

Figure S1 | Functional characterizations of veratridine modulation on human $\text{Na}_v1.7$. (A) Voltage-dependent activation curves and (B) steady-state inactivation curves of $\text{Na}_v1.7$ recorded under varying concentrations of veratridine. (C) Representative current traces illustrating voltage-dependent activation (*top*) and steady-state inactivation (*bottom*) of $\text{Na}_v1.7$ in the presence of veratridine at the indicated concentrations. Inserts are the recording protocols.

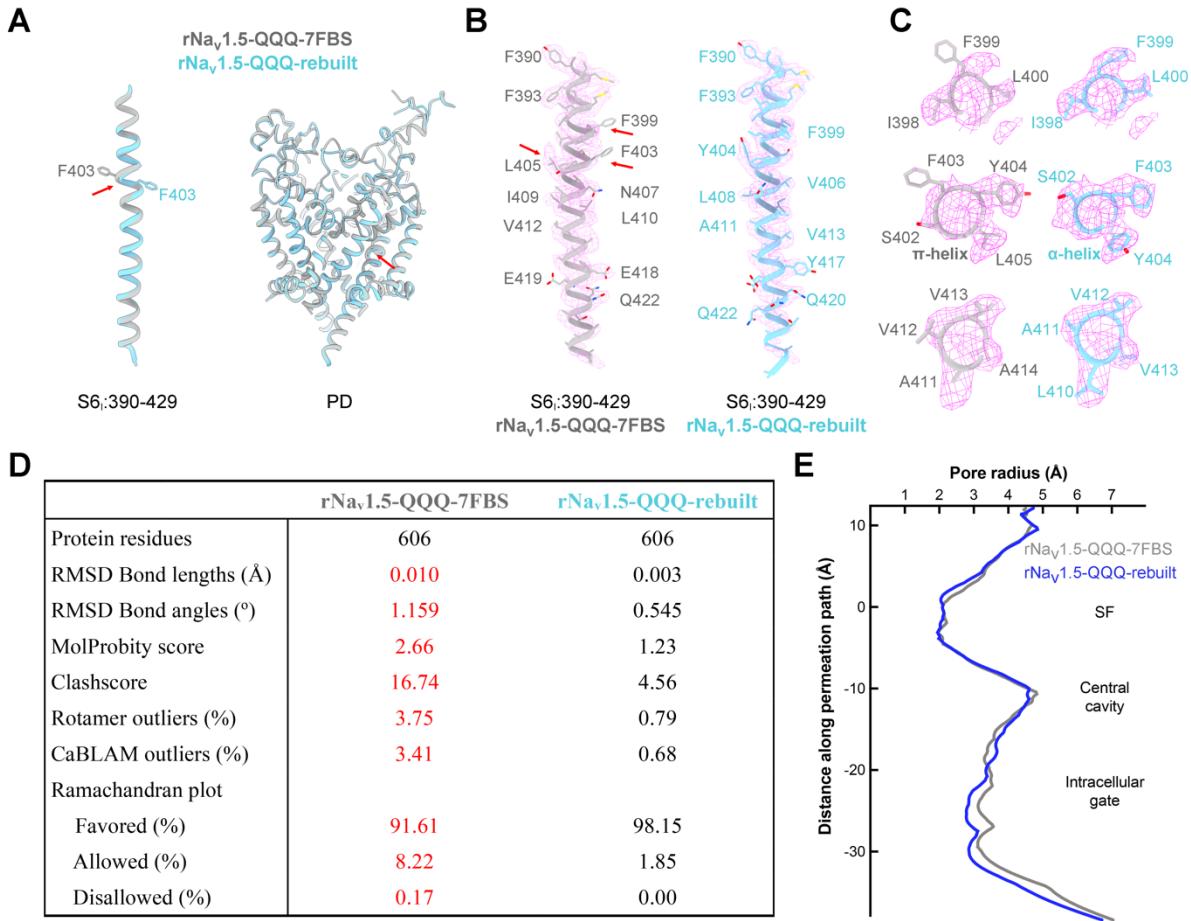

Figure S2 | Workflow for cryo-EM data processing. A representative raw micrograph and corresponding 2D class averages are presented. Related details are provided in *Materials and Methods*.

Figure S3 | Cryo-EM analysis of the Na_v1.7-VTD complex reveals three distinct classes. (A-C) Local resolution estimations (*left*), gold-standard Fourier shell correlation (GS-FSC) curves (*middle*), and angular distributions (*right*) for classes Na_v1.7V_I (A), Na_v1.7V_O (B), and apo-Na_v1.7 (C), respectively. (D) Overall cryo-EM 3D reconstructions (*top*) and corresponding zoomed-in views of the intracellular gate (*bottom*), highlighting the distinct ligand-binding features in each class. (E) Structural superposition revealed that the apo-Na_v1.7 class closely matches the previously reported apo structure (PDB: 7w9k), with an RMSD of 0.60 Å over 1,235 Ca atoms.

Figure S4 | Local cryo-EM densities of the Na_v1.7-VTD pore domains. Shown are the local pore-domain helix densities for (A) Na_v1.7V_I class, and (B) Na_v1.7V_O class, each exhibiting well-resolved features that corroborate the reconstructed maps and corresponding atomic models.

Figure S5 | Validation and refinement of the rNa_v1.5-QQQ model. (A) Superposition of the original (PDB:7FBS, grey) and rebuilt (cyan) pore-domain structures of rNa_v1.5-QQQ. The most significant change is the rebuilt α -helix spanning residues 400-403 within the S6_I segment (*left*). Red arrows indicate the origin of the assignment error. (B) Model-to-density fit for the original and rebuilt rNa_v1.5-QQQ S6_I segments within the deposited EM map (EMD-31519). Red arrows highlight examples of poorly fitted side chains in the original model that were corrected during refinement. (C) Close-up views of the S6_I helix fit at each turn. The rebuilt model (cyan) shows improved density agreement, supporting an α -helical conformation at Phe403 instead of the previously assigned π -helix. (D) Quantitative metrics of model validation support the improved quality of the refined model. (E) Ion permeation path analysis indicates subtle alterations to the conduction path in the refined model compared to the original structure.

Table S1 | Parameters of the concentration-response relationships for veratridine-mediated inhibition of peak currents and enhancement of accumulated tail currents in hNa_v1.7.

Parameters	inhibition of peak currents		enhancement of accumulated tail current	
IC ₅₀ / EC ₅₀ (μM)	92.66 ± 18.41		95.44 ± 16.62	
<i>k</i> (mV)	1.06 ± 0.18		0.82 ± 0.12	
Top	0.80 ± 0.11		0.85 ± 0.12	
[VTD]	Mean ± SEM	n	Mean ± SEM	n
0 μM	/	/	0.013 ± 0.004	18
1 μM	0.005 ± 0.021	13	0.023 ± 0.004	10
10 μM	0.052 ± 0.017	17	0.112 ± 0.006	12
30 μM	0.201 ± 0.021	16	0.252 ± 0.011	13
100 μM	0.405 ± 0.028	15	0.416 ± 0.019	13
300 μM	0.620 ± 0.023	15	0.626 ± 0.037	11

Each data point represents mean ± s.e.m (standard deviation of mean), and n denotes the number of independently recorded cells.

Table S2 | Parameters of voltage-dependent activation and steady-state inactivation of hNa_v1.7 with and without veratridine.

	Parameters	ES	1 μ M	10 μ M	30 μ M	100 μ M	300 μ M
voltage-dependent activation	V _{1/2} (mV)	-17.21 \pm 0.21	-21.77 \pm 0.34 ****	-24.50 \pm 0.21 ****	-26.45 \pm 0.30 ****	-28.93 \pm 0.37 ****	-31.68 \pm 0.50 ****
	P	/	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001
	k (mV)	7.00 \pm 0.18	6.84 \pm 0.29	6.17 \pm 0.18 **	6.68 \pm 0.26	7.03 \pm 0.31	8.46 \pm 0.43 ***
	P	/	0.5992	0.0013	0.2959	0.9420	0.0004
	n	16	10	13	12	12	12
steady-state inactivation	V _{1/2} (mV)	-75.29 \pm 0.23	-78.51 \pm 0.40 ****	-79.28 \pm 0.36 ****	-80.39 \pm 0.36 ****	-83.69 \pm 0.42 ****	-85.54 \pm 0.53 ****
	P	/	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001
	k (mV)	-6.06 \pm 0.20	-6.41 \pm 0.35	-6.54 \pm 0.32	-6.42 \pm 0.32	-6.83 \pm 0.37 *	-6.63 \pm 0.47
	P	/	0.3524	0.1792	0.3115	0.0488	0.2136
	n	19	11	14	14	13	9

*P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001 versus Na_v1.7 on the condition of external solution. The extra sum-of-squares F test was used to compare the V_{1/2} and slope factor (k) of both activation and inactivation. Each data point represents mean \pm s.e.m (standard deviation of mean) and n is the number of independently recorded cells. ES, external solution.

Table S3 | Statistics for cryo-EM data and structural refinement.

	Na_v1.7V_I	Na_v1.7V_O
Data collection and processing		
Magnification	105,000	105,000
Voltage (kV)	300	300
Electron dose (e-/Å ²)	50	50
Defocus range (μm)	-1.2~-1.6	-1.2~-1.6
Pixel size (Å)	1.114	1.114
Symmetry	C1	C1
Total good particle	631,118	631,118
Final particles	335,177	133,758
Map resolution (Å)	2.7	2.9
FSC threshold	0.143	0.143
Refinement		
Map sharpening <i>B</i> factor (Å ²)	103.9	101.6
Model composition		
Non-hydrogen atoms	13,103	12,531
Protein residues	1,538	1,472
Ligands	26	25
<i>B</i> factors (Å ²)		
Protein	65.92	99.95
Ligand	110.59	116.04
R.m.s deviations		
Bond lengths (Å)	0.003	0.002
Bond angles (°)	0.527	0.499
Validation		
MolProbity score	1.39	1.37
Clashscore	7.15	6.80
Rotamer outliers (%)	0.22	0.08
CaBLAM outliers (%)	0.80	0.77
Ramachandran plot		
Favored (%)	98.69	98.69
Allowed (%)	1.31	1.31
Disallowed (%)	0.00	0.00