

1 ER–mitochondria contacts orchestrate mitochondrial transport via 2 C19orf12/EMTOR

3 **Xiayuhe Pei^{1,*}, Shuqian Zhang^{2,*}, Peiyang Li³, Yutong Wu¹, Yiru Cheng¹, Xia Feng^{4,5}, Yiqian Wu³,**
4 **Xiaoshuai Huang⁶, Ning Huang^{7,8}, Bei Liu³, Junlin Teng¹, Jianguo Chen^{1,9,#}, Craig Blackstone^{4,5,#}, Pengli**
5 **Zheng^{1,2,10,#}**

6 ¹Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, State Key Laboratory
7 of Membrane Biology, School of Life Sciences, Peking University, Beijing 100871, China

8 ²Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking
9 University, Beijing 100871, China

10 ³National Biomedical Imaging Center, College of Future Technology, Peking University, Beijing 100871,
11 China

12 ⁴MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Charlestown, MA
13 02114, USA

14 ⁵Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114,
15 USA

16 ⁶Beijing Advanced Center of Cellular Homeostasis and Aging-Related Diseases, Institute of
17 Advanced Clinical Medicine, Peking University, Beijing,100191, China.

18 ⁷Institute of Neuroscience, Translational Medicine Institute, Health Science Center, Xi'an Jiaotong
19 University, Xi'an 710061, China

20 ⁸Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Health Science Center,
21 Xi'an Jiaotong University, Xi'an 710061, China

22 ⁹Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing
23 100871, China

24 ¹⁰Lead contact

25 *These authors contributed equally to this work.

26 [‡] Correspondences:

27 Jianguo Chen: chenjg@pku.edu.cn

28 Craig Blackstone: cblackstone@mgh.harvard.edu

29 Pengli Zheng: zhengpl@pku.edu.cn

30 **Abstract**

31 Endoplasmic reticulum (ER)-mitochondria contact sites facilitate lipid transfer, calcium signaling, and
32 mitochondrial division, yet their role in mitochondrial transport remains unclear. Here, we identify Hereditary
33 Spastic Paraplegia (HSP)-associated protein C19orf12 as an ER-anchored protein that acts as a central
34 organizer for mitochondrial trafficking and rename it EMTOR (ER-Mitochondria Transport Organizer). In
35 cells and mice, loss of EMTOR leads to severe perinuclear mitochondrial clustering, diminished axonal
36 mitochondrial density, and progressive locomotor dysfunction recapitulating key features of HSP.
37 Mechanistically, EMTOR forms a discrete complex with the mitochondrial Rho GTPase Miro1 and the
38 kinesin-1 motor KIF5B, independently of the canonical TRAK adaptors, thereby directly linking ER-
39 mitochondria contact sites to microtubule-based anterograde transport. This interaction is dynamically
40 regulated by local calcium levels: enhanced at Ca^{2+} concentrations (1–10 μM) characteristic of ER-
41 mitochondria contact microdomains, coinciding with increased mitochondrial speed, but markedly suppressed
42 under high calcium conditions, correlating with mitochondrial transport arrest. Therefore, our findings
43 establishes ER-mitochondria contact sites as logistical hubs for Kinesin-1 motor loading and highlights the
44 importance of the calcium-tunable EMTOR scaffold in sustaining directional mitochondrial transport,
45 revealing how the loss of this regulation drives the neurodegenerative cascade in HSP.

46

47 Key words: ER-mitochondria contact sites; Mitochondrial transport; C19orf12/EMTOR; Miro1; Kif5b;
48 Hereditary Spastic Paraplegia

49

50 Introduction

51 Cells continuously adjust the dynamic distribution of their organelles through intracellular transport to ensure
52 the efficient and orderly execution of cellular activities. Among these, mitochondria are essential metabolic
53 hubs that participate in key cellular processes such as ATP production, calcium buffering, and apoptosis¹⁻³.
54 Mitochondrial transport is critical for cells to maintain spatial energetic and metabolic balance, and is
55 particularly indispensable for highly specialized cells with extended morphologies and intense energy demands,
56 most notably neurons²⁻⁵. Neurons possess elongated axons and rely on precise mitochondrial delivery to distal
57 synapses to sustain synaptic transmission, plasticity, and survival. Consequently, aberrant mitochondrial
58 transport is a hallmark of neurodegenerative disorders, including Alzheimer's disease, Parkinson's disease, and
59 Hereditary Spastic Paraplegia (HSP)⁶⁻⁸.

60 Mitochondrial trafficking is driven by a diverse repertoire of molecular motors and adaptors. Long-range
61 anterograde transport is primarily mediated by microtubule-based kinesin-1 (KIF5) and kinesin-3 (KIF1B)⁹,
62 while retrograde movement relies on cytoplasmic dynein^{10,11}. Beyond these long-range transporters, short-
63 range motility in actin-rich domains utilizes Myosin19^{12,13}, and stationary retention is enforced by the axonal
64 docking factor Syntaphilin (SNPH)^{4,14}. These motors are coupled to the mitochondrial surface via adaptor
65 complexes, including the Metaxins¹⁵ and, most notably, the mitochondrial Rho GTPases (Miro1/2)^{16,17} and
66 trafficking kinesin-binding proteins (TRAK1/2)¹⁸⁻²¹. A fundamental question thus arises: how does the cell
67 spatially coordinate these ubiquitous motors and adaptors to ensure mitochondria are mobilized or anchored
68 at the right time and place?

69 A critical regulatory feature of this machinery centers on Miro1, which harbors EF-hand motifs to sense
70 cytosolic Ca²⁺ (cCa²⁺). An increase in local cCa²⁺ is widely recognized to act as a "stop signal" that inhibits
71 mitochondrial movement, particularly in neurons. Although this arrest involves Ca²⁺-induced conformational
72 changes in Miro1, the exact structural basis for motor inhibition is not fully understood, as studies have
73 variously proposed either the decoupling of kinesin from its cargo or the direct impediment of motor-
74 microtubule attachment^{22,23}. Additionally, this process is further modulated by interactions with the
75 mitochondrial calcium uniporter (MCU) and matrix calcium dynamics^{24,25}. However, distinct from these
76 inhibitory mechanisms, the role of basal physiological Ca²⁺ levels remains less defined, with emerging
77 evidence suggesting that specific calcium concentrations may be required for complex integrity rather than
78 solely acting as a stop signal²⁵⁻²⁸.

79 The endoplasmic reticulum (ER), the largest membranous organelle in the cell, functions as a central platform
80 for organelle communication²⁹. Through extensive membrane contact sites (MCSs), the ER orchestrates
81 essential physiological processes, including calcium transfer³⁰, lipid exchange³¹, and mitochondrial fission-
82 fusion dynamics^{32,33}. Previous work from our laboratory has demonstrated that the structural distribution of
83 the ER broadly dictates the spatial organization of other membrane-bound organelles³⁴. This suggests that the
84 ER may play a central, yet underappreciated, role in governing organelle transport. Crucially, specific ER-
85 resident proteins can actively drive this organization; for instance, Protrudin has been shown to simultaneously
86 bind Kinesin-1 and the endosomal protein Rab7, thereby acting as a scaffold to promote the anterograde

87 transport of lysosomes and late endosomes³⁵. Recent studies have further suggested that ER tubules can
88 mechanically guide mitochondrial positioning via "hitchhiking" mechanisms³⁶. Notably, the enrichment of
89 Miro1 at ER–mitochondria interfaces³⁷ suggests that ER-resident proteins may actively regulate mitochondrial
90 motility. However, whether ER proteins directly recruit or regulate the transport machinery remains unknown.

91 Hereditary Spastic Paraplegia (HSP) provides a compelling genetic window into this potential ER-transport
92 link. HSP is characterized by the length-dependent degeneration of corticospinal motor neurons, leading to
93 progressive lower limb spasticity³⁸. Strikingly, over 60% of pathogenic HSP mutations occur in ER-shaping
94 or ER-resident proteins (e.g., Atlastins, REEPs, Spastin³⁸), implicating ER dysfunction as a primary driver of
95 axonopathy. Yet, the downstream consequence of these ER mutations often manifests as defects in axonal
96 transport and mitochondrial distribution³⁹. This disconnect suggests that critical molecular linkers connecting
97 the ER network to the mitochondrial transport machinery are missing from our current understanding.

98 *C19orf12*, a gene mutated in a severe form of HSP (SPG43), represents a candidate for this missing link^{40–42}.
99 Previous studies have reported that *C19orf12* localizes to both the ER and mitochondria under overexpression
100 conditions and implicated the protein in broad cellular process including autophagy and lipid metabolism^{43,44}.
101 However, the precise subcellular localization of the endogenous protein remains controversial, and its primary
102 physiological function—specifically the molecular mechanism linking its dysfunction to axonal
103 degeneration—remains elusive. Here, we identify *C19orf12* as an ER-anchored organizer of mitochondrial
104 transport complex that enriches at ER-mitochondria contact sites. Based on these distinct characteristics, we
105 propose to rename this protein **EMTOR** (Endoplasmic reticulum–Mitochondria Transport Organizer). We
106 demonstrate that EMTOR is indispensable for maintaining axonal integrity, as its deficiency drives progressive
107 motor impairment in mice and distal mitochondrial depletion in neurons. Mechanistically, we reveal that
108 EMTOR functions as a Ca^{2+} -tunable scaffold that bridges the ER to the mitochondrial surface, promoting the
109 assembly of the Miro1–Kinesin-1 complex. Our findings reveal that ER-mitochondria contacts serve as critical
110 logistical hubs for organelle transport, providing a unifying mechanism for the pathogenesis of HSP.

111

112

113 **Results**

114 **EMTOR deficiency leads to progressive motor impairment and HSP-like pathology in mice**

115 To determine the physiological function of the HSP-associated protein EMTOR (encoded by *C19orf12*), we
116 generated constitutive knockout mice (*Emtor*^{-/-}, **Fig 1a, Extended Data Fig. 1a, b**). We first characterized the
117 expression profile of EMTOR in the brain. RT-qPCR and Immunoblotting of wild-type lysates revealed that
118 EMTOR expression progressively increases during postnatal development (from P5 to P60), coinciding with
119 the period of neuronal maturation (**Extended Data Fig. 1c, d**).

120 Clinically, *C19orf12* mutations cause Spastic Paraplegia type 43 (SPG43), characterized by progressive
121 spasticity and motor dysfunction. Our mouse model robustly recapitulated these features. While young mice
122 appeared normal, aged *Emtor*^{-/-} mice (15 months) developed pronounced hindlimb clasping reflexes and
123 abnormal gait patterns indicative of pyramidal tract dysfunction (**Fig. 1a-d**). Comprehensive behavioral testing
124 revealed significant deficits in motor coordination and neuromuscular strength: knockout mice showed reduced
125 latency on the rotarod, increased time to descend the pole, difficulty in the beam-walking test, and weakened
126 grip strength compared to age-matched controls (**Fig. 1e**). Although active motor challenges were terminated,
127 we continued to monitor spontaneous behaviors and general health longitudinally. Automated gait analysis in
128 aged mice revealed a higher stride Symmetry Index (SI stride) and increased Coefficient of Variation (CV
129 base), quantitatively confirming persistent gait instability (**Fig. 1f, g**).

130 Furthermore, longitudinal monitoring revealed a late-onset systemic phenotype, characterized by progressive
131 weight loss and increased mortality in *Emtor*^{-/-} geriatric mice (**Fig. 1h-j**). These data establish *Emtor*^{-/-} mice as
132 a valid model for HSP and indicate that EMTOR is essential for maintaining long-term motor function.

133 **EMTOR is essential for axonal mitochondrial transport and bioenergetics in hippocampal neurons**

134 We next investigated the cellular basis of these motor deficits. HSP is characterized by the specific
135 degeneration of long corticospinal axons, a "dying-back" pathology strongly implicating defects in long-range
136 axonal transport^{38,39}. Given the crucial role of mitochondria in sustaining synaptic energy homeostasis⁴, we
137 hypothesized a defect in axonal mitochondrial transport. In primary hippocampal neurons isolated from *Emtor*^{-/-}
138 mice, time-lapse imaging revealed a severe impairment in mitochondrial motility (**Fig. 2a**). While wild-type
139 neurons displayed robust bidirectional movement, knockout neurons exhibited a marked reduction in the
140 fraction of motile mitochondria and a corresponding increase in stationary states (**Fig. 2a, b**). This phenotype
141 was further validated using acute shRNA-mediated knockdown of EMTOR in wild-type neurons, which
142 recapitulated the transport defects (**Extended Data Fig. 1e, f**). A direct consequence of failed anterograde
143 transport is the inability to replenish mitochondria at distal sites. Indeed, imaging of axonal terminals (marked
144 by Tau) revealed a progressive depletion of mitochondria towards the distal end in knockout neurons compared
145 to controls (**Fig. 2c**). Quantification of mitochondrial fluorescence intensity specifically within axonal tips
146 confirmed a significant reduction in mitochondrial payload (**Fig. 6d; Extended Data Fig. 1g, h**).

147 Mitochondria are essential for local ATP synthesis to fuel synaptic transmission. We therefore asked whether
148 this spatial depletion compromised neuronal bioenergetics. Using the ratiometric ATP probe GO-ATeam2
149 (single-excitation, dual-emission readout), we detected lower ATP levels (F560/F510 ratio) at distal
150 axons/terminals in both knockout and knockdown neurons to controls (**Fig. 2e, f; Extended Data Fig. 1i, j**).
151 Collectively, these data demonstrate that EMTOR is indispensable for sustaining the population of motile
152 mitochondria required to supply the distal axon and maintain neuronal energy homeostasis.

153

154 **EMTOR deficiency induces perinuclear mitochondrial clustering**

155 To dissect the molecular mechanism underlying this transport defect, we utilized U2OS cells as a tractable
156 models since EMTOR is broadly expressed across tissues⁴⁵ (**Extended Data Fig. 2a**). Consistent with the
157 neuronal phenotype, loss of EMTOR resulted in a striking redistribution of the mitochondrial network:
158 mitochondria retracted from the cell periphery and accumulated heavily in the perinuclear region (**Fig. 3a, b**).
159 Quantitative analysis using asymmetry coefficient confirmed a significant reduction in mitochondrial
160 spreading (**Fig. 3c**), and the proportion of cells exhibiting severe clustering increasing from ~25% in wild-type
161 (WT) to ~80% in U2OS KO cells (**Fig. 3d**). Importantly, the distribution of lysosomes (LAMP1) remained
162 unaffected (**Fig. 3a, c, d**), and lysosomal marker levels were stable (**Extended Data Fig. 2b**). Furthermore,
163 mitochondrial membrane potential ($\Delta\psi_m$) was preserved in KO cells (**Extended Data Fig. 2c, d**).

164 To link this phenotype to HSP pathology, we performed rescue experiments with human *EMTOR* variants^{40,42}.
165 Re-expression of full-length EMTOR in KO cells fully restored the peripheral mitochondrial network whereas
166 pathogenic mutants G58R and A63P, which were diffuse in the cytosol, failed to rescue the phenotype (**Fig.**
167 **3e-g; Extended Data Fig. 2e**). Notably, the A34V mutant retained ER localization similar to WT but still
168 failed to reinstate normal distribution (**Fig. 3e**). This result implies that while membrane targeting is necessary,
169 it is insufficient for function; the A34V mutation likely disrupts a specific effector interaction required for
170 mitochondrial positioning. Validation in other cell lines confirmed that this clustering phenotype was
171 conserved across multiple cell types, including COS7 and A549 cells (**Extended Data Fig. 3**).

172 Crucially, to determine whether these transport defects in mice and cells were secondary to the degradation of
173 transport machinery, we analyzed protein abundance. Immunoblotting of whole brain and spinal cord lysates
174 from *Emtor*^{-/-} mice, as well as lysates from *EMTOR* KO cells, revealed that the total levels of key transport
175 components (Miro1, Kif5b, KLCs) and mitochondrial markers (Tom20) remained unchanged (**Extended Data**
176 **Fig. 4**). This confirms that the observed phenotypes arise from the functional impairment of the transport
177 machinery rather than the loss of its components.

178 **EMTOR is a dynamic ER-anchored protein enriched at ER–mitochondria contact sites**

179 Having established that EMTOR deficiency causes mitochondrial clustering, we next sought to define its
180 precise subcellular localization and dynamics to understand how it exerts this spatial control. Consistent with
181 previous reports⁴¹, overexpressed EMTOR showed both ER and mitochondrial localization (**Extended Data**

182 **Fig. 5a).** To test this at the endogenous level without overexpression artifacts, we established *EMTOR*-Halo-
183 3×Flag and *EMTOR*-ALFA knock-in U2OS cells using CRISPR-Cas9. In endogenous level, all *EMTOR*
184 signals co-localize with ER marker Sec61 β , with slight enrichment at ER-mitochondrial contact sites (**Fig. 4a**;
185 **Extended Data Fig. 5b**), suggesting that *EMTOR* is an ER-associated protein that specifically functions at
186 the interface between these two organelles.

187 However, standard subcellular fractionation⁴⁶ yielded a paradoxical result: while the protein appeared ER-
188 associated in imaging, biochemical analysis of U2OS and HEK293T lysates showed that the vast majority of
189 *EMTOR* in the cytosolic fraction, with minimal signal in the crude mitochondrial (Mc) or ER-enriched
190 fractions (**Extended Data Fig. 5c, d**). This discrepancy suggested that *EMTOR* might be loosely or
191 dynamically associated with the ER membrane, making it susceptible to dissociation during cell lysis. To test
192 this hypothesis, we performed fractionation following crosslinking to stabilize transient interactions. Strikingly,
193 under crosslinking conditions, the endogenous *EMTOR* pool shifted from the cytosolic fraction to the ER-
194 bound fractions (**Fig. 4b**). Single-molecule tracking (SMT) further confirmed that *EMTOR* molecules diffuse
195 along ER tubules but exhibit transient confinement specifically at regions overlapping with mitochondria (**Fig.**
196 **4c**).

197 Collectively, these biochemical and biophysical data demonstrate that *EMTOR* is not a stable integral
198 transmembrane protein, but rather a dynamic ER-anchored protein that transiently accumulates at ER-
199 mitochondria contact sites.

200 **ER membrane anchoring is necessary and sufficient for *EMTOR* function**

201 To test if ER anchoring is required for function, we performed rescue experiments with chimeric constructs. A
202 mutant lacking the previously predicted hydrophobic transmembrane-like region (Δp TM) failed to rescue
203 mitochondrial clustering (**Fig. 4d-g**). Our earlier biochemical and imaging data (**Fig. 3b, c; Extended Data**
204 **Fig. 5c, d**) have established that *EMTOR* is not an integral membrane protein, and this predicted hydrophobic
205 region does not function as a canonical transmembrane domain. However, the loss-of-function phenotype of
206 the Δp TM mutant indicates that this hydrophobic region is critical for *EMTOR*'s dynamic association with the
207 ER membrane. Collectively, these results confirm that ER membrane association—mediated by the predicted
208 hydrophobic region—is essential for *EMTOR*'s ability to regulate mitochondrial distribution.

209 To further confirm that ER anchoring is indispensable for *EMTOR*'s function, we next tested whether replacing
210 its native hydrophobic region with heterologous ER-targeting sequences could substitute for the endogenous
211 motif. We generated chimeric *EMTOR* constructs by replacing the predicted hydrophobic region with ER-
212 targeting transmembrane domains from Atlastin-3 (ATL3-TM) or EI24 (EI24-TM), while also generating a
213 control construct targeting *EMTOR* to the mitochondrial outer membrane using the MFN2 transmembrane
214 domain (MFN2-TM). Remarkably, the ER-anchored chimeric constructs (ATL3-TM and EI24-TM) fully
215 rescued the mitochondrial distribution defects in *EMTOR* KO cells. In contrast, the mitochondria-targeted
216 MFN2-TM chimeric construct failed to restore normal mitochondrial spreading (**Fig. 2d-g; Extended Data**
217 **Fig. 3d**).

218 Thus, we conclude that EMTOR function is strictly dependent on its specific localization to the ER membrane,
219 as artificial ER targeting—but not mitochondrial targeting—is critical to rescue the transport defects.

220 **EMTOR is required for Kinesin-1 recruitment and interacts with the mitochondrial transport**
221 **machinery**

222 The severe perinuclear clustering of mitochondria observed in *EMTOR*-KO cells suggests a specific deficit in
223 anterograde transport. We therefore hypothesized that EMTOR loss might impair the recruitment of the
224 anterograde motor Kinesin-1 heavy chain (Kif5b). To test this, we visualized the endogenous association
225 between motor proteins and mitochondria using the Proximity Ligation Assay (PLA). Strikingly, the PLA
226 signals representing the interaction between Kif5b and the mitochondrial marker TOM20 were drastically
227 reduced in *EMTOR*-KO cells and *Emtor*^{-/-} brain tissues (Fig. 5a-d). In contrast, the interaction between Dynein
228 and mitochondria remained unchanged in *EMTOR*-KO cells (Fig. 5a, b). This indicates that EMTOR is
229 specifically required for the attachment of the anterograde transport machinery.

230 To identify the molecular machinery engaged by EMTOR, we performed affinity purification-mass
231 spectrometry (AP-MS) using purified EMTOR as bait (**Extended Data Fig. 6a**). This unbiased screen
232 identified Kif5b and the mitochondrial Rho GTPase Miro1/2 as potential interactors of EMTOR (**Extended**
233 **Data Fig. 6b**). Given the high sequence homology between the two Rho GTPases and the higher peptide
234 coverage observed for Miro1, we focused our mechanistic characterization on Miro1 as the representative
235 isoform.

236 To validate these interactions and confirm their specificity, we first performed co-immunoprecipitation (Co-
237 IP) assays. These demonstrated robust interactions between EMTOR and both Miro1 and Kif5b (Fig. 5e, f).
238 Notably, the canonical mitochondrial adaptor TRAK1 was absent from the EMTOR interactome, and Co-IP
239 assays further confirmed that EMTOR does not physically associate with TRAK1 (**Extended Data Fig. 6c**),
240 indicating that EMTOR engages the transport machinery through a distinct, specific interface rather than
241 binding promiscuously to all transport adaptors. Importantly, we revisited the HSP-associated A34V mutant.
242 Although this mutant localizes correctly to the ER, it exhibited significantly reduced binding affinity for both
243 Miro1 and Kif5b (Fig. 5e, f). This molecular defect—the inability to effectively recruit the motor complex—
244 provides a mechanistic explanation for why the A34V variant fails to support mitochondrial transport and
245 causes disease.

246 To further confirm the EMTOR-Miro1-Kif5b interactions at endogenous levels, we utilized U2OS cells
247 harboring a knock-in 3×Flag-Miro1 allele. Under DSP cross-linking conditions, endogenous EMTOR co-
248 immunoprecipitated with Miro1 (Fig. 5g). This interaction was preserved under mild detergent conditions
249 while simultaneously recovering the known Miro1–Kif5b/TRAK1/TRAK2 assemblies (Fig. 5h), confirming
250 physiological complex formation.

251 Furthermore, *in vitro* pull-down assays using purified recombinant proteins confirmed that EMTOR acts as a
252 direct physical linker, binding directly to both Miro1 and Kif5b (Fig. 5i, j). Detailed domain mapping using
253 truncation mutants revealed distinct binding modes for these partners: EMTOR specifically recognizes the C-

254 terminal cargo-binding tail of Kif5b (amino acids 744–963)—the canonical site for adaptor attachment—
255 whereas it engages Miro1 through a more complex, extensive interface involving multiple structural domains.
256 **(Extended Data Fig. 6d-j).**

257 Intriguingly, during these biochemical characterizations, we observed that purified EMTOR protein formed
258 spherical droplets under molecular crowding conditions exhibiting fusion and fission dynamics, characteristic
259 of liquid-liquid phase separation (LLPS) (Extended Data Fig. 7a, Extended Data Fig. 8a, b). In contrast, neither
260 Miro1 nor Kif5b formed condensates on their own under identical conditions (Extended Data Fig. 7b, c).
261 However, EMTOR was able to recruit both Miro1 and Kif5b into these condensates (Extended Data Fig. 7d,
262 Extended Data Fig. 8c-g), suggesting that the transport machinery might be assembled within specialized
263 phase-separated compartments at contact sites.

264 **EMTOR scaffolds the assembly of the Miro1–Kinesin-1 anterograde transport complex**

265 Having established that EMTOR directly binds the transport machinery, we investigated why its loss leads to
266 motor detachment. Mechanistically, we hypothesized that EMTOR acts as a scaffold to stabilize the Miro1–
267 Kif5b complex. Consistent with this, the interaction between Miro1 and Kif5b was significantly reduced in
268 *EMTOR*-KO cells compared to WT controls (**Fig. 5k, l**). Moreover, in the in vitro binding assays, the presence
269 of EMTOR promoted the association between Kif5b and Miro1 (**Fig. 5m**). These data demonstrate that
270 EMTOR is essential for the efficient assembly of the Miro1–Kinesin-1 complex.

271 To define the pathway specificity and hierarchy of EMTOR, we examined its relationship with the canonical
272 transport adaptors Miro1 and TRAK1. Given that EMTOR does not physically bind TRAK1 (**Extended Data**
273 **Fig. 6c**), we asked if they function through independent mechanisms. Overexpression of TRAK1 is known to
274 drive mitochondrial hyper-spreading^{21,47}. We found that TRAK1 overexpression induced mitochondrial
275 extension not only in WT cells but also in *EMTOR*-KO cells to a similar extent (**Extended Data Fig. 9a-c**).
276 This ability of TRAK1 to bypass EMTOR deficiency indicates that EMTOR functions independently of the
277 TRAK1-mediated transport pathway.

278 In contrast, we observed a distinct dependency relationship with Miro1. While overexpression of Miro1
279 induced a slight outward displacement of mitochondria and promoted hyper-fusion¹⁷, it failed to effectively
280 restore the global mitochondrial spreading in *EMTOR*-KO cells (**Extended Data Fig. 9d-f**). This suggests that
281 increasing Miro1 dosage alone is insufficient to drive long-range transport in the absence of EMTOR, and that
282 Miro1 requires EMTOR to function effectively. Furthermore, to determine if EMTOR could compensate for
283 the loss of core adaptors, we utilized *Miro1/2* double-knockout cells, which exhibited severe mitochondrial
284 clustering^{21,48} (**Extended Data Fig. 9g-i**). These results indicate that EMTOR acts as a critical regulator that
285 facilitates the assembly of the Miro1 complex but cannot bypass the loss of core components or substitute for
286 their essential functions.

287 **Ca²⁺ regulates EMTOR-mediated transport assembly and mitochondrial motility**

288 Miro1 contains calcium-sensing EF-hand motifs, and previous studies have suggested that binding of cytosolic
289 Ca^{2+} to Miro1 can trigger mitochondrial arrest^{22,23}. Given this potential regulatory link, we hypothesized that
290 the EMTOR-mediated assembly might be sensitive to calcium fluctuations. To explore this, we examined the
291 transcriptional landscape of *EMTOR*-deficient cells. RNA-seq analysis revealed that "calcium ion binding"
292 was among the top upregulated functional categories in *EMTOR*-KO cells (**Extended Data Fig. 10**). This
293 transcriptional signature hinted at a potential compensatory response to altered calcium handling, prompting
294 us to test if Ca^{2+} directly regulates the EMTOR machinery.

295 We performed *in vitro* GST pull-down assays in the presence of varying free Ca^{2+} concentrations ranging from
296 0 (EGTA) to 1 mM (**Fig. 6a**). Quantification revealed a "bell-shaped" binding dependence: the affinity between
297 EMTOR and Miro1 increased from basal levels to a maximum at $\sim 1 \mu\text{M}$ Ca^{2+} and declined at higher
298 concentrations (**Fig. 6a, b**). Notably, previous studies have estimated that local Ca^{2+} concentrations at ER–
299 mitochondria contact sites fluctuate within the micromolar range (typically 1–20 μM) during signaling events.
300 This suggests that physiological Ca^{2+} levels promote complex formation, whereas supraphysiological levels
301 are inhibitory.

302 Consistent with this binding affinity data, we found that the phase separation of the complex is also exquisitely
303 tuned by calcium. Crucially, the phase separation of EMTOR protein alone was unaffected by calcium
304 fluctuations, maintaining stable droplets across all tested concentrations (Extended Data Fig. 11a-c). However,
305 the formation of EMTOR–Miro1 co-condensates was significantly enhanced at physiological Ca^{2+}
306 concentrations ($\sim 1\text{--}10 \mu\text{M}$) but was suppressed under calcium-free or calcium-overload conditions (Extended
307 Data Fig. 11d-i). This indicates that calcium acts as a specific switch to regulate the recruitment of the transport
308 machinery rather than the structural integrity of the EMTOR scaffold itself.

309 To confirm that this regulation relies on the calcium-sensing ability of Miro1, we generated a Miro1 mutant
310 with disrupted EF-hand domains (Miro1-ΔEF). Strikingly, the interaction between EMTOR and Miro1-ΔEF
311 became insensitive to calcium fluctuations, maintaining a constant binding affinity across all tested
312 concentrations (**Fig. 6c, d**). This explicitly demonstrates that Miro1 acts as the calcium sensor that tunes the
313 assembly of the transport machinery.

314 To validate the physiological relevance of this regulation in living cells, we examined the relationship between
315 local calcium dynamics and mitochondrial motility using the mitochondrial surface-localized calcium sensor
316 GCaMP6f-Tom5 (**Fig. 6e**). Live-cell time-lapse imaging revealed that mitochondria exhibit spontaneous,
317 transient calcium "flashes" on their surface. By tracking individual mitochondria, we observed a statistically
318 significant negative correlation between surface calcium intensity and movement speed: mitochondria
319 typically displayed rapid motility during periods of low surface calcium, while slowing down or pausing during
320 calcium spikes (**Fig. 6e-h**).

321 Notably, while this correlation is significant, the linear regression analysis ($R^2=0.03$) indicates that surface
322 calcium levels explain only a portion of the variability in mitochondrial speed (**Fig. 6h**). This observation
323 aligns with the consensus that mitochondrial transport is a highly complex process regulated by a multifactorial

324 network. In addition to calcium dynamics, motility is governed by local ATP availability, the engagement of
325 opposing motors (Kinesin vs. Dynein), and the status of docking proteins (e.g., Syntaphilin)^{4,11,14,20}. Therefore,
326 our data posit physiological surface calcium as a critical rheostat that tunes the EMTOR-Miro1 assembly
327 probability, functioning as one key layer of control within the broader regulatory landscape of mitochondrial
328 trafficking.

329 **Discussion**

330 Our study uncovers the molecular mechanism of *C19orf12*, a gene linked to neurodegeneration^{41,42}, identifying
331 its protein product as an ER-anchored regulator that confers precise ER-mediated control over mitochondrial
332 transport. Based on its essential role in orchestrating these organelle dynamics, we refer to this protein as
333 EMTOR. By delineating the function of EMTOR, we establish mitochondrial transport regulation as a novel
334 functional dimension of ER–mitochondria contact sites, expanding their role beyond the canonical functions
335 of lipid transfer and calcium signaling³¹. By combining mouse genetics, neuronal physiology, and biochemical
336 reconstitution, we demonstrate that loss of EMTOR leads to a "dying-back" depletion of axonal mitochondria,
337 energetic failure at synapses, and the progressive spastic paraplegia phenotype characteristic of HSP.

338 Our *Emtor* knockout mice robustly recapitulate the clinical features of SPG43, including progressive spasticity,
339 muscle weakness, and gait instability⁴¹. These phenotypes mirror the late-onset motor impairment recently
340 reported in another *Emtor*-deficient model⁴⁹, confirming that EMTOR is indispensable for the long-term
341 maintenance of the corticospinal tract. At the cellular level, we pinpoint the primary defect to a failure in
342 anterograde mitochondrial transport. This transport deficit creates a "supply chain crisis" in long axons: while
343 the soma retains a clustered mitochondrial mass, distal terminals become devoid of organelles and depleted of
344 ATP. This spatial bioenergetic mismatch offers a parsimonious explanation for the length-dependent
345 degeneration of axons in HSP, linking the molecular defect in EMTOR directly to the vulnerability of distal
346 synapses^{8,38}.

347 A central finding of our work is the definition of EMTOR's molecular identity as a dynamic ER-anchored
348 scaffold. Previous studies relying on overexpression often observed EMTOR on both ER and mitochondria,
349 leading to ambiguity about its primary site of action⁴¹. By leveraging endogenous tagging and single-molecule
350 tracking, we show that physiological EMTOR resides on the ER membrane, concentrating transiently at
351 contact sites. Crucially, our chimeric rescue experiments provide compelling evidence that ER anchoring is
352 the critical spatial determinant for EMTOR function. Targeting EMTOR to the mitochondrial outer membrane
353 failed to rescue the transport defect, proving that EMTOR must operate from the "ER side" of the interface.
354 This finding conceptually advances our understanding of organelle transport by proposing that the motive force
355 for mitochondria is not solely intrinsic to the organelle but is orchestrated by the ER network^{31,33}. We propose
356 that EMTOR acts as a "molecular staple," stabilizing the interaction between the mitochondrial receptor Miro1
357 and the cytosolic motor Kinesin-1 specifically at sites where the ER lattice contacts the mitochondrion.
358 Furthermore, our data suggest that this scaffolding function is potentiated by liquid–liquid phase separation
359 (LLPS). This biophysical mechanism allows the ER to rapidly concentrate dilute cytosolic motors (Kinesin-1)
360 at specific contact sites, creating a high-density 'reaction crucible' for transport assembly. This phase-separated

361 compartment offers a compelling explanation for how the transport machinery achieves the high local
362 stoichiometry required for effective motility within the crowded cytoskeletal environment.

363 Our biochemical mapping reveals that EMTOR exhibits exquisite specificity, binding the Kinesin-1/Miro1
364 axis while excluding the adaptor TRAK1. This distinction is functionally relevant: while TRAK1
365 overexpression can bypass EMTOR loss (likely by driving hyper-motility through an independent pathway),
366 Miro1 overexpression cannot. This places EMTOR as a specific, obligatory co-factor for Miro1-dependent
367 transport rather than a redundant component. The disease-causing mutation A34V further underscores this
368 specificity; despite localizing correctly to the ER, A34V fails to bind the Miro1–Kinesin-1 complex. This
369 suggests that the pathogenesis of SPG43 arises not from protein misfolding or aggregation, but from a precise
370 loss of effector engagement, resulting in "empty" ER-mitochondria contacts that fail to load motors.

371 Finally, our data unveil a novel regulatory layer where local Ca^{2+} dynamics tune the assembly of the transport
372 machinery. Crucially, we found that both the molecular binding affinity and the phase separation of the
373 complex are exquisitely tuned by calcium. We identified a "bell-shaped" dependency where the EMTOR–
374 Miro1 interaction and its co-condensation is optimal at physiological microdomain concentrations ($\sim 1\text{--}10 \mu\text{M}$)
375 characteristic of contact sites^{27,28} but is suppressed under calcium-free or calcium-overload conditions. This
376 relies on the calcium-sensing EF-hands of Miro1, as an EF-hand mutant became insensitive to this regulation.
377 Physiologically, this mechanism allows the transport machinery to distinguish between the "basal" state (low
378 affinity), the "active signaling" state (high affinity at contacts), and the "pathological overload" state
379 (disassembly/arrest)^{22,23}. In the context of HSP, this sensitivity suggests that EMTOR-mediated transport is
380 uniquely positioned to respond to neuronal activity patterns, and its failure may render axons unable to adapt
381 mitochondrial distribution to metabolic demand.

382 In summary, we define EMTOR as an essential ER-based regulator that couples the mitochondrial transport
383 machinery to the ER network. Our findings not only clarify the pathogenic mechanism of SPG43 but also
384 highlight the ER–mitochondria interface as a critical command center for the logistic support of long axons.

385

386 **Author Contributions**

387 X.P. designed and conducted most of the experiments and wrote the manuscript. S.Z. conducted some
388 molecular biology experiments, cell biology experiments, and data analysis. P.L. performed single-molecule
389 imaging experiments. Y.W. helped with some data analysis. Y.C., X.F., X.H., Y. W., N.H., B.L. helped with the
390 experimental design. P.Z., C.B., J.C. and J.T. are the senior authors who conceived and designed the project.
391 All authors approved the final version of the manuscript.

392

393 **Acknowledgements**

394 The authors thank the National Center for Protein Sciences at Peking University in Beijing, China, for
395 assistance with confocal microscopy imaging (by Chunyan Shan, Liqin Fu, Wenling Gao, and Siying Qin),
396 flow cytometry (by Liying Du), mass spectrometry (by Dong Liu and Qi Zhang), and schematic illustrations
397 (by Jun Hu). We thank Pathology core, school of College of Future Technology at Peking University in Beijing,
398 China, for assistance with paraffin sample embedding, sectioning and HE staining (by Xueting Sun and
399 Xuelian Wang). This work was supported by the National Natural Science Foundation of China (32370732,
400 32570806). The study was also supported in part by the Center for Life Sciences, School of Life Sciences of
401 Peking University, the MOE Key Laboratory of Cell Proliferation and Differentiation of China, and the State
402 Key Laboratory of Membrane Biology of China.

403

404 **EXPERIMENTAL MODEL AND SUBJECT DETAILS**

405 **Animals**

406 C57BL/6J mice (6–8 weeks old) were obtained from Beijing Vital River Laboratory Animal
407 Technology. *EMTOR* (encoded by *C19orf12*) knockout mice were generated by Cyagen Biosciences
408 using CRISPR–Cas9 technology. sgRNAs targeting the murine *EMTOR* gene were designed as
409 follows: forward 5'-AAATGATTATGAGTCCAGAC-3' and reverse 5'-
410 TGGCGGCTTACAATCAATGC-3'. F0 heterozygous mice were backcrossed to wild-type C57BL/6J
411 mice for two generations, and F3 heterozygotes were intercrossed to generate homozygous *EMTOR*^{-/-}
412 knockout mice. All mice were housed in specific pathogen-free (SPF) facilities at the Experimental
413 Animal Center of Peking University. All animal procedures were conducted in strict accordance with
414 protocols approved by the Institutional Animal Care and Use Committee (IACUC) of Peking
415 University.

416

417 **Cell culture**

418 U2OS, HeLa, HEK-293T, and COS7 cells were cultured in Dulbecco's Modified Eagle's Medium
419 (DMEM, CellMax, CGM101.06) supplemented with 10% (v/v) fetal bovine serum (FBS) and
420 penicillin (100 units/mL)/streptomycin (100 µg/mL). A549 cells were cultured in Ham's F-12K
421 (Kaighn's) medium (Meiluncell, PWL011) supplemented with FBS and antibiotics. Primary
422 hippocampal neurons isolated from embryonic day 16.5 (E16.5) mouse brains were cultured in
423 Neurobasal-A medium (Gibco, 10888022) supplemented with 2% (v/v) B-27 (Gibco, 17504-044) and
424 1% (v/v) GlutaMAX (Gibco, 35050-061). All cells were maintained at 37°C in a humidified incubator
425 with 5% CO₂.

426

427 **METHOD DETAILS**

428 **plasmids and molecular cloning**

429 All plasmids were generated using 2X MultiF Seamless Assembly Mix (ABclonal). All DNA
430 fragments were amplified by PCR from cDNA or genomic DNA templates. All plasmid sequences
431 were verified using sanger sequencing (RuiBiotech).

432

433 **Transfection and lentiviral transduction**

434 For HEK293T cells, transfections were performed using Polyethylenimine (PEI; Polysciences,
435 23966-1) at 60% confluence. Medium was replaced 6 h post-transfection, and cells were harvested
436 after 24 h. For other cell lines, transfections were carried out using Omni transfection reagent (EZ
437 Biosystems, EZT-OMNI). For lentivirus production, HEK293T cells were co-transfected with the
438 transfer plasmid, psPAX2, and pMD2.G. After 6 hours, the medium was replaced with DMEM
439 containing 20% FBS. Viral supernatants were collected 48–72 h post-transfection, filtered, and used
440 to infect target cells. Primary neurons were infected at DIV 3 and analyzed at DIV 8.

441

442 **Generation of knockout and knock-in cell line**

443 Gene-edited cell lines were generated using CRISPR–Cas9. The following sgRNA sequences were
444 used for knockout cell lines:

445 human ***EMTOR (C19orf12)*** (5'-TGGGGAGAGGAAGATGAAGG-3');

446 human *Miro1* (5'-TCTGGTGGAATATAGTAGTA-3');

447 human *Miro2* (5'-ACAAGGTACCGTGGTGC-3');

448 human *TRAK1* (5'-GAATGTTACTTCGATCCG-3').

449 For knock-in lines, donor templates were designed to tag endogenous *EMTOR* (C-terminal 3×Flag-
450 Halo-ALFA, 5'-TGGGGAGAGGAAGATGAAGG-3') or *Miro1* (N-terminal 3×Flag-mScarlet, 5'-
451 TTCTTCATGTCGGCGGCTCT-3'). A549 *EMTOR* knockdown cells were generated using siRNA
452 (5'-GCAACAGAGGCTTTAACGA-3') targeting the ***EMTOR*** transcript.

453

454 **Western blotting**

455 Cells were lysed in loading buffer (50 mM Tris, pH 6.8, 1 mM DTT, 10% glycerol, 2% SDS, 0.1%
456 Bromophenol blue), and boiled at 100°C for 10 min. Samples were run on SDS-PAGE gels (GenScript)
457 and transferred to PVDF membranes. Membranes were blocked with 4% milk in TBST (20 mM Tris,
458 pH 7.4, 150 mM NaCl, 0.1% Tween-20), and incubated with primary antibody at 4 °C overnight.
459 After washing with TBST, membranes were incubated with secondary antibody at room temperature
460 for 2 h, followed by washing with TBST. Signals were detected using SuperSignal Peroxidase
461 Solution (Biosciences, TE0015-2) and captured on X-ray film (FUJIFILM). Band intensities were
462 quantified using Fiji software.

463

464 **Immunoprecipitation**

465 Cells were lysed in lysis buffer (50 mM Tris-HCl, 150 mM NaCl, 1 mM EDTA, 0.5% Triton X-100,
466 pH 7.5) containing protease inhibitor PMSF and cocktail on ice for 30 min. The cell lysates were
467 centrifuged at 12,500 rpm for 10 minutes and supernatants were collected for input and
468 immunoprecipitation by mixing with antibody-conjugated Protein A/G beads for 2 h at 4°C. Beads
469 were washed five times with lysis buffer, and bound proteins were eluted in sample buffer at 100°C
470 for 10 min for immunoblotting.

471

472 **Mass spectrometry analysis of EMTOR**

473 For mass spectrometry, HEK293T cells expressing Strep-tagged EMTOR or mouse brains (n=10)
474 were lysed in appropriate buffers (Cell lysis: 50 mM Tris-HCl pH 7.5, 750 mM NaCl, 1% Triton X-
475 100, 0.1 mM Biotin; Brain lysis: 50 mM Tris-HCl pH 7.5, 150 mM NaCl, 0.1% SDS, 0.5% sodium
476 deoxycholate, 1% Triton X-100). Lysates were were centrifuged at 15,000 rpm at 4°C for 15 minutes
477 and the supernatants were collected separately. The cell lysate supernatant was then incubated with
478 Strep-Tactin beads for 2 h at 4°C, followed by three times beads washing with Wash Buffer 1 (50 mM
479 Tris, 750 mM NaCl, 1% Triton X-100, pH 7.5). Mouse brain lysate supernatants were subsequently
480 incubated with beads for 2 h at 4°C. Following incubation, beads were washed three times with Wash
481 Buffer 1 and twice with Wash Buffer 2 (50 mM Tris, 150 mM NaCl, pH 7.5) to remove high-salt
482 contaminants. With supernatant discarded, loading buffer was added to the beads. Eluted proteins
483 were separated by SDS-PAGE, stained with Coomassie Blue, and excised for LC-MS/MS analysis.

484

485 **Subcellular fractionation**

486 The isolation of subcellular fractions was conducted as previously described ⁴⁶. Briefly, after
487 collection and homogenization, cells were centrifuged for 5 min at 600g twice to remove unbroken
488 cells and nuclei. Supernatant was collected and centrifuged for 10 min at 7,000g twice and the pellet
489 was crude mitochondria while the supernatant was plasma membrane, lysosomes, microsomes and
490 cytosol. The cytosol supernatant was centrifuged for 30 min at 20,000g and the supernatant was
491 collected and further centrifuged for 1 h at 100,000g. The pellet was ER while the supernatant was
492 cytosol. To obtain pure mitochondria, crude mitochondria pellet was suspended and centrifuged for
493 10 min at 10,000g to remove contaminations.

494 The crude mitochondrial fractions were resuspended in mitochondrial resuspension buffer and

495 layered on top a Percoll medium. Following centrifugation at 95,000g for 30 min, the crude MAMs
496 fraction appeared as a diffuse white band above, while a dense band containing purified mitochondria
497 settled near the bottom of the tube. Both MAM and pure mitochondria fractions were further
498 centrifuged to eliminate the Percoll. All fractions obtained were rapidly frozen using liquid nitrogen
499 and stored at –80 °C until they were ready to be used.

500

501 **RNA extraction and RNA-seq analysis**

502 For cells, RNA extraction was conducted by using the RNA Easy Fast Tissue/Cell Kit (TIANGEN;
503 DP451). mRNA library constructing and sequencing were performed by GENEWIZ from Azenta Life
504 Sciences. Libraries with different indexes were multiplexed and loaded on an Illumina Novaseq
505 instrument for sequencing using a 2×150 paired-end configuration according to the manufacturer’s
506 instructions. Raw sequencing reads in FASTQ format were processed using Fastp (v0.24.1) to remove
507 technical sequences and low-quality bases. Clean reads were aligned to the Homo sapiens
508 (GRCh38.107) using HISAT2 (v2.2.1). Gene-level counts were quantified using HTSeq (v0.6.1).
509 Reads overlapping exons were counted, and multi-mapping reads or reads overlapping multiple genes
510 were excluded. Differentially expressed genes (DEGs) were identified using DESeq2 (v1.34.0) and
511 genes with $|\log_{2}FC| \geq 1$ and $FDR < 0.05$ were classified as differentially expressed.

512

513 **Prokaryotic expression, purification and *in vitro* binding assays**

514 GST-Kif5b, GST-Miro1, EMTOR-6×His and MBP-Miro1 proteins were expressed in *E. coli* BL21
515 (DE3) induced with 1 mM IPTG at 16°C for 12–16 h. Cells were lysed using sonication in GST lysis
516 buffer (50mM Tris-HCl, 250mM NaCl, 0.5% Triton X-100, pH=8.0), His buffer (50mM Tris-HCl,
517 300mM NaCl, 0.5% Triton X-100, 2mM β -Mercaptoethanol and 20mM imidazole, pH=8.0), and
518 MBP lysis buffer (20 mM Tris-HCl, 200 mM NaCl, 1 mM EDTA, 1 mM DTT (optional), pH 7.5)
519 followed by centrifugation at 13,500 rpm for 15 min at 4°C. The supernatant was collected and
520 incubated with the respective affinity beads (GST-Sepharose, Ni-NTA, or Amylose resin) at 4°C with
521 rotation for 2 hours. Beads were washed five times with wash buffer (50mM Tris-HCl, 450mM NaCl,
522 0.5% Tween-20, pH=7.5), and the EMTOR-6×His was eluted using His elution buffer (50mM Tris-
523 HCl, 300mM NaCl, 0.5% Triton X-100, 2mM β -Mercaptoethanol and 250mM imidazole, pH=8.0);
524 MBP-Miro1 protein was eluted using MBP elution buffer (20 mM Tris-HCl, 200 mM NaCl, 1 mM
525 EDTA, 1 mM DTT (optional), 10mM maltose, pH 7.5); GST-Kif5b and GST-Miro1 protein was
526 eluted using GST elution buffer (50mM Tris-HCl, 250mM NaCl, 50 mM GSH, pH=8.0).

527 For pull-down assays, purified bait proteins bound to beads were incubated with prey proteins for 2
528 h at 4°C. After five washes, bound complexes were eluted and analyzed by immunoblotting or
529 Coomassie staining.

530

531 **Phase separation and FRAP assays**

532 Purified proteins were concentrated and buffer-exchanged into storage buffer (25 mM Tris-HCl pH
533 8.0, 500 mM KCl, 10% glycerol) using Amicon® Ultra filters (Millipore). After concentration, the
534 protein was aliquoted and rapidly frozen in liquid nitrogen, followed by storage at -80°C. The protein
535 concentration was determined using the BCA Protein Assay kit (Mei5bio, MF071-01). For phase
536 separation, proteins were diluted in low-salt buffer (25 mM Tris-HCl pH 8.0, 150 mM KCl) with or
537 without PEG8000 and CaCl₂ in 384-well plates. Droplets were visualized after indicated time of
538 incubation.

539 For fluorescence recovery after photobleaching (FRAP) analysis of in vitro assembled condensates,
540 particles were chosen for initial photobleaching by corresponding fluorescent-protein laser for 0.5 s
541 with laser power 50, and the fluorescence recovery was imaged at 2 s intervals for a total of about 1
542 min using a Zeiss LSM980 microscope.

543

544 **Immunofluorescence and imaging**

545 Cells were fixed with 4% paraformaldehyde in PBS for 30 min at 37°C and permeabilized with 0.1%
546 Triton X-100 in PBS for 10 min. After blocked with 4% BSA for 30 min, cells were incubated with
547 primary antibodies at 37°C for 2 hours, and further incubated with secondary antibodies in the dark
548 at 37°C for 1 hour, followed by three PBS washes respectively. Coverslips were mounted using a
549 glycerol: PBS (1:1) solution containing DAPI and stored at 4°C. Imaging was performed using a
550 Zeiss LSM980 microscope equipped with a 63×/1.4 oil objective lens in Airyscan mode. Images were
551 acquired using ZEN software (Carl Zeiss) and processed with ZEN software or Fiji.

552

553 **Proximity ligation assay**

554 PLA (Sigma-Aldrich, DUO92101) was performed according to the manufacturer's instructions.
555 Samples were observed under a Zeiss LSM980 confocal microscope using the Airyscan function. The
556 total intensity of the PLA signal per cell was quantified using Fiji software.

557

558 **JC-1 staining**

559 Cells cultured in chamber slides were stained with 10 μ g/mL JC-1 working solution in a 37°C, 5%
560 CO₂ incubator for 15 min. After PBS wash, cells were cultured in complete medium for live cell
561 imaging. Imaging was performed using a Zeiss LSM980 microscope equipped with a 63 \times /1.4 oil
562 objective lens in Confocal mode. Images were acquired using ZEN software (Carl Zeiss) and
563 processed with ZEN software or Fiji.

564

565 **Mouse Behavioral Tests**

566 All behavioral tests were performed on age-matched mice trained 24 h prior to testing.

567 Hindlimb clasping: Mice were held by their tails for 10 s and scored on a scale of 0-3 based on the
568 degree of splaying outward from the abdomen. 0: the hindlimbs are fully spread and moving; 1: a
569 retraction toward the abdomen in >50% of one hindlimb; 2: a retraction toward the abdomen in >50%
570 of both hindlimbs; and 3: both hindlimbs fully retracted to the abdomen.

571 Balance beam: Mice were trained to walk across a horizontal beam (100 cm in length, 12 mm in
572 width, and 50 cm in height) to their home cages and were recorded beam-walking using a video
573 camera. Each mouse was tested three times separately.

574 Forelimb grip: Mouse was placed over the grid with its forepaws grasping the grid. Gently pull the
575 mouse backward by its tail to ensure it holds on to the upper part of the grid while maintaining a
576 horizontal torso. Record the maximum grip strength value displayed on the screen. Each mouse was
577 tested three times separately.

578 Pole test: Mice were positioned at the top of a vertical pole (50 cm high and 1 cm in diameter) and
579 assessed for their ability to descend the pole (with the snout leading) by measuring the time from the
580 initiation of the head-down movement until all four paws reached the platform. Each mouse was
581 tested three times separately.

582 Rotarod: Mice were placed on the rod of the equipment rotating at 4 rpm for habituation until
583 accelerating the rotarod from 4 to 40 rpm in 5 min. The time until falling off the beam was recorded.
584 Each mouse had a 10 min interval between trials and was tested three times per day for two
585 consecutive days.

586 Treadmill test: Mouse running ability was tested on treadmill machine (SANSBIO). The treadmill

587 speed was set at 5 m/min for the first 5 min, then increased to 15 m/min for another 5 min, and finally
588 set to 21 m/min for 20 min. The test was terminated if the mouse was shocked for more than 3 s. The
589 total running time and the number of shocks received by the mouse were recorded. Each mouse was
590 tested once per day for three consecutive days.

591

592 **Neuropathological analysis**

593 For the collection of the adult mouse brain tissues, mice were anesthetized using Isoflurane (RWD,
594 R510-22-10) and perfused with ice-cold PBS to flush the blood and blood cells from the brain,
595 followed by perfusion with 4% PFA solution for fixation. The fixed samples were sent to the
596 pathology center for paraffin sectioning, and the resulting paraffin sections were subjected to
597 immunofluorescence staining. After dewaxing with xylene for 10 min twice, the paraffin sections
598 were rehydrated with different gradients of ethanol (100%-95%-80%-50%-25%) for 5 min each step.
599 They were then washed with water and boiled in 100 mM sodium citrate buffer (pH 6.0) for 10 min
600 twice for antigen retrieval, followed by a 20 min incubation at room temperature, washed with water
601 and PBS. The subsequent permeabilization and blocking steps were consistent with those used in cell
602 immunofluorescence staining.

603

604 **Quantification and statistical analysis**

605 The analysis of asymmetry coefficient was conducted as previously described³⁴. Quantitative data are
606 shown in column-scattered plots (GraphPad Prism). Significance values are indicated on data plots.

607

608 **References**

609 1. Lang, B. F., Gray, M. W. & Burger, G. Mitochondrial genome evolution and the origin of
610 eukaryotes. *Annu. Rev. Genet.* **33**, 351–397 (1999).

611 2. Friedman, J. R. & Nunnari, J. Mitochondrial form and function. *Nature* **505**, 335–343 (2014).

612 3. Suomalainen, A. & Nunnari, J. Mitochondria at the crossroads of health and disease. *Cell* **187**,
613 2601–2627 (2024).

614 4. Sheng, Z.-H. Mitochondrial trafficking and anchoring in neurons: New insight and implications. *J.*
615 *Cell Biol.* **204**, 1087–1098 (2014).

616 5. De Vos, K. J., Grierson, A. J., Ackerley, S. & Miller, C. C. J. Role of Axonal Transport in
617 Neurodegenerative Diseases. *Annu. Rev. Neurosci.* **31**, 151–173 (2008).

618 6. Wang, X. *et al.* PINK1 and Parkin Target Miro for Phosphorylation and Degradation to Arrest
619 Mitochondrial Motility. *Cell* **147**, 893–906 (2011).

620 7. Blackstone, C. Cellular Pathways of Hereditary Spastic Paraplegia. *Annu. Rev. Neurosci.* **35**, 25–47
621 (2012).

622 8. Sheng, Z.-H. & Cai, Q. Mitochondrial transport in neurons: impact on synaptic homeostasis and
623 neurodegeneration. *Nat. Rev. Neurosci.* **13**, 77–93 (2012).

624 9. Hirokawa, N., Noda, Y., Tanaka, Y. & Niwa, S. Kinesin superfamily motor proteins and intracellular
625 transport. *Nat. Rev. Mol. Cell Biol.* **10**, 682–696 (2009).

626 10. Reck-Peterson, S. L., Redwine, W. B., Vale, R. D. & Carter, A. P. The cytoplasmic dynein transport
627 machinery and its many cargoes. *Nat. Rev. Mol. Cell Biol.* **19**, 382–398 (2018).

628 11. Hancock, W. O. Bidirectional cargo transport: moving beyond tug of war. *Nat. Rev. Mol. Cell Biol.*
629 **15**, 615–628 (2014).

630 12. Trivedi, D. V., Nag, S., Spudich, A., Ruppel, K. M. & Spudich, J. A. The Myosin family of
631 mechanoenzymes: from mechanisms to therapeutic approaches. *Annu. Rev. Biochem.* **89**, 667–693
632 (2020).

633 13. Bocanegra, J. L. *et al.* The MyMOMA domain of MYO19 encodes for distinct Miro-dependent and
634 Miro-independent mechanisms of interaction with mitochondrial membranes. *Cytoskeleton* **77**, 149–
635 166 (2020).

636 14. Kang, J.-S. *et al.* Docking of Axonal Mitochondria by Syntaphilin Controls Their Mobility and
637 Affects Short-Term Facilitation. *Cell* **132**, 137–148 (2008).

638 15. Zhao, Y. *et al.* Metaxins are core components of mitochondrial transport adaptor complexes. *Nat.*
639 *Commun.* **12**, 83 (2021).

640 16. Guo, X. *et al.* The GTPase dMiro is required for axonal transport of mitochondria to drosophila
641 synapses. *Neuron* **47**, 379–393 (2005).

642 17. Fransson, Å., Ruusala, A. & Aspenström, P. The atypical Rho GTPases Miro-1 and Miro-2 have
643 essential roles in mitochondrial trafficking. *Biochem. Biophys. Res. Commun.* **344**, 500–510 (2006).

644 18. Stowers, R. S., Megeath, L. J., Górska-Andrzejak, J., Meinertzhausen, I. A. & Schwarz, T. L. Axonal
645 transport of mitochondria to synapses depends on Milton, a novel drosophila protein. *Neuron* **36**,
646 1063–1077 (2002).

647 19. Glater, E. E., Megeath, L. J., Stowers, R. S. & Schwarz, T. L. Axonal transport of mitochondria
648 requires milton to recruit kinesin heavy chain and is light chain independent. *J. Cell Biol.* **173**, 545–557
649 (2006).

650 20. Schwarz, T. L. Mitochondrial Trafficking in Neurons. *Cold Spring Harb. Perspect. Biol.* **5**, a011304–
651 a011304 (2013).

652 21. van Spronsen, M. *et al.* TRAK/Milton motor-adaptor proteins steer mitochondrial trafficking to
653 axons and dendrites. *Neuron* **77**, 485–502 (2013).

654 22. Wang, X. & Schwarz, T. L. The Mechanism of Ca^{2+} -dependent regulation of Kinesin-mediated
655 mitochondrial motility. *Cell* **136**, 163–174 (2009).

656 23. MacAskill, A. F. *et al.* Miro1 Is a Calcium Sensor for Glutamate Receptor-Dependent Localization
657 of Mitochondria at Synapses. *Neuron* **61**, 541–555 (2009).

658 24. Niescier, R. F., Hong, K., Park, D. & Min, K.-T. MCU Interacts with Miro1 to Modulate
659 Mitochondrial Functions in Neurons. *J. Neurosci.* **38**, 4666–4677 (2018).

660 25. Chang, K. T., Niescier, R. F. & Min, K.-T. Mitochondrial matrix Ca^{2+} as an intrinsic signal regulating
661 mitochondrial motility in axons. *Proc. Natl. Acad. Sci.* **108**, 15456–15461 (2011).

662 26. Li, Y., Yang, Z., Zhang, S. & Li, J. Miro-mediated mitochondrial transport: A new dimension for
663 disease-related abnormal cell metabolism? *Biochem. Biophys. Res. Commun.* **705**, 149737 (2024).

664 27. Csordás, G. *et al.* Imaging Interorganelle Contacts and Local Calcium Dynamics at the ER-
665 Mitochondrial Interface. *Mol. Cell* **39**, 121–132 (2010).

666 28. Giacomello, M. *et al.* Ca^{2+} Hot Spots on the Mitochondrial Surface Are Generated by Ca^{2+}
667 Mobilization from Stores, but Not by Activation of Store-Operated Ca^{2+} Channels. *Mol. Cell* **38**, 280–
668 290 (2010).

669 29. Wu, H., Carvalho, P. & Voeltz, G. K. Here, there, and everywhere: The importance of ER membrane
670 contact sites. *Science* **361**, eaan5835 (2018).

671 30. Cremer, T., Neefjes, J. & Berlin, I. The journey of Ca^{2+} through the cell – pulsing through the

672 network of ER membrane contact sites. *J. Cell Sci.* **133**, jcs249136 (2020).

673 31. Rowland, A. A. & Voeltz, G. K. Endoplasmic reticulum–mitochondria contacts: function of the
674 junction. *Nat. Rev. Mol. Cell Biol.* **13**, 607–615 (2012).

675 32. Abrisch, R. G., Gumbin, S. C., Wisniewski, B. T., Lackner, L. L. & Voeltz, G. K. Fission and fusion
676 machineries converge at ER contact sites to regulate mitochondrial morphology. *J. Cell Biol.* **219**,
677 e201911122 (2020).

678 33. Friedman, J. R. *et al.* ER tubules mark sites of mitochondrial division. *Science* **334**, 358–362 (2011).

679 34. Zheng, P. *et al.* ER proteins decipher the tubulin code to regulate organelle distribution. *Nature*
680 **601**, 132–138 (2022).

681 35. Raiborg, C. *et al.* Repeated ER–endosome contacts promote endosome translocation and neurite
682 outgrowth. *Nature* **520**, 234–238 (2015).

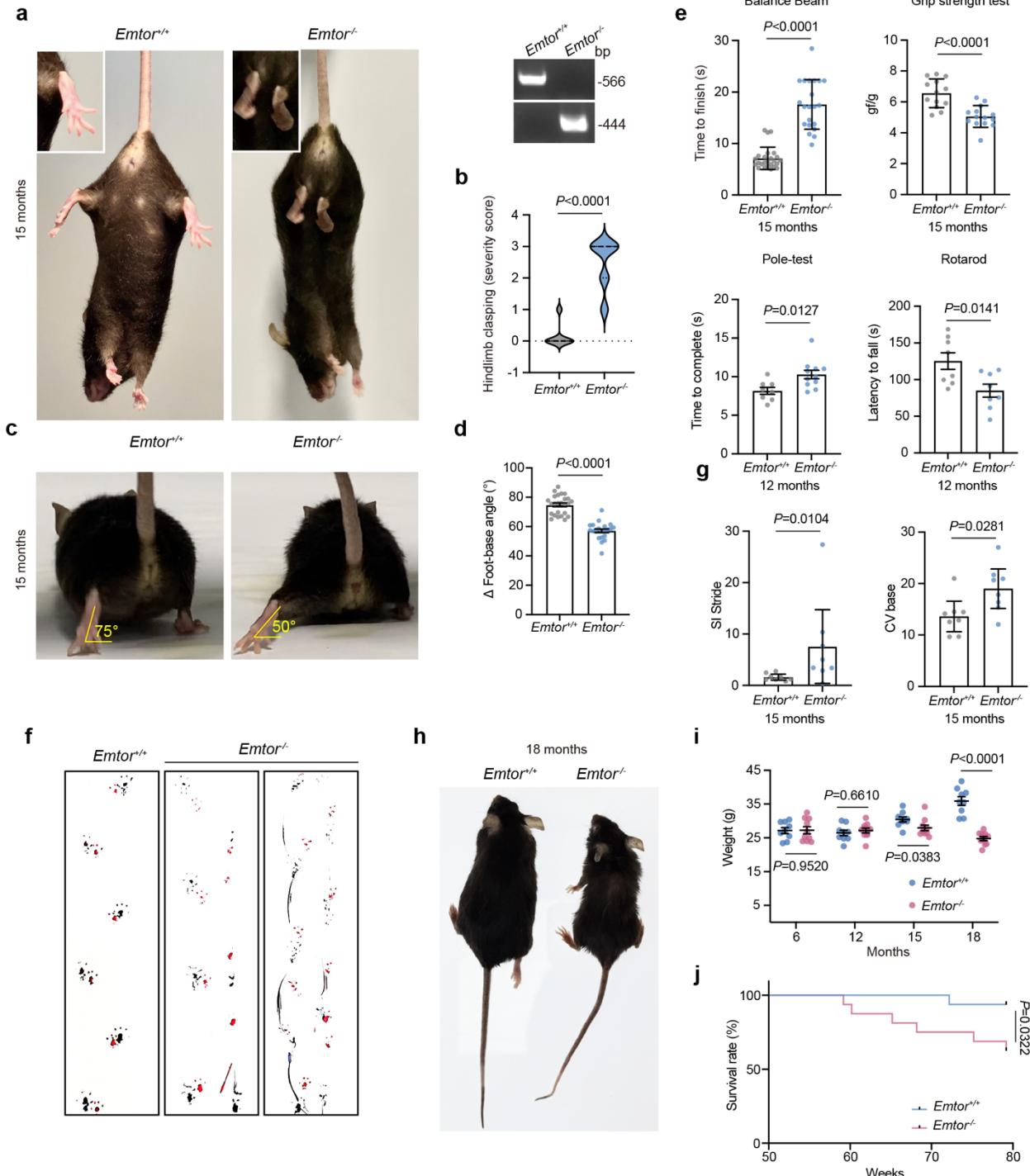
683 36. Chen, S. *et al.* Dynamic interaction of REEP5–MFN1/2 enables mitochondrial hitchhiking on
684 tubular ER. *J. Cell Biol.* **223**, e202304031 (2024).

685 37. Kornmann, B., Osman, C. & Walter, P. The conserved GTPase Gem1 regulates endoplasmic
686 reticulum–mitochondria connections. *Proc. Natl. Acad. Sci.* **108**, 14151–14156 (2011).

687 38. Blackstone, C. Converging cellular themes for the hereditary spastic paraplegias. *Curr. Opin.*
688 *Neurobiol.* **51**, 139–146 (2018).

689 39. Denton, K. *et al.* Impaired mitochondrial dynamics underlie axonal defects in hereditary spastic
690 paraplegias. *Hum. Mol. Genet.* **27**, 2517–2530 (2018).

691 40. Meilleur, K. G. *et al.* Hereditary spastic paraplegia and amyotrophy associated with a novel locus
692 on chromosome 19. *neurogenetics* **11**, 313–318 (2010).


693 41. Landouré, G. *et al.* Hereditary spastic paraplegia type 43 (SPG43) is caused by mutation in
694 *C19orf12*. *Hum. Mutat.* **34**, 1357–1360 (2013).

695 42. Hartig, M. B. *et al.* Absence of an Orphan Mitochondrial Protein, C19orf12, Causes a Distinct
696 Clinical Subtype of Neurodegeneration with Brain Iron Accumulation. *Am. J. Hum. Genet.* **89**, 543–550
697 (2011).

698 43. Shao, C. *et al.* C19orf12 ablation causes ferroptosis in mitochondrial membrane protein-
699 associated with neurodegeneration. *Free Radic. Biol. Med.* **182**, 23–33 (2022).

700 44. Venco, P. *et al.* Mutations of C19orf12, coding for a transmembrane glycine zipper containing
701 mitochondrial protein, cause mis-localization of the protein, inability to respond to oxidative stress
702 and increased mitochondrial Ca^{2+} . *Front. Genet.* **6**, 185 (2015).

703 45. Bastian, F. B. *et al.* The Bgee suite: integrated curated expression atlas and comparative

717 **Fig. 1 | EMTOR deficiency leads to progressive motor impairment and HSP-like pathology in mice.**

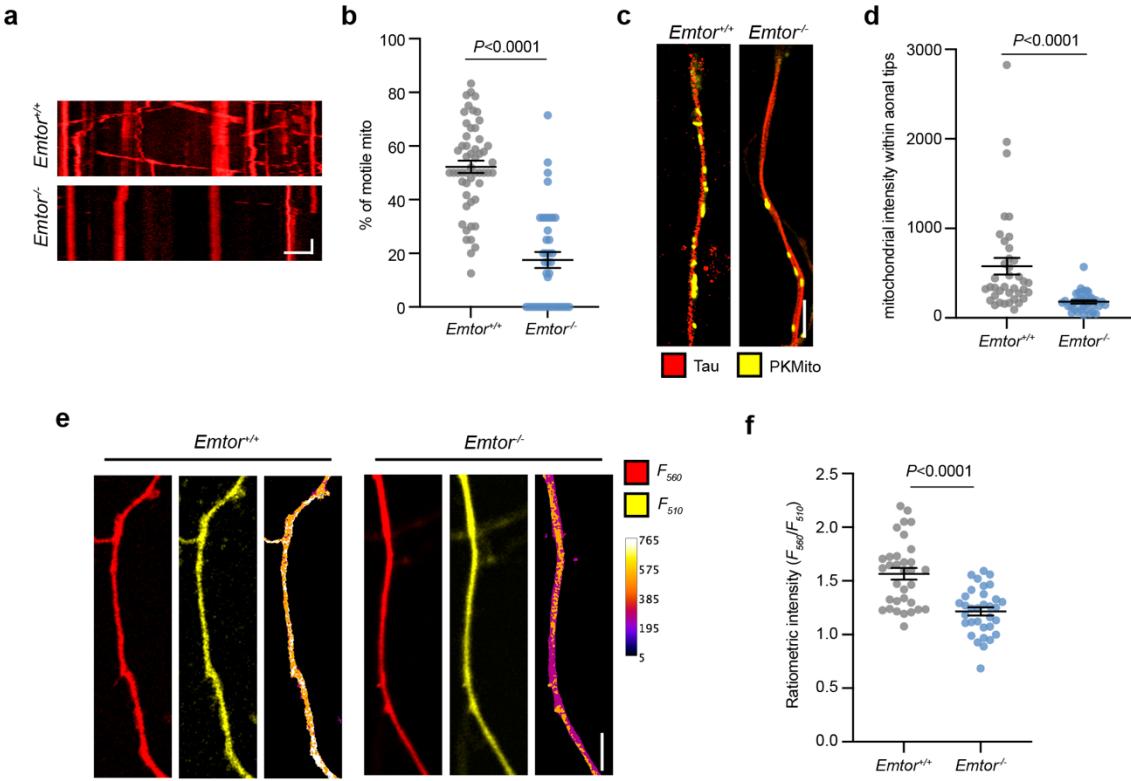
718 **a**, Representative images of 15-month-old *Emtor*^{+/+} and *Emtor*^{-/-} mice, showing hindlimb posture during tail
719 suspension. Insets highlight hindlimb clasping. Right: Genomic PCR genotyping of tail DNA confirming the
720 *Emtor* deletion. The wild-type allele generates a 566 bp PCR product, while the knockout allele yields a 444
721 bp product.

722 **b**, Violin plot showing hindlimb clasping scores (scale 0-4) in *Emtor*^{+/+} and *Emtor*^{-/-} mice. Each dot represents
723 one animal. The dashed line indicates a score of 0. Statistical significance was assessed by unpaired two-tailed
724 t-test.

725 **c**, Representative images showing hindlimb splay angles during forward locomotion in *Emtor*^{+/+} and *Emtor*^{-/-}
726 mice at 15 months of age.

727 **d**, Quantification of hindlimb splay angles during locomotion shown in **c**. Each dot represents one animal. Bars
728 indicate mean ± s.e.m. Statistical significance was assessed by unpaired two-tailed t-test.

729 **e**, Motor coordination and strength assessed by balance beam, grip strength, pole test, and rotarod assays in
730 *Emtor*^{+/+} and *Emtor*^{-/-} mice at 12 months of age. Each dot represents one animal. Bars indicate mean ± s.e.m.
731 Statistical significance was assessed by unpaired two-tailed t-test.


732 **f, g**, Representative gait traces (**f**) and quantification of gait parameters (**g**) including the stride symmetry index
733 (SI stride, left) and step variability (CV base, right) in *Emtor*^{+/+} and *Emtor*^{-/-} mice. SI stride reflects left-right
734 stride symmetry, with lower values indicating greater symmetry. CV base represents step-to-step variability
735 and serves as a measure of gait stability. Each dot represents one animal. Bars indicate mean ± s.e.m. Statistical
736 significance was assessed by two-tailed Mann–Whitney test.

737 **h**, Representative images of *Emtor*^{+/+} and *Emtor*^{-/-} mice at 18 months of age.

738 **i**, Body weight measurements of *Emtor*^{+/+} and *Emtor*^{-/-} mice at the indicated ages. Each dot represents one
739 animal. Bars indicate mean ± s.e.m. Statistical significance was assessed by unpaired two-tailed t-test.

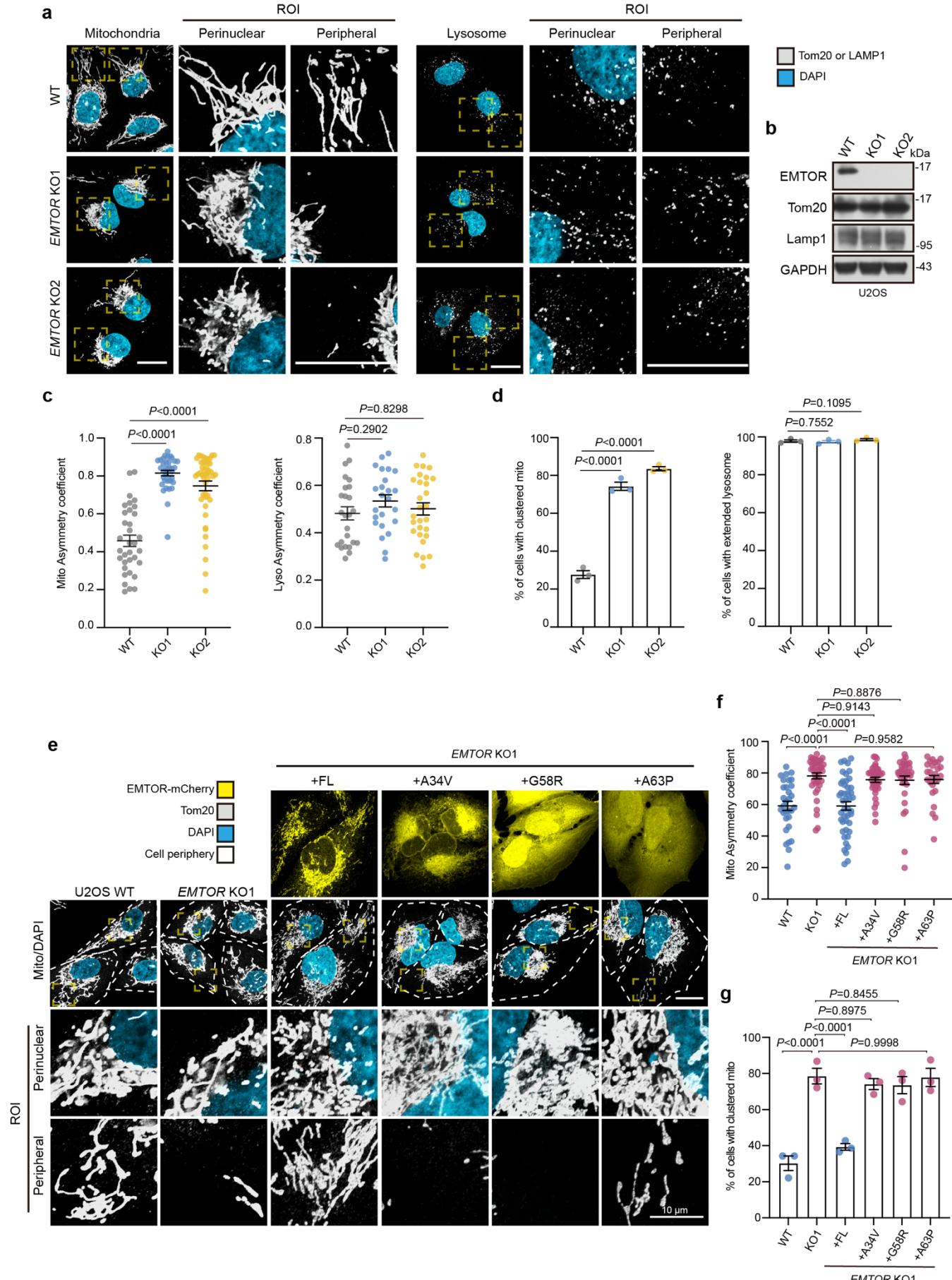
740 **j**, Kaplan–Meier survival curves of *EMTOR*^{+/+} and *EMTOR*^{-/-} mice. Statistical significance was assessed by
741 log-rank test.

742

743

744 **Fig. 2 | Loss of EMTOR impairs axonal mitochondrial distribution, motility and function**

745 **a**, Representative kymographs showing axonal mitochondrial movement in *EMTOR*^{+/+} and *EMTOR*^{-/-} neurons.
746 Scale bars, 5 μ m (horizontal) and 1 min (vertical).


747 **b**, Quantification of the percentage of motile mitochondria in axons of *EMTOR*^{+/+} and *EMTOR*^{-/-} neurons.
748 Each dot represents one axon. Horizontal bars indicate mean \pm s.e.m. Statistical significance was assessed by
749 unpaired two-tailed t-test.

750 **c**, Representative images of axonal mitochondria labeled with PKMito in neurons derived from *EMTOR*^{+/+} and
751 *EMTOR*^{-/-} genotypes. Tau staining marks axons.

752 **d**, Quantification of mitochondrial intensity within axonal tips in *EMTOR*^{+/+} and *EMTOR*^{-/-} neurons. Each dot
753 represents one axon. Horizontal bars indicate mean \pm s.e.m. Statistical significance was assessed by unpaired
754 two-tailed t-test.

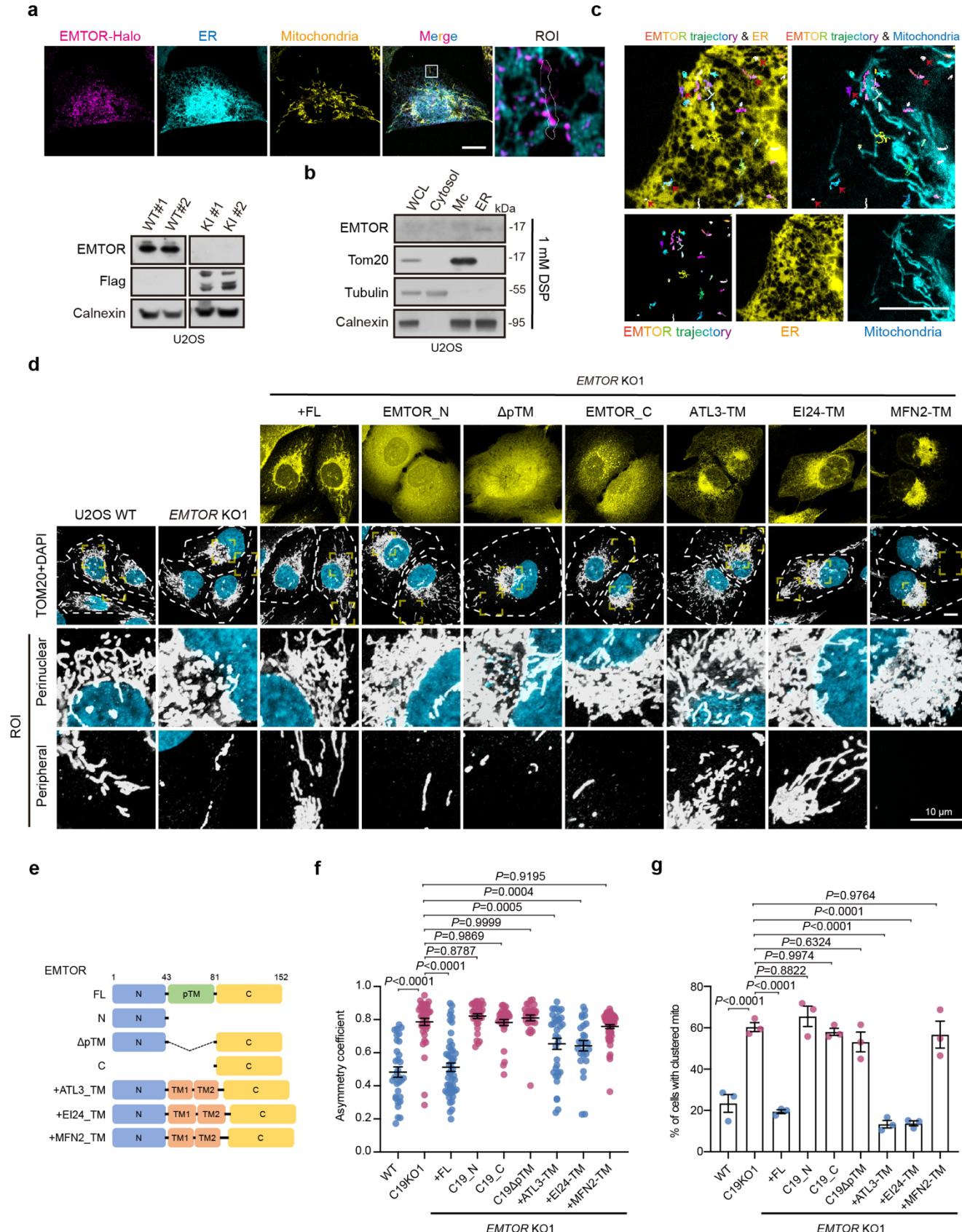
755 **e**, Representative images of axonal mitochondria expressing the ratiometric mitochondrial ATP sensor
756 GoATeam2, shown as F_{560} (red), F_{510} (yellow), and pseudocolor ratio images (F_{560}/F_{510}), in *EMTOR*^{+/+} and
757 *EMTOR*^{-/-} neurons. Scale bars, 5 μ m.

758 **f**, Quantification of ratiometric mitochondrial ATP signal (F_{560}/F_{510}) reported by the mitochondrial ATP sensor
759 GoATeam2 in axons of *EMTOR*^{+/+} and *EMTOR*^{-/-} neurons. Each dot represents one axon. Horizontal bars
760 indicate mean \pm s.e.m. Statistical significance was assessed by unpaired two-tailed t-test.

762 **Fig. 3 | Loss of EMTOR induces perinuclear clustering of mitochondria in U2OS cells.**

763 **a**, Representative confocal images of U2OS wild-type (WT) and two independent *EMTOR* knockout (KO)
764 clones stained for mitochondria (Tom20, grey) and lysosomes (LAMP1, grey). Nuclei were labeled with DAPI
765 (blue). Box regions indicate ROIs. Scale bars, 20 μ m.

766 **b**, Immunoblot confirming loss of EMTOR in two independent KO clones. Tom20 and LAMP1 were used as
767 mitochondrial and lysosomal markers, respectively; GAPDH served as a loading control.


768 **c**, Quantification of mitochondrial (left) and lysosomal (right) asymmetry coefficients in WT and *EMTOR* KO
769 U2OS cells.

770 **d**, Quantification of the percentage of U2OS cells exhibiting perinuclear clustering of mitochondria (left) or
771 lysosomes (right) following *EMTOR* knockout.

772 **e**, Representative confocal images of mitochondrial distribution in *EMTOR* KO cells re-expressing mCherry-
773 tagged WT or mutant EMTOR (A34V, G58R and A63P). Mitochondria were labeled by Tom20 (grey) and
774 nuclei by DAPI (Blue). Cell periphery is outlined by white dashed lines. Box regions indicate ROIs. Scale bars,
775 20 μ m.

776 **f, g**, Quantification of mitochondria asymmetry coefficient (**f**) and percentage of cells with perinuclear
777 mitochondrial clustering (**g**) under the indicated conditions in **e**.

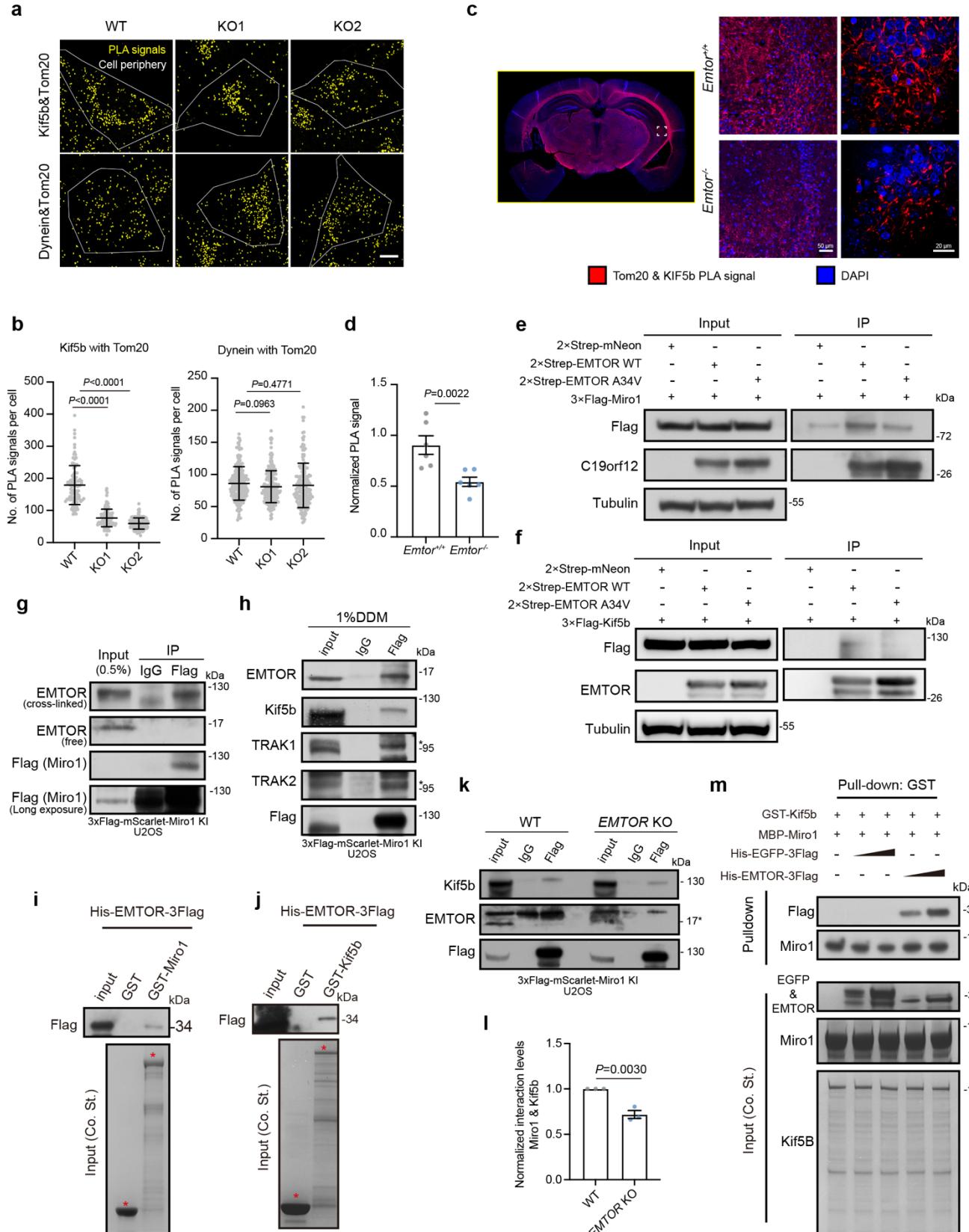
778 All quantitative data are shown as mean \pm s.e.m. In **c** and **f**, each dot represents one cell and statistical
779 significance was assessed by one-way ANOVA with multiple comparisons. In **d** and **g**, each dot represents one
780 biological replicate, the statistical significance was determined by Kruskal-Wallis test with multiple
781 comparisons.

783 **Fig. 4 | EMTOR is a dynamic ER-anchored protein enriched at ER–mitochondria contact sites, and its**
784 **ER localization is essential for regulating mitochondrial distribution.**

785 **a**, Representative confocal images of U2OS EMTOR–Halo knock-in (KI) cells transiently expressing the ER
786 marker Sec61 β (cyan) and stained for mitochondria (Tom20, yellow). The merged image shows EMTOR
787 localization relative to ER and mitochondria. Boxed regions indicate ROIs shown at higher magnification.
788 Scale bars, 20 μ m. Bottom: Immunoblot confirmation of the *EMTOR*-Halo knock-in (KI) allele in U2OS clones.

789 **b**, Subcellular fractionation of U2OS cells after chemical crosslinking followed by immunoblot analysis of
790 whole-cell lysate (WCL), cytosol, crude mitochondria (Mc) and ER-enriched (ER) fractions. Tom20, Tubulin
791 and Calnexin were used as mitochondrial, cytosolic and ER markers, respectively.

792 **c**, Single-molecule tracking of EMTOR in U2OS EMTOR–Halo KI cells transiently expressing Sec61 β
793 (yellow) and labeled with the mitochondrial dye PKMito (cyan). Representative trajectories illustrate dynamic
794 movement of EMTOR relative to the ER and mitochondria. Red arrows indicate EMTOR molecules moving
795 along the ER network that do not overlap with mitochondria. Scale bar, 20 μ m.


796 **d**, Representative confocal images of mitochondrial distribution in *EMTOR* KO cells re-expressing mCherry-
797 tagged WT or the indicated truncation and transmembrane-domain chimeric constructs. Mitochondria were
798 labeled with Tom20 (grey) and nuclei with DAPI (blue). Tubulin staining is shown as a cell morphology
799 reference. Scale bar, 20 μ m.

800 **e**, Schematic representation of the EMTOR domain deletion and chimeric constructs used for the rescue
801 experiments in **d**. The native predicted transmembrane (TM) domain of EMTOR was deleted (Δ TM) or
802 replaced with ER-targeting TMs (from ATL3 or EI24) or a mitochondria-targeting TM (from MFN2).

803 **f**, Quantification of mitochondrial asymmetry coefficients under the indicated conditions in **d**. Each dot
804 represents one cell; data are shown as mean \pm s.e.m. Statistical significance was assessed by one-way ANOVA
805 with multiple comparisons.

806 **g**, Quantification of the percentage of cells exhibiting perinuclear clustering of mitochondria under the
807 indicated conditions in **d**. Each dot represents one biological replicate, the statistical significance was
808 determined by Kruskal-Wallis test with multiple comparisons.

809

811 **Fig. 5 | EMTOR scaffolds the assembly of the Miro1-kinesin anterograde transport complex.**

812 **a**, Representative proximity ligation assay (PLA) images showing interactions between Kif5b and
813 mitochondria (Kif5b–Tom20, top) or dynein and mitochondria (Dynein–Tom20, bottom) in U2OS WT and
814 *EMTOR* KO cells. PLA signals are shown in yellow; cell periphery is outlined. Scale bars, 10 μ m.

815 **b**, Quantification of the number of PLA signals per cell for Kif5b–Tom20 (left) and Dynein–Tom20 (right)
816 interactions under the indicated conditions. Each dot represents one cell; horizontal bars indicate mean \pm s.e.m.
817 Statistical significance was assessed by one-way ANOVA with multiple comparisons.

818 **c**, Representative images of brain sections from *EMTOR*^{+/+} and *EMTOR*^{-/-} mice stained for proximity ligation
819 assay (PLA) signals detecting Tom20–Kif5b interactions (red) and nuclei (DAPI, blue). Dashed boxes indicate
820 regions shown at higher magnification. Scale bars, 50 μ m (left), and 20 μ m (right).

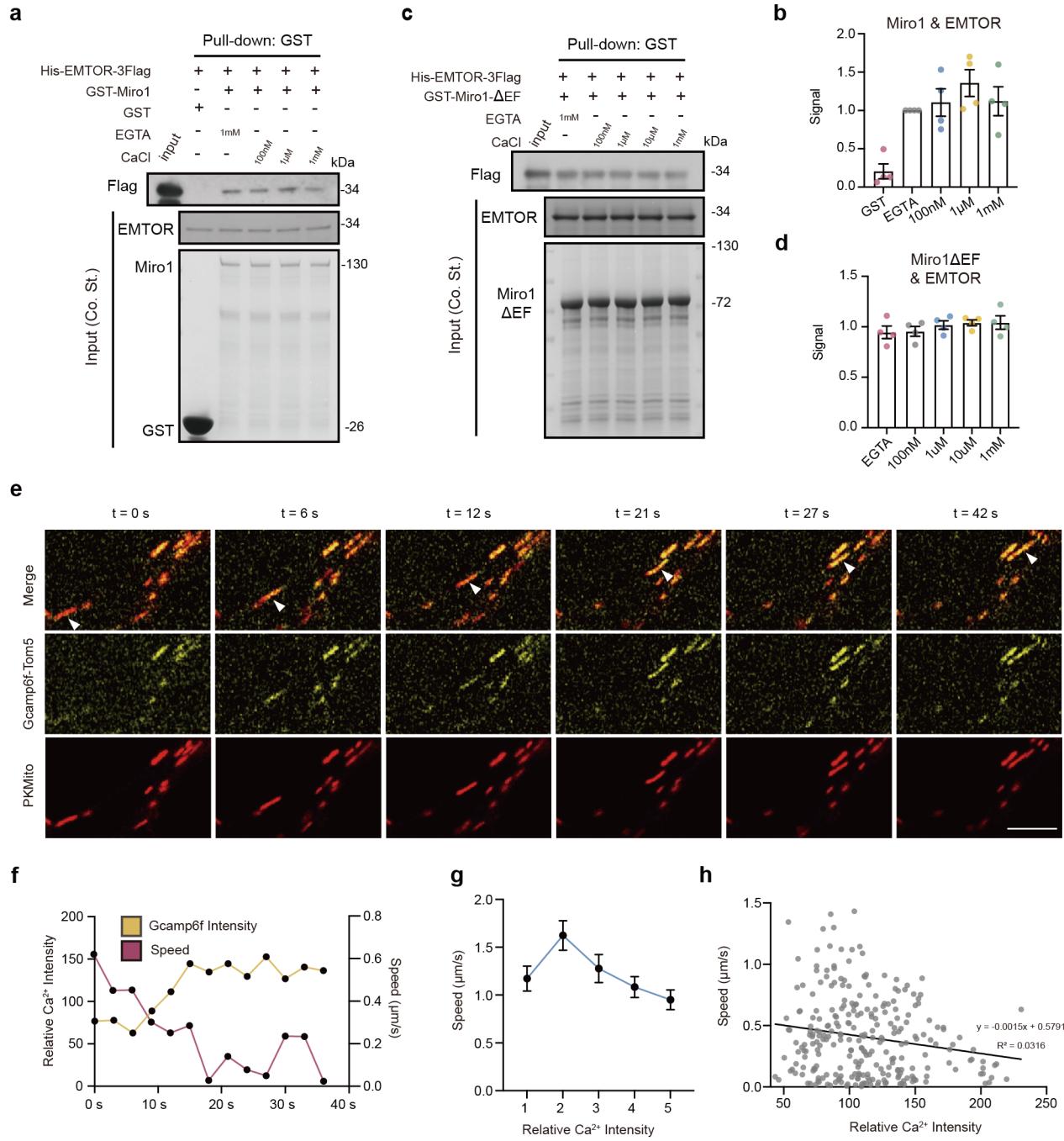
821 **d**, Quantification of normalized PLA signal intensity in brain sections shown in **a**. Each dot represents one
822 animal. Bars indicate mean \pm s.e.m. Statistical significance was assessed by unpaired two-tailed t-test.

823 **e-f**, Co-immunoprecipitation assays in 293T cells showing interactions between EMTOR and mitochondrial
824 transport proteins. 2 \times Strep-tagged EMTOR (WT or A34V) was co-expressed with either 3 \times Flag–Miro1 (**e**) or
825 3 \times Flag–Kif5b (**f**). Input and immunoprecipitated samples were analyzed by immunoblotting with the indicated
826 antibodies.

827 **g**, Immunoprecipitation of endogenous EMTOR from U2OS cells harboring a 3 \times Flag–mScarlet–Miro1 knock-
828 in, performed under DSP chemical crosslinking conditions. Input and immunoprecipitated samples were
829 analyzed by immunoblotting to detect crosslinked and non-crosslinked forms of EMTOR and associated
830 proteins, as indicated.

831 **h**, Immunoprecipitation of 3 \times Flag–mScarlet–Miro1 U2OS KI cells performed in the presence of 1% n-
832 dodecyl- β -D-maltoside (DDM), followed by immunoblot analysis of co-precipitating EMTOR and
833 mitochondrial transport proteins.

834 **i, j**, In vitro GST pull-down assays using purified His–EMTOR–3 \times Flag and GST-tagged Miro1 (**i**) or Kif5b
835 (**j**). Input and bound fractions were analyzed by immunoblotting for Flag. Coomassie blue staining indicates
836 the loading of purified proteins.


837 **k** Immunoprecipitation of 3 \times Flag–mScarlet–Miro1 knock-in from U2OS cells in which EMTOR was
838 subsequently deleted, followed by immunoblot analysis of co-precipitating Miro1 and Kif5b. Input, IgG and
839 Flag immunoprecipitations are shown.

840 **l**, Quantification of normalized interaction levels between Miro1 and Kif5b in WT and *EMTOR* KO cells,
841 based on data in **i**. Data are shown as mean \pm s.e.m.; statistical significance was assessed by unpaired two-
842 tailed t-test.

843 **m**, Competitive in vitro GST pull-down assays using GST–Kif5b and MBP–Miro1 in the presence of

844 increasing amounts of purified His-EMTOR-3×Flag or His-EGFP-3×Flag as a control. Bound fractions were
845 analyzed by immunoblotting for Flag and Miro1. Coomassie blue staining indicates protein loading.

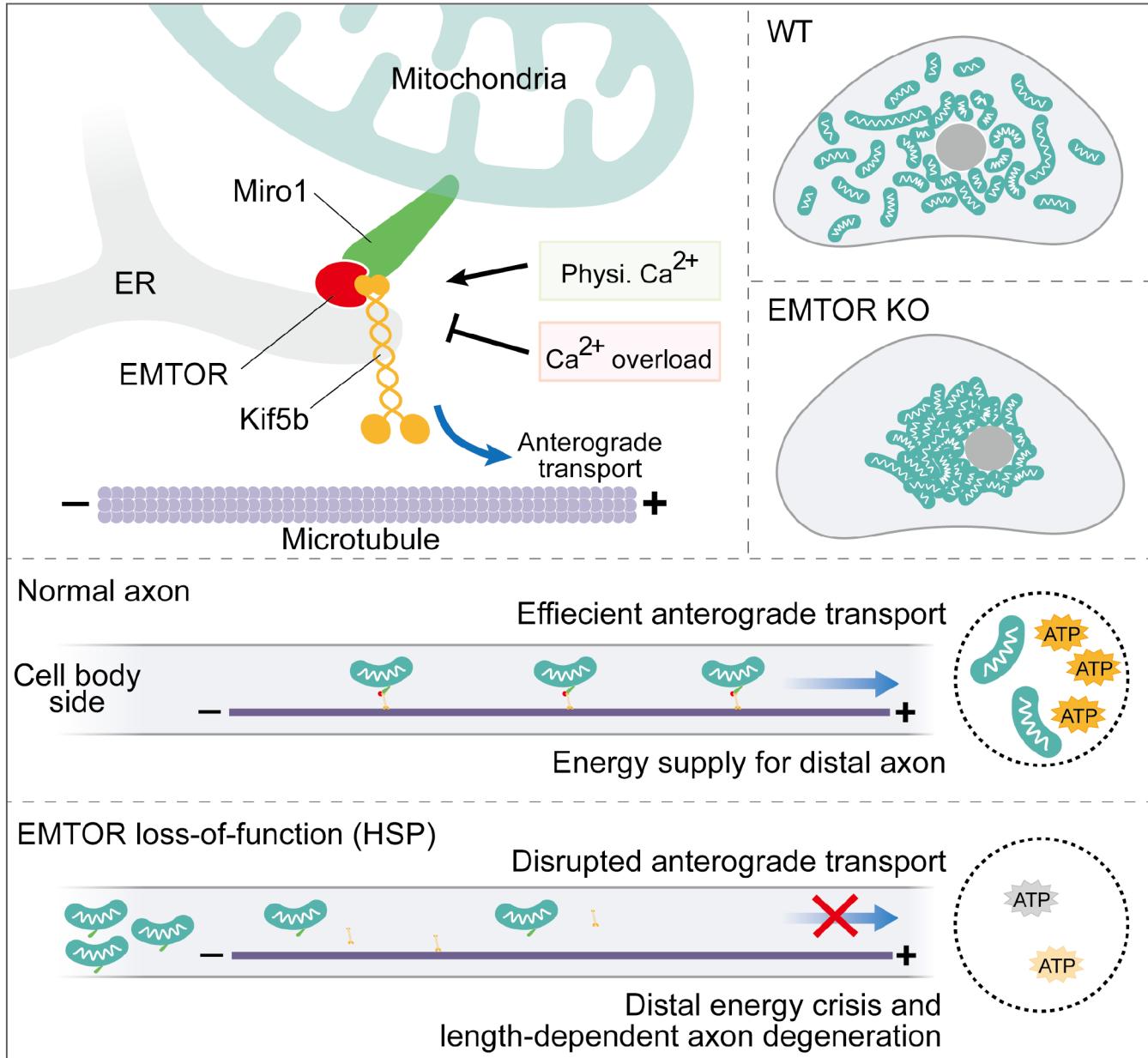
846

848 **Fig. 6 | Calcium modulates the assembly of the EMTOR-Miro1 transport machinery.**

849 **a, c,** In vitro GST pull-down assays examining the interaction between purified His-EMTOR-3×Flag and
850 GST-Miro1 (**a**) or GST-Miro1-ΔEF-hand (**c**) in the presence of the indicated concentrations of CaCl₂ or EGTA.
851 Input and bound fractions were analyzed by immunoblotting for Flag. Coomassie blue staining indicates
852 protein loading.

853 **b, d,** Quantification of EMTOR-Miro1 (**b**) and EMTOR-Miro1-ΔEF-hand (**d**) interaction signals from pull-
854 down assays shown in a, c. Data are shown as mean ± s.e.m. from independent experiments.

855 **e,** Representative time-lapse images of axonal mitochondria labeled with PKMito (red) and Ca²⁺ signals
856 reported by transiently expressed GCaMP6f-Tom5 (yellow) in living cells. Arrowheads indicate a
857 representative mitochondrion exhibiting a characteristic transient Ca²⁺ signal over time. Scale bars, 20 μm.


858 **f,** Representative traces showing temporal changes in relative mitochondrial Ca²⁺ intensity (GCaMP6f-Tom5)
859 and mitochondrial movement speed from the individual mitochondrion indicated by arrowheads in d.

860 **g,** Quantification of mitochondrial movement speed grouped by relative surface calcium intensity levels. Data
861 are shown as mean ± s.e.m. in every group.

862 **h,** Correlation analysis between mitochondrial movement speed and relative Ca²⁺ intensity. Each dot represents
863 one mitochondrion at one timepoint; the fitted line indicates linear regression.

864

865

867 **Fig. 7 | Proposed model: EMTOR acts as an ER-anchored scaffold to orchestrate mitochondrial**
868 **transport.**

869 EMTOR molecular mechanism at ER-Mitochondria contact site (Top left). Under physiological conditions,
870 EMTOR is dynamically anchored to the ER membrane at ER-mitochondria contact sites. It functions as a
871 specialized scaffold that bridges the ER to mitochondria, promoting the assembly of mitochondrial transport
872 complex formed by mitochondrial outer membrane protein Miro1 and the anterograde motor Kinesin-1 (Kif5b).
873 Importantly, this assembly is modulated by local Ca^{2+} levels, being optimal at physiological concentrations
874 found at contact sites but significantly weakened under calcium overload.

875 Cellular regulation of mitochondrial distribution (Top right). In wild-type cells (top), EMTOR promotes the
876 peripheral distribution of mitochondria. In the absence of EMTOR (middle), the outward transport machinery
877 is compromised, leading to severe mitochondrial perinuclear clustering.

878 Neuronal consequences and HSP pathology (Bottom): In physiological conditions, EMTOR-mediated
879 transport ensures the robust delivery of mitochondria to distal axonal terminals, maintaining high local ATP
880 levels required for synaptic homeostasis. In pathological conditions, the failure of EMTOR-dependent
881 transport leads to a progressive depletion of mitochondria at the distal axon. This results in a local energy crisis
882 (low ATP) at synaptic terminals, driving the "dying-back" length-dependent axonopathy characteristic of
883 Hereditary Spastic Paraparesis (HSP).

884