to about its initial value after each short
544 ultrasound pulse at 0.25 MPa while it showed an accumulative effect on the
545 baseline bubble diameter at 0.5 MPa. This may be attributed to more
546 profound bubble coalescence at 0.5 MPa. Under long-pulse mode, the
547 averaged bubble diameter kept growing during the 9.09 ms-long
548 ultrasound exposure at 0.25 MPa while it first increased sharply upon the
549 onset of the ultrasound then varies around a high-level baseline at 0.5 MPa.
550 There is no statistical difference in the peak value of the average bubble
551 diameter between 0.25 and 0.50 MPa under short pulse exposure, but
552 significant difference between 0.25 and 0.50 MPa was measured for the
553 long pulses (Fig. 5E).

554 For the bubble number change under short pulse, both 0.25 MPa and
555 0.50 MPa demonstrated an initial sharp reduction for the 1st short pulse
556 followed by a more gradual decrease for the later pulses (Fig. 5C). For the
557 long pulses, the bubble number showed a similar reduction at the onset of
558 the ultrasound and a slower decay at the later stages (Fig. 5D). There is no
559 statistical difference in the relative bubble number change between
560 0.25 MPa and 0.50 MPa for the short pulse exposure, but significant
561 difference between 0.25 MPa and 0.50 MPa was measured for the long
562 pulse (Fig. 5E).

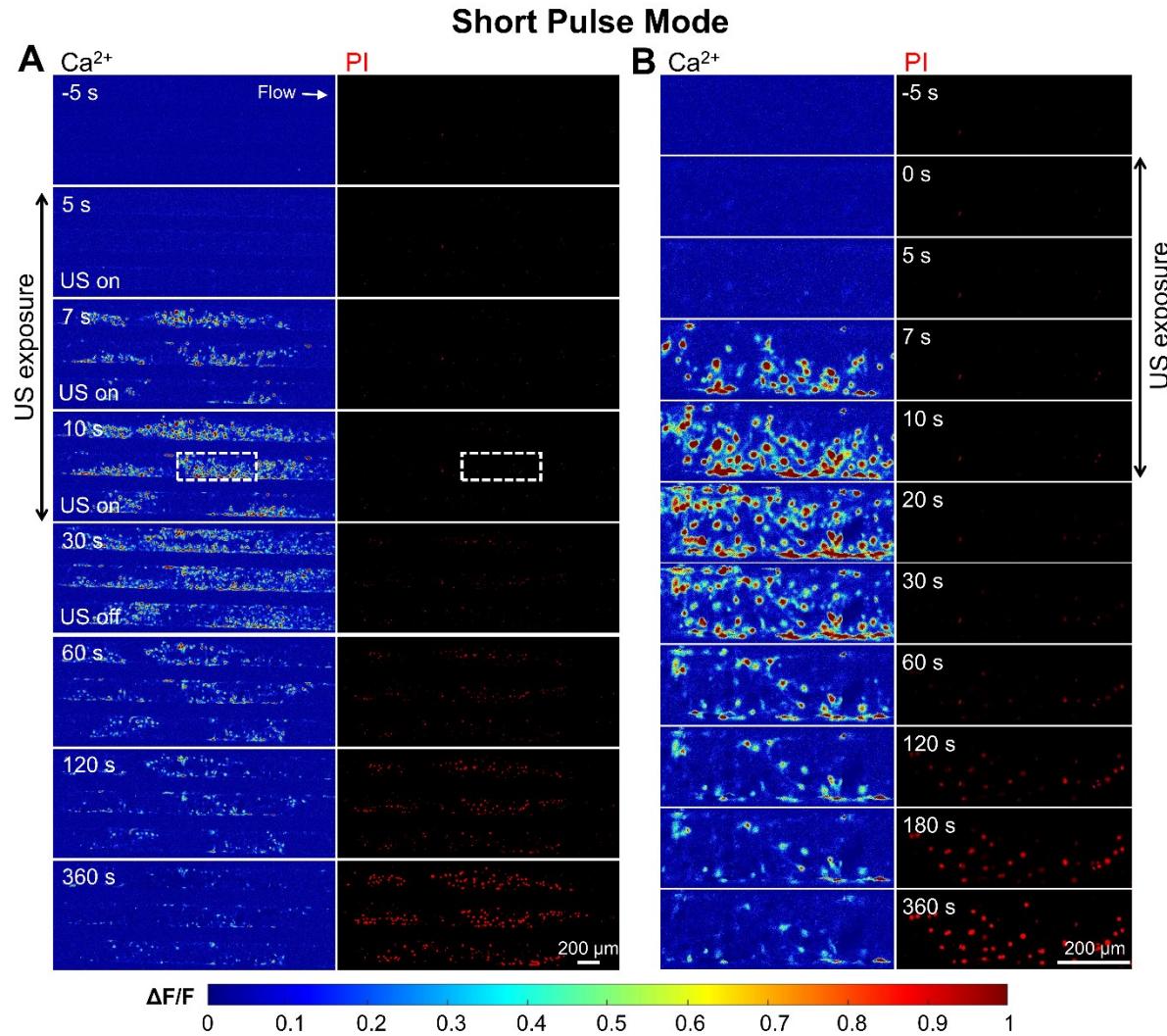
563 We further compared the difference for the change of bubble diameter
564 and bubble number between short and long pulses. There is no statistical
565 difference in both the bubble diameter peak and the relative bubble
566 number change at 0.25 MPa. In contrast, significant difference ($p < 0.001$)
567 in both the bubble diameter peak and the relative bubble number change
568 was measured at 0.50 MPa between short and long pulses (Fig. 5F). This
569 difference likely arose from the more sustained acoustic effects for the
570 long pulse mode, where prolonged ultrasound exposure intensifies


571 cavitation activity, leading to stronger microbubble coalescence and
572 bubble size growth.

573

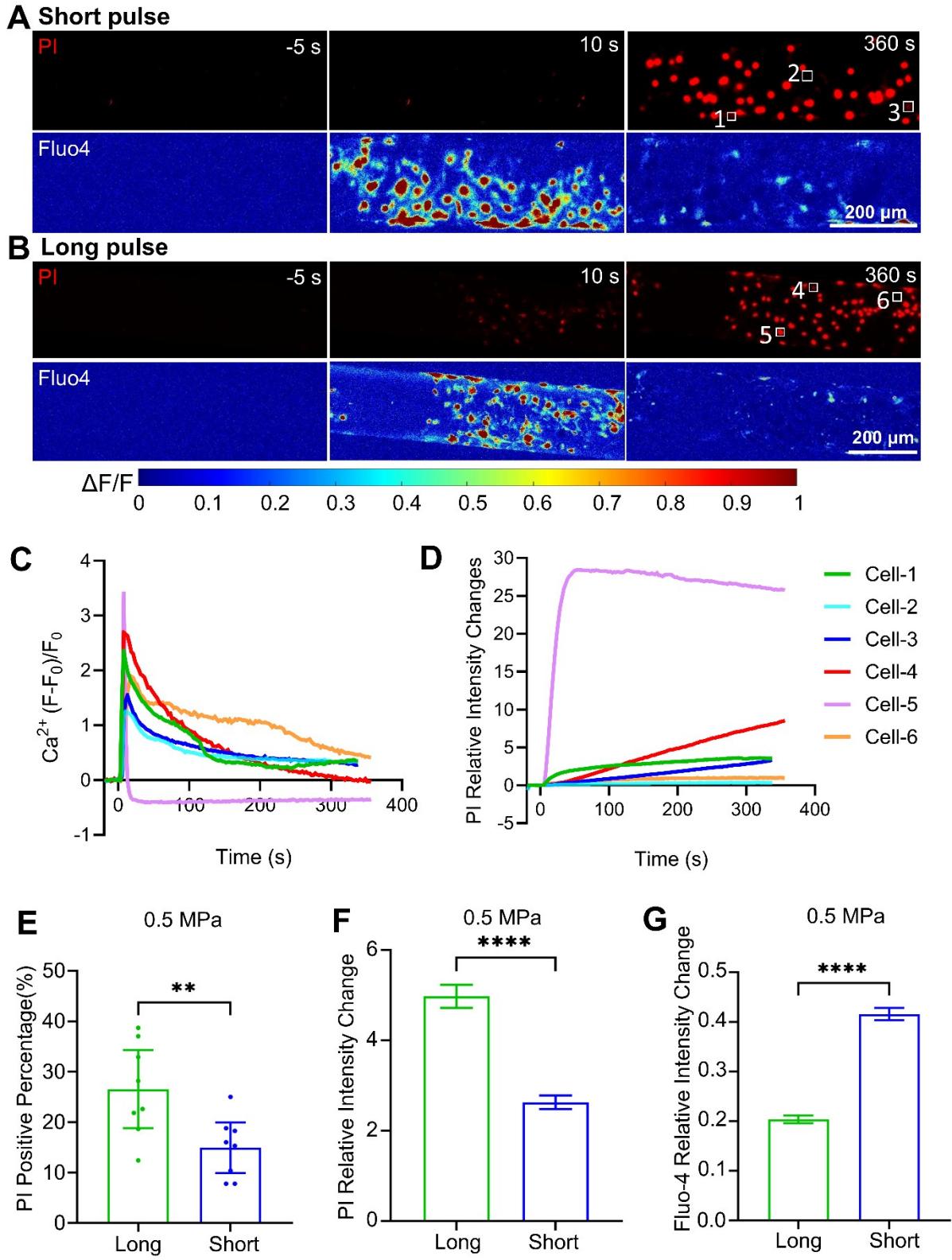
574 *3.3 Cellular Bioeffects induced by Short Pulse and Long Pulse Ultrasound*
575 *Exposure*

576 Ca^{2+} signaling has been reported to influence cell fate after sonoporation
577 and regulate tight junction opening [4, 7, 22]. Therefore, we performed
578 concurrent Ca^{2+} imaging and PI imaging (indicating membrane
579 permeability) for bEnd.3 monolayer culture in the vessel-mimicking
580 channels under short pulse and long pulse ultrasound stimulation.


581

582

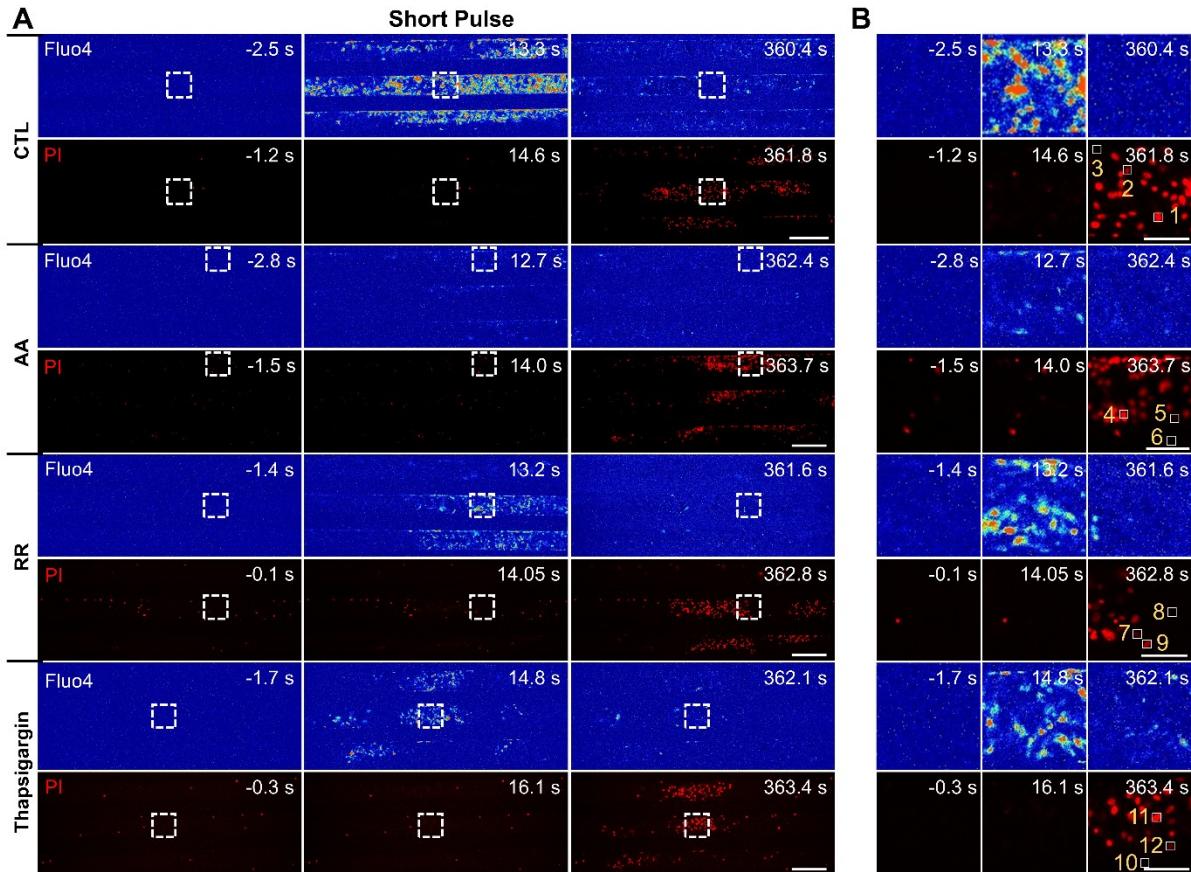
583 **Figure 6. Characteristics of cellular Ca^{2+} signaling and membrane**
584 **poration of bEnd.3 monolayer culture in the vessel-mimicking**
585 **channel under 0.5 MPa long pulse ultrasound exposure for 10s.** (A)
586 Wide-field imaging of cellular Ca^{2+} dynamics (Fluo-4, pseudo color) and PI
587 uptake (red) in a microfluidic chip before, during ($0 < t < 10$ s), and after
588 the long pulse ultrasound stimulation ($t > 10$ s). The left column indicates
589 the normalized Ca^{2+} change ($\Delta F/F_0$) with warmer colors representing a
590 stronger Ca^{2+} response. The right column displays PI fluorescence,
591 highlighting membrane-compromised cells. (B) Enlarged view of the
592 selected region from Panel A, showing the progression of cellular Ca^{2+}
593 signaling and membrane poration at higher resolution. The same time
594 labels and scale bars are shared between the columns in each panel.


595 Under long pulse stimulation, cells exhibited topical and intense Ca^{2+}
596 response after 7 s from ultrasound initiation ($t=0$) (Fig. 6A), which further
597 expanded to neighboring region at $t=10$ s. Later, cells showed gradually PI
598 uptake until reaching a plateau while Ca^{2+} signaling declined to baseline
599 level. It is worth noting that in the regions with notable PI uptake, the
600 cellular Ca^{2+} peaked between 7-10 s but became significantly lower later,
601 likely due to fluo-4 dye leakage from excessive membrane poration (see the
602 enlarged view at $t=20-30$ s in Fig. 6B). No membrane detachment was
603 observed.

604 **Figure 7. Characteristics of cellular Ca^{2+} signaling and membrane**
605 **poration of bEnd.3 monolayer culture in the vessel-mimicking**
606 **channel under 0.5 MPa short pulse ultrasound exposure for 10 s.** (A)

607 Image sequences showing Ca^{2+} signalling (Fluo-4, pseudo color, left
608 column) and PI uptake (red, right column) before, during (0-10 s), and after
609 ultrasound exposure at short pulse mode. (B) Enlarged view of the dashed
610 box in (A) showing the time evolution of Ca^{2+} signalling (left) and PI uptake
611 (right). The two channels share the same time labels and scale bar.
612 Ultrasound is on from 0-10 s.

613 In contrast, the 10 s exposure of short pulse ultrasound elicited more
614 uniform Ca^{2+} response across the cell population and milder membrane
615 poration (Fig. 7A). Interestingly, the Ca^{2+} response lasts longer at a high
616 level (from $7 \text{ s} < t < 80 \text{ s}$) as compared to the long pulse conditions (see
617 the enlarged view in Fig. 7 B). The PI uptake also became slower and
618 weaker. These demonstrated that short pulses promoted Ca^{2+} signaling
619 without causing excessive membrane poration or damage.



622 **Figure 8. Comparison of generated cellular Ca^{2+} signaling and**
623 **membrane poration between short pulse and long pulse treatment**
624 **for 10 s at 0.5 MPa acoustic pressure. (A) and (B)** PI uptake (red,
625 upper panel) and Ca^{2+} signaling (pseudo color, bottom panel) in bEnd.3 cell

626 monolayer in the microchannels before (-5 s), during (10 s), and after (360
627 s) 0.5 MPa ultrasound exposure at long pulse and short pulse mode,
628 respectively. **(C)** Ca^{2+} response $\Delta F/F$ vs. time for exemplary cells labeled 1
629 to 3 at short pulse mode (A) and 4 to 6 at long pulse mode in (B). **(D)**
630 Relative PI uptake $(I-I_0)/I_0)_{\text{PI}}$ vs. time for the cells labeled 1 to 3 in the short
631 pulse mode and 4 to 6 in the long pulse mode. The same color coding for
632 cells is used in panel C and D. **(E)** The percentage of cells showing PI
633 uptake in each independent microfluidic chip experiment. $n = 8$ chips for
634 each group. **(F)** and **(G)** PI relative intensity change and Ca^{2+} response
635 peak values from individual cells in the above experiments. In panel F,
636 $N=11047$ and 11100 cells for long and short pulse mode, respectively. In
637 panel G, $N = 11290$ and 11300 cells for long and short pulse, respectively.
638 The student t-test was used for statistical analysis. $**p < 0.01$, $***p <$
639 0.001 , $****p < 0.0001$.

640 We further examined individual cells treated by the two pulse sequences
641 at 0.5 MPa acoustic pressure (Fig. 8). Representative cells labeled by 1 to 3
642 in the short pulse mode (Fig. 8A) and 4 to 6 (Fig. 8B) in the long pulse mode
643 demonstrated differential PI uptake and Ca^{2+} signaling following
644 ultrasound exposure. Cell #2 and #6 exhibited no discernable membrane
645 poration but mild Ca^{2+} signaling that reached a lower peak value than the
646 other perforated cells (Fig. 8C and Fig. 8D). Interestingly, although the
647 final PI uptake in cell #4 and 5 (long pulse) was more than 2 times larger
648 than that in cell #1 and 3 (short pulse) (Fig. 8D), the peak values of Ca^{2+}
649 signaling of the latter were similar to those of the former cells (Fig. 8C).
650 The results also demonstrated that cell #5 experienced excess membrane
651 poration and Ca^{2+} indicator leakage with long pulse treatment. We further
652 conducted quantitative analysis to compare the variations in PI uptake and
653 Ca^{2+} signaling across each independent experiment under the two pulse
654 sequences. The percentage of PI-positive cells and the relative PI intensity
655 change were both significantly higher under long pulse mode (Fig. 8E and
656 Fig. 8F). However, the magnitude of Ca^{2+} response was substantially
657 higher in the short pulse mode compared to the long pulse mode (Fig. 8G).
658 These findings reveal that pulse duration is a key determinant in
659 ultrasound-mediated cellular responses.

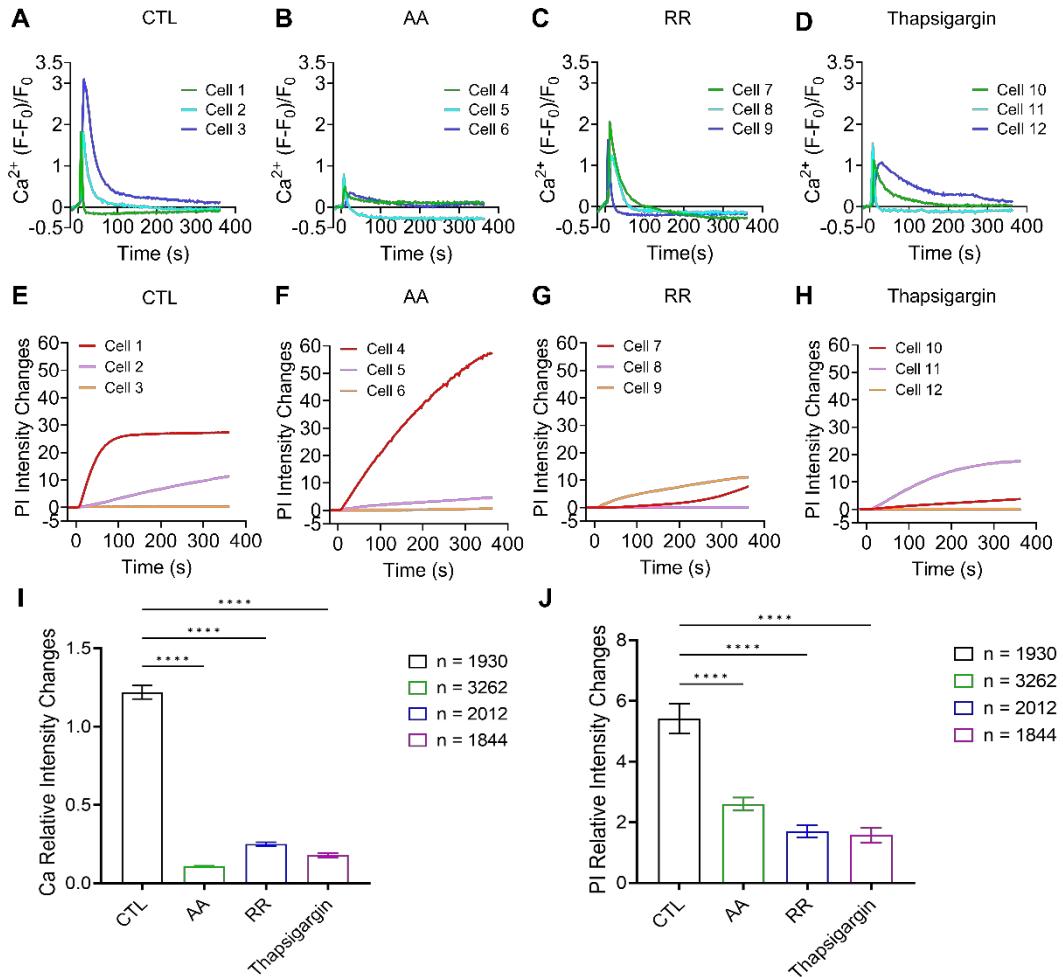

660 *3.4 Mechanistic Study of Cellular Calcium Signaling induced by Short
661 Pulse Ultrasound*

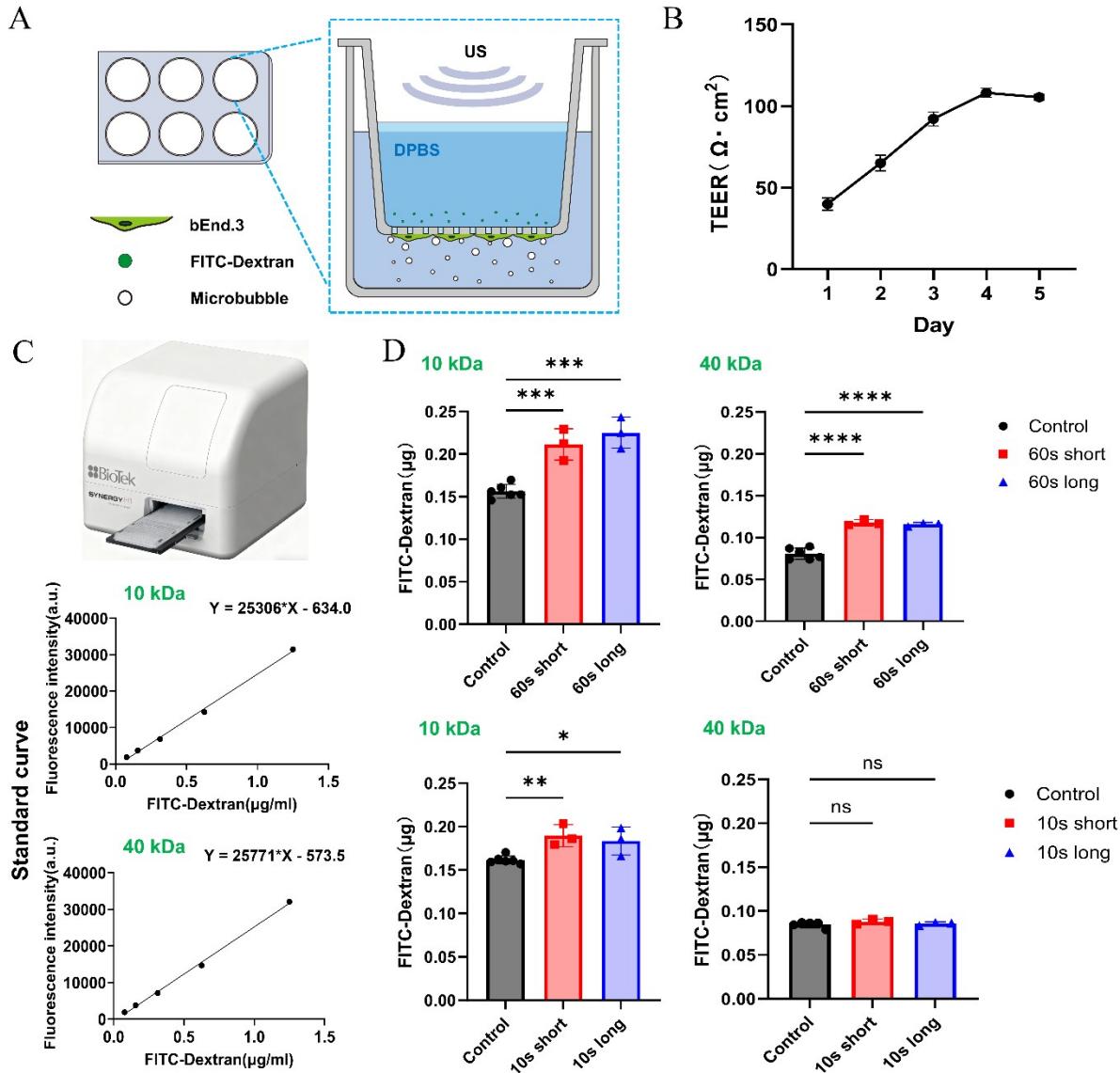
Figure 9. Mechanistic study for cellular Ca^{2+} response induced by 10 s short pulse ultrasound stimulation at 0.5 MPa acoustic pressure. (A) Image sequences of induced Ca^{2+} signaling (Fluo-4, pseudocolor) and PI uptake (red) for control groups without inhibitors, treated by ascorbic acid (AA), Ruthenium Red (RR) and Thapsigargin. Ultrasound is on from 0 to 10 s. The scale bars denote 400 μm . **(B)** Enlarged views of the dashed boxes in panel (A) in corresponding rows. The scale bars denote 100 μm .

671 Considering the efficiency and biosafety of evoking cellular Ca^{2+}
672 response, we performed mechanistic study under 10 s short pulse
673 stimulation at 0.5 MPa acoustic pressure. Without any inhibitors (CTL), cell
674 monolayers showed obvious Ca^{2+} response soon after ultrasound exposure
675 (Fig. 9A and Fig. 9B). Cavitation activity is known to generate reactive
676 oxygen species (ROS) that may affect cellular bioeffects. After introducing
677 ascorbic acid (AA) to scavenge ROS, ultrasound induced Ca^{2+} response
678 significantly reduced although the cells showed membrane poration to a
679 similar extent. When inhibiting mechanosensitive cation channels with
680 ruthenium red (RR), cellular Ca^{2+} signaling moderately decreased
681 compared to control group. Similarly, when cells were treated with
682 thapsigargin to deplete internal Ca^{2+} storage, cellular Ca^{2+} signaling
683 reduced noticeably but not drastically. With reduced Ca^{2+} responses in

684 these conditions, PI uptake and cell perforations were still observed. We
 685 selected three exemplary cells for further analysis from each condition, as
 686 labeled by #1 to #12 in Fig. 9 B.

687

688 **Figure 10. Exemplary cells and statistical analysis for the**
 689 **mechanisms of cellular Ca^{2+} response induced by 10 s short pulse**
 690 **ultrasound at 0.5 MPa.** Time traces of Ca^{2+} response $\Delta F/F$ for exemplary
 691 cells labeled by 1 to 3 in the control group (A), 4 to 6 in the AA group (B), 7
 692 to 9 in the RR group (C) and 10 to 12 in the Thapsigargin group (D). (E-H)
 693 The relative PI uptake vs. time for the above exemplary cells. (I) and (J)
 694 Statistical analysis of the Ca^{2+} signaling and PI uptake from all individual
 695 cells between different groups. Significant differences were determined by
 696 One-Way ANOVA; $****p < 0.0001$. The total number of cells in each group
 697 is indicated in the figure legend.


698 Compared to cells 1 to 3 from the control group (Fig. 10A), cells 4 to 6
 699 showed notable suppression of Ca^{2+} responses with AA treatment to
 700 eliminate ROS (Fig. 10B). Cells 7 to 8 from RR treatment blocking
 701 mechanosensitive ion channels and cells 10 to 12 with Thapsigargin
 702 affecting internal release demonstrated lower peaks of Ca^{2+} transients

703 (Fig. 10 C-D). The PI uptake of cells 5 to 12 exhibited a moderate decrease
704 compared to the control group (Fig. 10 E-H). Statistical analysis of all the
705 cells from each group confirmed that AA treatment affected cellular Ca^{2+}
706 response to the largest extent (Fig. 10I). This finding strongly suggests a
707 critical role for ROS in mediating ultrasound-induced Ca^{2+} signaling. All
708 these inhibitors could significantly reduce cellular Ca^{2+} transients and PI
709 uptake (Fig. 10 I-J), suggesting that ROS, mechanosensitive ion channels
710 and internal Ca^{2+} release contributed to ultrasound induced Ca^{2+} signaling
711 and membrane poration.

712 *3.5 Molecular Transport Across Endothelial Layer Induced by Long and*
713 *Short Pulse Ultrasound*

714 Next, we further investigated the molecular transport across the
715 endothelial monolayer generated by long and short pulse ultrasound with
716 the transwell model. Both membrane poration and Ca^{2+} signaling may
717 contribute to the molecular transport. We evaluated the effect of the total
718 treatment time and pulse length on the transport of molecules of different
719 size, i.e., 10 kDa and 40 kDa FITC-dextran.

720 To ensure thorough contact between microbubbles and cells, we
721 cultured the bEnd.3 cells at the bottom of the transwell insert to form a
722 monolayer and added microbubbles to the bottom chamber so that they
723 can rise to the cell surface due to buoyancy (Fig. 11A). Experiments were
724 only performed when the endothelial layer reached its peak integrity (i.e.,
725 TEER value above $100 \Omega \cdot \text{cm}^2$) (Fig. 11B). The microplate reader was
726 utilized to measure the amount of FITC-dextran transported from the
727 upper chamber to the bottom of the transwell by calibration with standard
728 curves, which convert fluorescent intensity to molecule concentrations
729 (Fig. 11C). Statistical results show that 60 s of short pulse and long pulse
730 ultrasound duration both significantly increased the total amount of 10
731 kDa and 40 kDa dextran transport across the endothelial layer compared
732 to the control group. Yet the delivered amount was higher for the 10 kDa
733 dextran. However, under 10s ultrasound exposure, neither short pulse nor
734 long pulse could achieve significant enhancement for the delivery of 40
735 kDa dextran while they still significantly enhanced the transport of 10 kDa
736 dextran, though slightly less compared to that under 60 s ultrasound
737 exposure. No significant difference was observed between short and long
738 pulses. These results indicate that the total ultrasound treatment time
739 plays an important role for molecular transport. Moreover, both membrane
740 poration and Ca^{2+} signaling, and their tradeoff, determines the final
741 molecular transport.

742

743 **Figure 11. Trans-endothelial transport of 10 kDa and 40 kDa FITC-**
744 **dextran with ultrasound treatment at short and long pulses.** (A)

745 Schematic of the experimental apparatus in transwell. (B) Measured trans-
746 endothelial electrical resistance (TEER) in the transwell from Day 1 to Day
747 5 after cell seeding. (C) Schematic of the microplate reader (upper) and the
748 standard curves for 10 kDa and 40 kDa FITC-dextran measured by the
749 microplate reader (bottom). (D) Quantification of the total amount of
750 transported 10 kDa and 40 kDa FITC-dextran to the bottom well at 1 h
751 after ultrasound stimulation in different scenarios with microplate reader.
752 60 s or 10 s short pulse and long pulse were used here. Significant
753 differences were determined by One-Way ANOVA, $n = 3-6$ wells for each
754 group, $*p < 0.05$, $**p < 0.01$, $***p < 0.001$, $****p < 0.0001$.

755

756

757

758

759 **4. Discussion**

760 *4.1 Pulse Length Dependent Interplay Between Bubble Dynamics and*
761 *Cellular Bioeffects*

762 The therapeutic promise of ultrasound-mediated drug delivery is
763 constrained by a fundamental challenge: how to achieve sufficient barrier
764 permeabilization while maintaining cellular viability and function [2].
765 Although cavitation activity is widely recognized as the primary physical
766 mechanisms of sonoporation, the downstream biochemical signaling
767 events that ultimately dictate cellular fate, e.g., whether cells recover or
768 die, remain insufficiently understood. This study provides a mechanistic
769 investigation into how acoustic parameters of ultrasound pulses
770 differentially regulates microbubble dynamics, calcium signaling, and
771 endothelial barrier permeability. By employing a vessel-mimicking
772 microfluidic platform that integrates real-time, high-resolution
773 observation of bubble dynamics, live-cell Ca^{2+} responses, and membrane
774 perforation, we demonstrate that ultrasound pulse structure is a critical
775 parameter that shapes not only bubble behavior but also
776 the spatiotemporal profile and physiological consequences of Ca^{2+}
777 signaling, a key regulator of endothelial integrity.

778 The response of microbubbles under ultrasound exposure is crucial for
779 understanding the mechanical forces exerted on cells. Our high-speed
780 imaging results demonstrate that microbubble displacement, clustering
781 and coalescence were significantly influenced by ultrasound pulse
782 duration and acoustic pressure. Under SP mode at 0.5 MPa, bubble
783 expansion is transient and reversible, with limited coalescence and
784 moderate displacement. In contrast, LP ultrasound at 0.5 MPa led to
785 significantly more pronounced bubble clustering, coalescence, and
786 prolonged oscillation. Therefore, microbubble distribution was more
787 uniform following short-pulse exposure, as reported by previous studies
788 [31, 34], in contrast to the markedly diminished bubble population under
789 long-pulse exposure. These differences in bubble dynamics and
790 spatiotemporal distribution directly translate into varied mechanical
791 stimuli delivered to the endothelial monolayer. The increased microbubble
792 coalescence and prolonged oscillation under LP mode likely contribute to
793 the higher degree of membrane permeabilization observed in our

794 experiments. This is supported by the higher percentage of sonoporated
795 cells and stronger PI fluorescence intensity under LP compared to SP
796 condition.

797 A key finding of this work is the identification of distinct, pulse-length-
798 dependent Ca^{2+} signaling profiles. A 10 s SP ultrasound stimulation
799 induces a more uniform and wider spreading Ca^{2+} elevation across the cell
800 population as compared to a 10 s LP that avoided cell detachment. This
801 response was associated with mild cell membrane poration or no
802 sonoporation. Ca^{2+} signaling can be initiated either by extracellular Ca^{2+}
803 influx through sonoporation pores or mechanosensitive channels, or by the
804 release from intracellular stores like the endoplasmic reticulum (ER) [4,
805 44]. This initial signal often evolves into an intracellular Ca^{2+} wave, which
806 can propagate via gap junctions to neighboring cells, triggering
807 intercellular waves [4, 45]. These Ca^{2+} signaling characteristics are
808 consistent with the uniform microbubble distribution and resultant
809 mechanical stimulation from SP ultrasound. Importantly, we observe that
810 Ca^{2+} signaling peaks was significantly higher at SP conditions despite
811 higher percentage and larger extent of sonoporation found at LP exposure.
812 One possible reason could be due to Ca^{2+} indicator leakage from the more
813 intense membrane poration at LP conditions. Another reason could be a
814 more efficient and global activation of Ca^{2+} signaling pathways under SP
815 mode.

816 Through pharmacological inhibition, we dissected the contributions of
817 key pathways to ultrasound-induced Ca^{2+} signaling at SP
818 conditions. ROS emerged as a major mediator, as scavenging with ascorbic
819 acid substantially blunted Ca^{2+} responses. Cavitation-generated ROS may
820 act on redox-sensitive ion channels (e.g., transient receptor potential (TRP)
821 channels in the plasma membrane), or modulate Ca^{2+} release channels
822 (e.g., IP_3 and ryanodine receptors) on the sarcoplasmic/endoplasmic
823 reticulum (SR or ER) membrane, to initiate and amplify Ca^{2+} signaling [46,
824 47]. Further inhibition of mechanosensitive channels with ruthenium red
825 or depletion of intracellular Ca^{2+} stores with Thapsigargin each reduced
826 but did not abolish Ca^{2+} transients, indicating that multiple pathways
827 operate in concert. These findings highlight the multimodal nature of
828 ultrasound-triggered Ca^{2+} signaling, involving both physical (mechanical)
829 and biochemical (ROS) components. It indicates ROS not merely work as
830 cytotoxic byproducts of inertial cavitation but also as potent signaling
831 molecules at mild dose, capable of modulating endothelial function
832 through redox-sensitive pathways.

833 *4.2 Implications for endothelial barrier modulation and ultrasound-
834 mediated therapeutic delivery*

835 The differential cellular responses to SP and LP ultrasound, where SP
836 favored widespread Ca^{2+} signaling and LP induced focal sonoporation,
837 highlight a critical balance between signaling-mediated and poration-
838 mediated transport. This balance explains the comparable molecular
839 delivery efficiencies observed for both pulse modes in our transwell
840 experiments. For the 10 s exposure (which avoided cell detachment), both
841 modes achieved similar 10 kDa dextran delivery because the enhanced
842 paracellular transport from robust Ca^{2+} signaling under SP compensated
843 for the reduced direct transcellular poration, while under LP
844 exposure, efficient transcellular poration compensated for its more
845 heterogeneous Ca^{2+} signaling. At the longer 60 s treatment that improved
846 40 kDa dextran delivery, a similar principle applies: each pulse mode
847 leverages its dominant mechanism, SP through sustained Ca^{2+} -mediated
848 tight junction modulation and LP through higher percentage and larger
849 extent of membrane poration or some topical spots of cell detachment, to
850 achieve a comparable net increase in barrier permeability for larger
851 molecules. This demonstrates that the total therapeutic effect of
852 ultrasound on molecular transport is not dictated by a single mechanism
853 but by the integrated output of both paracellular (Ca^{2+} -driven) and
854 transcellular (sonoporation-driven) pathways, which can be tuned by pulse
855 length and pulse structures. It is worth noting that the above transwell
856 molecular transport results were confined to 10 s and 60 s total ultrasound
857 exposure and may not apply to even longer treatment (e.g., 120 s). Further
858 extending total treatment time can boost delivery efficiency. However, this
859 gain may be counterbalanced by the propensity for excessive damage and
860 cell detachment, especially under long pulses, which would disrupt the
861 equilibrium of paracellular and transcellular transport mechanisms.

862 In this study, we established a compact, acoustically coupled, vessel-
863 mimicking microfluidic system under physiological flow to resolve
864 microscopic mechanisms. The custom-built ring transducer, precisely
865 aligned with the microchannels, enables simultaneous sonication and high-
866 resolution optical imaging, providing a powerful platform for future
867 studies. It is worth noting that our simplified microfluidic model, which,
868 while offering good control of bubble-cell interactions and real-time
869 imaging, does not fully recapitulate the complexity of *in vivo* vasculature,
870 including shear stress adaptation and interactions between endothelial
871 cells and other cell types [22, 48]. Future work should explore how pulse
872 duration influences Ca^{2+} signaling in more physiologically relevant models,
873 such as co-culture systems. Additionally, the molecular identity of the ROS-
874 sensitive Ca^{2+} pathways warrants further investigation.

875 **5. Conclusion**

876 This study establishes ultrasound pulse length and total treatment time
877 as critical modulators of endothelial Ca^{2+} signaling and barrier
878 permeability. Long pulses (10 s) generated more extensive membrane
879 poration, whereas short pulses elicited wider, more robust Ca^{2+} signaling.
880 This Ca^{2+} response is mediated by ROS, mechanosensitive ion channels,
881 and internal store release. Both pulse modes enhanced 10 kDa dextran
882 transport, while extended treatment (60 s) improved 40 kDa delivery.
883 These findings demonstrate that acoustic parameters can be tuned to
884 balance Ca^{2+} -mediated paracellular transport with sonoporation-driven
885 transcellular delivery. By linking pulse-dependent bubble dynamics to
886 specific signaling mechanisms, this work provides a foundation for
887 designing targeted ultrasound protocols, from direct, intensive drug/gene
888 delivery (long pulses) to transient, safer barrier opening (short pulses).

889 **CRediT authorship contribution statement**

890 **Chaofeng Qiao:** Methodology, Investigation, Formal analysis, Writing –
891 original draft. **Siyu Luo:** Investigation, Visualization, Formal analysis,
892 Writing – original draft. **Zhihui Liu:** Investigation, Visualization, Formal
893 analysis, Writing – original draft. **Yicong Cai:** Methodology, Investigation.
894 **Zhuoyan Liu:** Methodology, Investigation. **Liying Wang:** Methodology,
895 Visualization, Supervision, Formal analysis, Writing – original draft,
896 Writing – review & editing. **Claus Dieter Ohl:** Methodology, Software,
897 Visualization, Supervision, Formal analysis, Writing – original draft,
898 Writing – review & editing, Funding acquisition. **Fenfang Li:**
899 Conceptualization, Methodology, Software, Visualization, Supervision,
900 Formal analysis, Writing – original draft, Writing – review & editing,
901 Funding acquisition.

902 **Declaration of Competing Interest**

903 The authors have no conflict of interests to declare.

904 **Data availability**

905 All data supporting the findings of this study are available within the
906 article and its supplementary files. Any additional requests for information
907 can be directed to and will be fulfilled by the corresponding authors.

908 **Acknowledgements**

909 This research was supported by the start-up funding from Shenzhen
910 Bay Laboratory, the Natural Science Foundation of Guangdong Province
911 (Nos. 2023A1515010649), the Guangdong Provincial Pearl River Talents
912 Program 2023QN10X235, the National Natural Science Foundation of
913 China (No. 12204322), and European Regional Development Fund (EFRE)]
914 under grant agreement No. ZS/2024/02/184142.

915

916 **References**

- 917 1. Hu, Y., J. Wei, Y. Shen, S. Chen, and X. Chen, *Barrier-breaking effects of*
918 *ultrasonic cavitation for drug delivery and biomarker release*. Ultrasonics
919 Sonochemistry, 2023. **94**: p. 106346.
- 920 2. Roovers, S., T. Segers, G. Lajoinie, J. Deprez, M. Versluis, S.C. De Smedt,
921 et al., *The Role of Ultrasound-Driven Microbubble Dynamics in Drug*
922 *Delivery: From Microbubble Fundamentals to Clinical Translation*.
923 Langmuir, 2019. **35**(31): p. 10173-10191.
- 924 3. Marmottant, P. and S. Hilgenfeldt, *Controlled vesicle deformation and lysis*
925 *by single oscillating bubbles*. Nature, 2003. **423**(6936): p. 153-6.
- 926 4. Li, F., C. Yang, F. Yuan, D. Liao, T. Li, F. Guilak, et al., *Dynamics and*
927 *mechanisms of intracellular calcium waves elicited by tandem bubble-*
928 *induced jetting flow*. Proc Natl Acad Sci U S A, 2018. **115**(3): p. E353-e362.
- 929 5. Sankin, G.N., F. Yuan, and P. Zhong, *Pulsating Tandem Microbubble for*
930 *Localized and Directional Single-Cell Membrane Poration*. Physical Review
931 Letters, 2010. **105**(7): p. 078101.
- 932 6. Cattaneo, M., G. Guerriero, G. Shakya, L.A. Krattiger, L. G. Paganella,
933 M.L. Narciso, et al., *Cyclic jetting enables microbubble-mediated drug*
934 *delivery*. Nature Physics, 2025.
- 935 7. Lin, J., C. Qiao, H. Jiang, Z. Liu, Y. Hu, W. Liu, et al., *Reversible Ca(2+)*
936 *signaling and enhanced paracellular transport in endothelial monolayer*
937 *induced by acoustic bubbles and targeted microbeads*. Ultrason
938 Sonochem, 2025. **112**: p. 107181.
- 939 8. Honda, H., T. Kondo, Q.L. Zhao, L.B. Feril, Jr., and H. Kitagawa, *Role of*
940 *intracellular calcium ions and reactive oxygen species in apoptosis induced*
941 *by ultrasound*. Ultrasound Med Biol, 2004. **30**(5): p. 683-92.
- 942 9. Wu, D., Q. Chen, X. Chen, F. Han, Z. Chen, and Y. Wang, *The blood-brain*
943 *barrier: structure, regulation, and drug delivery*. Signal Transduct Target
944 Ther, 2023. **8**(1): p. 217.
- 945 10. Cai, Y., K. Fan, J. Lin, L. Ma, and F. Li, *Advances in BBB on Chip and*
946 *Application for Studying Reversible Opening of Blood-Brain Barrier by*
947 *Sonoporation*. Micromachines (Basel), 2022. **14**(1).
- 948 11. Meng, Y., C.B. Pople, H. Lea-Banks, A. Abrahao, B. Davidson, S. Suppiah,
949 et al., *Safety and efficacy of focused ultrasound induced blood-brain*
950 *barrier opening, an integrative review of animal and human studies*. J
951 Control Release, 2019. **309**: p. 25-36.
- 952 12. Anastasiadis, P., D. Gandhi, Y. Guo, A.K. Ahmed, S.M. Bentzen, C.
953 Arvanitis, et al., *Localized blood-brain barrier opening in infiltrating*
954 *gliomas with MRI-guided acoustic emissions-controlled focused*
955 *ultrasound*. Proc Natl Acad Sci U S A, 2021. **118**(37).
- 956 13. Baek, H., D. Lockwood, E.J. Mason, E. Obusez, M. Poturalski, R. Rammo,

957 et al., *Clinical Intervention Using Focused Ultrasound (FUS) Stimulation of*
958 *the Brain in Diverse Neurological Disorders*. *Front Neurol*, 2022. **13**: p.
959 880814.

960 14. Blesa, J., J.A. Pineda-Pardo, K.I. Inoue, C. Gasca-Salas, T. Balzano, N.L. Del
961 Rey, et al., *BBB opening with focused ultrasound in nonhuman primates*
962 *and Parkinson's disease patients: Targeted AAV vector delivery and PET*
963 *imaging*. *Sci Adv*, 2023. **9**(16): p. eadf4888.

964 15. Clapham, D.E., *Calcium signaling*. *Cell*, 2007. **131**(6): p. 1047-58.

965 16. Li, F., T.H. Park, G. Sankin, C. Gilchrist, D. Liao, C.U. Chan, et al.,
966 *Mechanically induced integrin ligation mediates intracellular calcium*
967 *signaling with single pulsating cavitation bubbles*. *Theranostics*, 2021.
968 **11**(12): p. 6090-6104.

969 17. Zhou, Y., J. Shi, J. Cui, and C.X. Deng, *Effects of extracellular calcium on cell*
970 *membrane resealing in sonoporation*. *J Control Release*, 2008. **126**(1): p.
971 34-43.

972 18. Li, F., C.U. Chan, and C.D. Ohl, *Yield strength of human erythrocyte*
973 *membranes to impulsive stretching*. *Biophys J*, 2013. **105**(4): p. 872-9.

974 19. Ohl, C.-D., M. Arora, R. Ikink, N. de Jong, M. Versluis, M. Delius, et al.,
975 *Sonoporation from Jetting Cavitation Bubbles*. *Biophysical Journal*, 2006.
976 **91**(11): p. 4285-4295.

977 20. Yuan, F., C. Yang, and P. Zhong, *Cell membrane deformation and bioeffects*
978 *produced by tandem bubble-induced jetting flow*. *Proc Natl Acad Sci U S A*,
979 2015. **112**(51): p. E7039-47.

980 21. Chen, J., J.M. Escoffre, O. Romito, T. Iazourene, A. Presset, M. Roy, et al.,
981 *Enhanced macromolecular substance extravasation through the blood-*
982 *brain barrier via acoustic bubble-cell interactions*. *Ultrason Sonochem*,
983 2024. **103**: p. 106768.

984 22. Memari, E., F. Hui, H. Yusefi, and B. Helfield, *Fluid flow influences*
985 *ultrasound-assisted endothelial membrane permeabilization and calcium*
986 *flux*. *Journal of Controlled Release*, 2023. **358**: p. 333-344.

987 23. Shi, J., T. Han, A.C.H. Yu, and P. Qin, *Faster calcium recovery and*
988 *membrane resealing in repeated sonoporation for delivery improvement*.
989 *Journal of Controlled Release*, 2022. **352**: p. 385-398.

990 24. Kovacs, Z.I., S. Kim, N. Jikaria, F. Qureshi, B. Milo, B.K. Lewis, et al.,
991 *Disrupting the blood-brain barrier by focused ultrasound induces sterile*
992 *inflammation*. *Proc Natl Acad Sci U S A*, 2017. **114**(1): p. E75-e84.

993 25. Carpentier, A., M. Canney, A. Vignot, V. Reina, K. Beccaria, C. Horodyckid,
994 et al., *Clinical trial of blood-brain barrier disruption by pulsed ultrasound*.
995 *Sci Transl Med*, 2016. **8**(343): p. 343re2.

996 26. Shin, J., C. Kong, J.S. Cho, J. Lee, C.S. Koh, M.S. Yoon, et al., *Focused*
997 *ultrasound-mediated noninvasive blood-brain barrier modulation: preclinical*
998 *examination of efficacy and safety in various sonication parameters*. *Neurosurg Focus*, 2018. **44**(2): p. E15.

999 27. Pouliopoulos, A.N., N. Kwon, G. Jensen, A. Meaney, Y. Niimi, M.T. Burgess,

1001 et al., *Safety evaluation of a clinical focused ultrasound system for*
1002 *neuronavigation guided blood-brain barrier opening in non-human*
1003 *primates*. *Sci Rep*, 2021. **11**(1): p. 15043.

1004 28. Jordão, J.F., E. Thévenot, K. Markham-Coultes, T. Scarcelli, Y.Q. Weng, K.
1005 Xhima, et al., *Amyloid- β plaque reduction, endogenous antibody delivery*
1006 *and glial activation by brain-targeted, transcranial focused ultrasound*. *Exp*
1007 *Neurol*, 2013. **248**: p. 16-29.

1008 29. Lim Kee Chang, W., T.G. Chan, F. Raguseo, A. Mishra, D. Chattenton,
1009 R.T.M. de Rosales, et al., *Rapid short-pulses of focused ultrasound and*
1010 *microbubbles deliver a range of agent sizes to the brain*. *Sci Rep*, 2023.
1011 **13**(1): p. 6963.

1012 30. Morse, S.V., A. Mishra, T.G. Chan, T.M.d.R. R, and J.J. Choi, *Liposome*
1013 *delivery to the brain with rapid short-pulses of focused ultrasound and*
1014 *microbubbles*. *J Control Release*, 2022. **341**: p. 605-615.

1015 31. Morse, S.V., A.N. Pouliopoulos, T.G. Chan, M.J. Copping, J. Lin, N.J. Long,
1016 et al., *Rapid Short-pulse Ultrasound Delivers Drugs Uniformly across the*
1017 *Murine Blood-Brain Barrier with Negligible Disruption*. *Radiology*, 2019.
1018 **291**(2): p. 459-466.

1019 32. Choi, J.J., K. Selert, F. Vlachos, A. Wong, and E.E. Konofagou, *Noninvasive*
1020 *and localized neuronal delivery using short ultrasonic pulses and*
1021 *microbubbles*. *Proc Natl Acad Sci U S A*, 2011. **108**(40): p. 16539-44.

1022 33. Juang, E.K., I. De Cock, C. Keravnou, M.K. Gallagher, S.B. Keller, Y.
1023 Zheng, et al., *Engineered 3D Microvascular Networks for the Study of*
1024 *Ultrasound-Microbubble-Mediated Drug Delivery*. *Langmuir*, 2019. **35**(31):
1025 p. 10128-10138.

1026 34. Pouliopoulos, A.N., C. Li, M. Tinguely, V. Garbin, M.X. Tang, and J.J. Choi,
1027 *Rapid short-pulse sequences enhance the spatiotemporal uniformity of*
1028 *acoustically driven microbubble activity during flow conditions*. *J Acoust*
1029 *Soc Am*, 2016. **140**(4): p. 2469.

1030 35. Zhao, X., A. Wright, and D.E. Goertz, *An optical and acoustic investigation*
1031 *of microbubble cavitation in small channels under therapeutic ultrasound*
1032 *conditions*. *Ultrason Sonochem*, 2023. **93**: p. 106291.

1033 36. Chen, X., J. Wang, J.J. Pacella, and F.S. Villanueva, *Dynamic Behavior of*
1034 *Microbubbles during Long Ultrasound Tone-Burst Excitation: Mechanistic*
1035 *Insights into Ultrasound-Microbubble Mediated Therapeutics Using High-*
1036 *Speed Imaging and Cavitation Detection*. *Ultrasound Med Biol*, 2016.
1037 **42**(2): p. 528-538.

1038 37. Shen, Y., M. Hu, W. Li, Y. Chen, Y. Xu, L. Sun, et al., *Delivery of DNA*
1039 *octahedra enhanced by focused ultrasound with microbubbles for glioma*
1040 *therapy*. *J Control Release*, 2022. **350**: p. 158-174.

1041 38. Le, D.Q., V. Papadopoulou, and P.A. Dayton, *Effect of Acoustic Parameters*
1042 *and Microbubble Concentration on the Likelihood of Encapsulated*
1043 *Microbubble Coalescence*. *Ultrasound in Medicine & Biology*, 2021.
1044 **47**(10): p. 2980-2989.

1045 39. Faraday, M., *On a peculiar class of acoustical figures; and on certain forms*
1046 *assumed by groups of particles upon vibrating elastic surfaces.* Abstracts
1047 of the Papers Printed in the Philosophical Transactions of the Royal Society
1048 of London, 1837(3): p. 49-51.

1049 40. Pouliche, V., A. Huerre, and V. Garbin, *Shape oscillations of particle-coated*
1050 *bubbles and directional particle expulsion.* Soft Matter, 2017. **13**(1): p.
1051 125-133.

1052 41. Guédra, M., S. Cleve, C. Mauger, P. Blanc-Benon, and C. Inserra, *Dynamics*
1053 *of nonspherical microbubble oscillations above instability threshold.*
1054 Physical Review E, 2017. **96**(6): p. 063104.

1055 42. Guédra, M., C. Inserra, C. Mauger, and B. Gilles, *Experimental evidence of*
1056 *nonlinear mode coupling between spherical and nonspherical oscillations*
1057 *of microbubbles.* Physical Review E, 2016. **94**(5): p. 053115.

1058 43. Dollet, B., S.M. van der Meer, V. Garbin, N. de Jong, D. Lohse, and M.
1059 Versluis, *Nonspherical Oscillations of Ultrasound Contrast Agent*
1060 *Microbubbles.* Ultrasound in Medicine & Biology, 2008. **34**(9): p. 1465-
1061 1473.

1062 44. Kim, T.-J., C. Joo, J. Seong, R. Vafabakhsh, E.L. Botvinick, M.W. Berns, et
1063 al., *Distinct mechanisms regulating mechanical force-induced Ca²⁺*
1064 *signals at the plasma membrane and the ER in human MSCs.* eLife, 2015.
1065 **4**: p. e04876.

1066 45. Jaffe, L.F., *Fast calcium waves.* Cell Calcium, 2010. **48**(2-3): p. 102-13.

1067 46. Song, M.Y., A. Makino, and J.X. Yuan, *Role of reactive oxygen species and*
1068 *redox in regulating the function of transient receptor potential channels.*
1069 Antioxid Redox Signal, 2011. **15**(6): p. 1549-65.

1070 47. Bogeski, I., C. Kummerow, D. Al-Ansary, E.C. Schwarz, R. Koehler, D.
1071 Kozai, et al., *Differential Redox Regulation of ORAI Ion Channels: A*
1072 *Mechanism to Tune Cellular Calcium Signaling.* Science Signaling, 2010.
1073 **3**(115): p. ra24-ra24.

1074 48. Booth, R. and H. Kim, *Characterization of a microfluidic in vitro model of*
1075 *the blood-brain barrier (μBBB).* Lab Chip, 2012. **12**(10): p. 1784-92.

1076