

1

2 **Structural basis for heteromeric assembly and subthreshold**
3 **activation of human M-channel**

4

5 Yifei Wang^{1,2,3,6}, Hui Yang^{1,2,3,6}, Yannan Qu^{1,2,3,6}, Junnan Li^{4,6}, Xiao Li^{1,2,3}, Wenxin Hou¹,
6 Kun Wu¹, Guanglei Xie^{1,2,3}, Xi Wang^{1,2,3}, Yangliang Ye⁵, Huaiyu Yang^{4,7}, and Huaizong
7 Shen^{1,2,3,7}

8

9

10 ¹Zhejiang Key Laboratory of Structural Biology, School of Life Sciences, Westlake University,
11 Hangzhou, Zhejiang, China

12

13 ²Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China

14

15 ³Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China

16

17 ⁴Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of
18 Life Sciences, East China Normal University, Shanghai, China

19

20 ⁵Suzhou Institute of Materia Medica, Suzhou, Jiangsu, China

21

22 ⁶These authors contributed equally

23

24 ⁷To whom correspondence should be addressed: H. Yang (hyyang@bio.ecnu.edu.cn); H. Shen
25 (shenhuazong@westlake.edu.cn).

26

27 **Abstract**

28 **The M-channel, a heterotetrameric voltage-gated potassium channel formed by**

29 **KCNQ2 and KCNQ3 subunits, critically regulates neuronal excitability, with**

30 **dysfunction linked to epilepsy and developmental encephalopathies. Despite its**

31 **physiological importance, structural mechanisms governing its unique heteromeric**

32 **assembly and subthreshold gating have remained unresolved. We present cryo-EM**

33 **structures of human M-channels revealing unprecedented stoichiometric plasticity,**

34 **with all possible KCNQ2:KCNQ3 configurations (1:3 to 3:1) observed.**

35 **Electrophysiology of engineered concatemers shows these assemblies recapitulate**

36 **native function. Structural analyses uncover that KCNQ3's voltage-sensing domain**

37 **(VSD) adopts a more depolarized conformation than KCNQ2, explaining its signature**

38 **subthreshold activation. Leveraging these insights, we developed CLM142, a**

39 **structure-guided activator with 10-fold greater potency and specificity than**

40 **withdrawn retigabine. CLM142 enabled open-state structure determination, revealing**

41 **how PIP₂ binding couples VSD movement to pore opening. Our work provides an**

42 **atomic-resolution framework for understanding M-channel's unique assembly,**

43 **physiology, disease mechanisms, and targeted therapeutic design.**

44

45 The M-channel, a heteromeric voltage-gated potassium (K_v) channel composed of KCNQ2
46 and KCNQ3 subunits (1-3), governs neuronal excitability by generating a slowly activating,
47 non-inactivating potassium current (I_M) that dampens repetitive firing (2, 4-6). First
48 identified in sympathetic neurons for its suppression by muscarinic acetylcholine receptor
49 signaling (hence "M"-channel) (4), it is now recognized as a master regulator of action
50 potential threshold and spike-frequency adaptation across the central and peripheral
51 nervous systems (6-12). The molecular identity of I_M was established with the cloning
52 of *KCNQ2* and *KCNQ3* (1, 2, 13-16), which form heteromeric channels with biophysical
53 properties precisely matching native M-currents—distinct from their homomeric
54 counterparts (2, 3, 17, 18). Dysfunction of these subunits underlies a spectrum of severe
55 neurological disorders, including benign familial neonatal seizures (BFNS) (3, 5, 13, 15,
56 19-29), developmental epileptic encephalopathies (DEE7) (23, 30-33), and autism-
57 associated phenotypes (34-37), underscoring their critical physiological and therapeutic
58 relevance (38).

59

60 Despite decades of research, fundamental questions regarding the M-channel's
61 architecture and gating mechanisms remain unresolved (36, 39). A central controversy
62 concerns its heteromeric stoichiometry (36): while biochemical and functional studies
63 suggested a 2:2 (KCNQ2:KCNQ3) assembly (2, 40), others proposed variable or
64 asymmetric arrangements (41, 42). This uncertainty has obscured how subunit composition
65 dictates the channel's unique subthreshold activation—a hallmark feature enabling I_M to
66 stabilize resting membrane potentials (2, 4, 6). Although recent structures of homomeric
67 KCNQ channels have revealed their canonical architecture (39, 43-48), the absence of

68 heteromeric M-channel structures has precluded mechanistic understanding of its distinct
69 gating properties and subunit cooperativity (36, 49, 50). Resolving these questions is
70 critical for both ion channel biology and drug discovery, particularly given the M-channel's
71 validation as a target for epilepsy and neuropsychiatric disorders (49, 51-54).

72

73 Therapeutic targeting of the M-channel has faced significant hurdles (51, 55).

74 Retigabine, the first-in-class M-channel activator approved for refractory epilepsy was
75 withdrawn due to dose-limiting off-target effects (e.g., bladder toxicity and retinal
76 discoloration) linked to its activity across multiple KCNQ subtypes (53, 54, 56-61).

77 Developing subtype-selective activators requires precise structural insights into the
78 heteromeric channel's drug-binding sites and activation mechanisms—a goal hindered by
79 the lack of M-channel structures.

80

81 Here, we resolve these longstanding questions through cryo-electron microscopy
82 (cryo-EM) structures of the human M-channel in multiple functional states. Our findings
83 reveal unexpected stoichiometric flexibility in KCNQ2:KCNQ3 assemblies and identify a
84 markedly depolarized conformation of the voltage-sensing domain (VSD) in KCNQ3
85 compared to KCNQ2, providing the first structural explanation for the channel's
86 characteristic subthreshold activation. Electrophysiological characterizations of engineered
87 concatemers and chimeric constructs corroborate these structural insights. Leveraging this
88 knowledge, we developed CLM142 (1), a potent and selective M-channel activator that
89 enabled determination of the open-state structure. Our work not only elucidates

90 fundamental principles of M-channel assembly and gating but also establishes a framework
91 for structure-guided development of targeted therapies.

92

93 **Structure of the human M-channel reveals unexpected stoichiometric plasticity**

94 We determined cryo-EM structures of the human M-channel using both wild-type
95 KCNQ2/KCNQ3 heteromers and engineered constructs where flexible N- and C-terminal
96 regions and the disordered loop between HA and HB helices were removed to improve
97 biochemical stability (Fig. 1A, figs. S1 to S11, and Tables S1 to S5). This approach enabled
98 us to resolve four distinct structural states: the wild-type M-channel (M-channel^{WT}; Fig.
99 1A), engineered constructs without ligands (M-channel^{apo}; fig. S3A), constructs bound to
100 the activator CLM142 (M-channel^{CLM142}; fig. S3B), and constructs with both CLM142 and
101 phosphatidylinositol 4,5-bisphosphate (PIP₂) to stabilize the open state (M-channel^{open}; fig.
102 S3C).

103

104 Analysis of these preparations revealed the M-channel exists in four distinct
105 stoichiometric configurations (Fig. 1A and fig. S3). These include a 3:1 KCNQ2:KCNQ3
106 assembly (M2223), two 2:2 assemblies with either adjacent (M2233) or alternating
107 (M2323) subunit arrangements, and a 1:3 assembly (M2333). Intriguingly, the relative
108 proportions of these assemblies varied significantly between preparations. Under our
109 standard co-expression conditions for wild-type subunits, the KCNQ2-rich M2223
110 configuration was the least prevalent (6.45%), indicating an inherent assembly preference
111 under these conditions that favors incorporation of KCNQ3. This resulted in a population
112 dominated by the balanced 2:2 stoichiometries (M2323, 38.38%; M2233, 32.6%) and the

113 KCNQ3-rich M2333 configuration (22.57%) (Fig. 1A). In contrast, engineered constructs
114 exhibited a pronounced redistribution, with the M2223 configuration becoming dominant
115 (53.2% in M-channel^{apo}) (fig. S3), correlating with higher expression levels of KCNQ2
116 relative to KCNQ3 (fig. S2B).

117

118 This stoichiometric plasticity was further quantified through systematic
119 transfection experiments using defined KCNQ2-GFP:KCNQ3 plasmid ratios (1:1, 1:4, and
120 1:9), which showed that the ratio of GFP fluorescence (reporting KCNQ2 incorporation) to
121 total protein yield (UV absorbance) decreased progressively (146, 128, and 54 mV/mAu,
122 respectively) with reduced KCNQ2 plasmid input (fig. S12). Together, these data
123 demonstrate that the observed stoichiometric flexibility is an inherent property of M-
124 channel assembly—at least in our heterologous expression system—and that the final
125 population distribution is a direct consequence of the relative expression levels of the
126 constituent subunits within the heterologous system.

127

128 All resolved structures adopted the canonical voltage-gated K⁺ channel
129 architecture, with four voltage-sensing domains (VSDs) surrounding a central pore domain
130 (PD; Fig. 1, B and C) (62). However, unlike homomeric channels, the M-channel's central
131 pore and VSDs are formed by asymmetric arrangements of KCNQ2 and KCNQ3 subunits
132 (39, 43-46, 48). Three key structural features enabled unambiguous discrimination between
133 subunits: first, the VSD of KCNQ3 adopts a distinct orientation relative to the central pore
134 compared to KCNQ2 (Fig. 1, D and E); second, KCNQ3 possesses a significantly longer
135 extracellular loop (ECL) which yields a pronounced density difference (Fig. 1F and fig.

136 S1); and third, the high resolution (~ 2.8 Å) of the central pore region allowed
137 discrimination of non-conserved residues, including Y284 in KCNQ2 versus T323 in
138 KCNQ3, F316 in KCNQ2 versus L355 in KCNQ3, and Y226 in KCNQ2 versus C255 in
139 KCNQ3 (Fig. 1G and fig. S1).

140

141 The high-resolution structure enables precise structural alignment of the subunit
142 interface (S5 and S6 helices) of KCNQ2 and KCNQ3, revealing an exceptional degree of
143 conservation in both sequence (>90% similarity) and tertiary structure (RMSD = 0.437 Å;
144 fig. S13). This near-perfect structural compatibility explains the M-channel's remarkable
145 stoichiometric plasticity, permitting all combinatorially possible configurations (M2223,
146 M2233, M2323, and M2333) to assemble with comparable thermodynamic stability.

147 Crucially, this structural degeneracy establishes an expression-level-dependent assembly
148 paradigm, where the relative abundances of distinct configurations are principally
149 determined by the relative availability of constituent subunits rather than preferential
150 binding affinities.

151

152 **Concatemeric constructs of KCNQ2 and KCNQ3 recapitulate electrophysiological 153 properties of the wild-type M-channel**

154 To validate the physiological relevance of the observed stoichiometric assemblies, we
155 engineered concatemers with defined subunit ratios matching our structural findings: 3:1
156 (M2223), two distinct 2:2 arrangements (M2323 and M2233), and 1:3 (M2333) (Fig. 2B).
157 These constructs enabled precise control over subunit composition while maintaining native
158 inter-domain connectivity.

159

160 We performed comprehensive electrophysiological characterization using both
161 whole-cell and single-channel recordings (Fig. 2). Wild-type M-channels (co-expressed
162 KCNQ2/KCNQ3) served as functional benchmarks (Fig. 2, A and C), while KCNQ2
163 homomers provided baseline references for homomeric channel properties (Fig. 2C).
164 Whole-cell recordings demonstrated that all four concatemer configurations produced
165 current-voltage (I-V) relationships superimposable with wild-type M-channels, with
166 activation thresholds consistently shifted toward hyperpolarized potentials compared to
167 KCNQ2 homomers (Fig. 2C). Quantitative analysis revealed that each concatemer
168 exhibited half-maximal activation voltages ($V_{1/2}$) statistically indistinguishable from wild-
169 type M-channels ($p > 0.05$) yet significantly more hyperpolarized than KCNQ2 homomers
170 ($p < 0.001$), recapitulating the hallmark sub-threshold activation profile of native M-
171 channels (2).

172

173 Single-channel analyses provided mechanistic corroboration at the molecular level.
174 All concatemer variants displayed unitary current amplitudes (Fig. 2E), single-channel
175 conductance (Fig. 2F), and open probabilities (Fig. 2G) matching wild-type M-channels
176 within experimental error ($p > 0.05$ for all parameters across constructs). This functional
177 equivalence across distinct stoichiometries demonstrates that each assembly configuration
178 faithfully reproduces the fundamental biophysical properties of native M-channels (63).

179

180 **The KCNQ3 voltage-sensing domain confers hyperpolarized activation kinetics**

181 The M-channel's physiological importance stems from its unique ability to activate at
182 subthreshold membrane potentials, a property critical for regulating neuronal excitability
183 (2, 4, 6). Despite its functional significance, the structural basis for this distinctive gating
184 behavior has remained elusive.

185

186 In voltage-gated ion channels, VSD activation is defined by the positions of S4
187 arginine residues (R1-R6) relative to the charge transfer center (CTC), which comprises a
188 conserved phenylalanine (F137 in KCNQ2; F167 in KCNQ3) flanked by two acidic
189 residues (E130/E140 in KCNQ2; E160/E170 in KCNQ3; Fig. 3A and fig. S1) (64).

190 Comparative structural analysis of M-channel^{apo} revealed striking differences between
191 subunits: while R4 (R207) in KCNQ2 forms cation-π interactions with F137 and sits
192 slightly above it, KCNQ3's R4 (R236) resides farther above F167, with R5 (R239) instead
193 forming the cation-π interaction below (Fig. 3A). This conformational disparity indicates
194 that KCNQ3's VSD favors the activated state at more hyperpolarized potentials than
195 KCNQ2, suggesting its VSD requires less depolarization to activate. These structural
196 observations provide a plausible mechanism for the M-channel's hyperpolarized activation
197 threshold relative to KCNQ2 homomers.

198

199 To test whether KCNQ3's VSD drives subthreshold activation, we engineered
200 chimeric constructs by swapping VSDs between subunits: VSD₂-PD₃ (KCNQ2 VSD +
201 KCNQ3 pore) and VSD₃-PD₂ (KCNQ3 VSD + KCNQ2 pore) (Fig. 3B and fig. S1).
202 Electrophysiological characterization revealed that channels containing only KCNQ2 VSDs
203 (VSD₂-PD₃ + KCNQ2) exhibited activation thresholds similar to KCNQ2 homomers

204 (Figures 3C and 3D). Conversely, channels with exclusively KCNQ3 VSDs (VSD₃-PD₂ +
205 KCNQ3) activated at even more hyperpolarized potentials than wild-type M-channels, with
206 the native heteromer's threshold intermediate between these extremes (Fig. 3, C and D).
207 These results definitively establish that KCNQ3's VSD is both necessary and sufficient for
208 the M-channel's subthreshold activation phenotype.

209

210 **Molecular mechanism for the potent activation of CLM142 on human M-channel**

211 The withdrawal of retigabine (Fig. 4B), the first clinically approved M-channel activator,
212 due to off-target effects across KCNQ subtypes (fig. S15), highlighted the critical need for
213 selective therapeutics (49, 51, 53, 54, 56-61). Through structure-guided drug design
214 informed by both the M-channel architecture and retigabine's activation mechanism, we
215 developed CLM142 (1; Fig. 4A), a next-generation activator identified via an integrated
216 virtual screening and electrophysiological validation approach.

217

218 CLM142 features three key structural elements: (1) a fluorophenyl group linked
219 via (2) an amide bond to (3) an indazole core with cyclopropyl and ethynyl substitutions
220 (Fig. 4A). These strategic modifications yielded significant pharmacological improvements,
221 demonstrating a 10-fold greater potency than retigabine on human M-channel (EC₅₀ = 0.19
222 \pm 0.09 μ M versus 2.16 \pm 0.15 μ M for G-V curve shifts) while achieving an enhanced
223 subtype specificity, as evidenced by its negligible effects on KCNQ4 channel (Fig. 4, C to
224 G, and fig. S14A). At 1 μ M concentration, CLM142 produced a $\Delta V_{1/2}$ shift of -32.49 \pm 1.64
225 mV (Fig. 4, C and D) and significantly modulated channel kinetics, accelerating activation
226 (118.09 \pm 9.21 ms versus 172.09 \pm 17.19 ms at 0 mV; fig. S14B) while slowing

227 deactivation (126.54 ± 12.98 ms versus 19.51 ± 2.72 ms; fig. S14C). These properties
228 establish CLM142 as a promising therapeutic candidate combining submicromolar potency
229 with improved selectivity for human M-channel.

230

231 To elucidate its mechanism of action, we determined the cryo-EM structure of M-
232 channel^{CLM142} at 3.1 Å resolution (Fig. 5, A and B, and figs. S3, S4, and S10). CLM142
233 occupies the inter-subunit pocket between S5 and S6 helices (Fig. 5C) - the canonical
234 activator binding site shared with retigabine (fig. S15) - but establishes a unique interaction
235 network through its distinct chemical architecture (Fig. 5D) (39, 45). The compound binds
236 in a characteristic orientation where its fluorophenyl group extends intracellularly while the
237 cyclopropyl/ethynyl moieties project extracellularly, creating extensive interactions (Fig.
238 5D). The amide carbonyl forms a crucial hydrogen bond with S303/S342 on S6, while the
239 central indazole core engages in π - π stacking with the highly conserved W236/W265 on S5.
240 Simultaneously, the cyclopropyl/ethynyl groups are positioned within a hydrophobic pocket
241 formed by F240/F269 on S5 and L299/L338-F305/F344 on S6, while the fluorophenyl
242 group makes complementary van der Waals contacts with F304/F343, L221/L250,
243 V225/I254 and L312/L352. This sophisticated interplay of directional hydrogen bonding
244 and extensive hydrophobic complementarity synergistically enables CLM142 to bind and
245 activate M-channel.

246

247 Despite dramatical modifications, CLM142 activates the channel through a similar
248 mechanism to retigabine, promoting pore domain opening by displacing S5 and S6 helices
249 in a clockwise rotation (viewed from intracellular side; Fig. 5D) (39, 45, 65). This

250 movement is evidenced by significant displacement of W236 in KCNQ2/W265 in KCNQ3
251 on S5 (Fig. 5D), confirming that both compounds share a common activation pathway
252 despite their distinct binding geometries.

253

254 **Open-state structure of M-channel reveals its activation mechanism**

255 To elucidate the structural basis of M-channel activation, we determined the open-state
256 structure of the human M-channel (M-channel^{open}) in complex with CLM142 and PIP₂ (Fig.
257 6, A and B, figs. S3, S4, and S11). While maintaining the four CLM142 molecules bound
258 between S5-S6 helices observed in the closed state (Fig. 6B), the intracellular gate formed
259 by L318 in KCNQ2 (L357 in KCNQ3) of the open structure undergoes significant dilation,
260 expanding from less than 1 Å to over 2 Å in radius (Fig. 6, C and D). This pore opening
261 results from a coordinated clockwise rotation of S6 helices (viewed intracellularly) initiated
262 at the conserved G313 in KCNQ2 (G352 in KCNQ3) within the GSG motif, coupled with
263 outward displacement of the gate-forming leucine side chains (L318/L357) (Fig. 6E and
264 figs. S1 and S16). These movements align with established activation mechanisms in
265 voltage-gated channels (45, 65).

266

267 The structure captures four weak densities beneath the VSDs, which we assign as
268 PIP₂ based on three lines of evidence (Fig. 6F): (i) their exclusive appearance in PIP₂-
269 supplemented samples, (ii) the open conformation's dependence on PIP₂ in KCNQ channels
270 (50, 66-69), and (iii) congruence with PIP₂ binding sites in other open-state KCNQ
271 structures (39, 44, 46-48, 70). These lipids engage multiple positively charged residues,
272 including R87/R117 and R89/R119 in the VSD, R213/R242 and R214/R243 in the S4-S5

273 linker, and K327/K366 in the extended S6 helix through electrostatic interactions,
274 consistent with previous studies (44, 46-48). These interactions support an activation
275 mechanism whereby PIP₂ binding to this basic residue-rich interface couples S4 movement
276 to S6 displacement, facilitating gate opening. The pivotal role of the conserved GSG motif
277 (G313/G352) as a gating hinge is underscored by its position at the initiation point of these
278 conformational changes (fig. S1).

279

280 **Discussion**

281 Our systematic structural and functional characterization of the human M-channel resolves
282 several long-standing questions in the field while providing new insights into its
283 physiological regulation, pathophysiological mechanism and therapeutic targeting (fig.
284 S17).

285

286 Our cryo-EM structures reveal unexpected stoichiometric plasticity in the M-
287 channel, which can adopt all possible KCNQ2:KCNQ3 configurations (M2223, M2233,
288 M2323, and M2333). This remarkable structural flexibility likely stems from the high
289 degree of sequence conservation and structural similarity between KCNQ2 and KCNQ3
290 subunits. The relative abundance of these assemblies varies across preparations, correlating
291 with differential expression levels of KCNQ2 and KCNQ3. This structural flexibility
292 resolves previous conflicting reports about M-channel composition, where some studies
293 proposed fixed 1:1 stoichiometry while others suggested variable ratios (2, 40-42). The
294 discrepancy likely stems from unaccounted variations in subunit expression levels across
295 experimental systems.

296

297 This plasticity may represent an important endogenous mechanism for tuning
298 neuronal excitability, particularly given the established spatiotemporal expression patterns
299 of KCNQ subunits (12, 16, 71-73). During development, KCNQ2 expression stabilizes
300 rapidly while KCNQ3 shows gradual accumulation to its peak levels (16, 71, 72).
301 Furthermore, distinct brain regions exhibit characteristic KCNQ2/KCNQ3 expression ratios
302 (12, 74, 75). Such systematic variations in subunit availability would naturally produce
303 different distributions of M-channel assemblies and KCNQ2 homomers, creating a
304 spectrum of channel populations fine-tuned to specific physiological requirements across
305 neuronal circuits and developmental stages.

306

307 Despite structural heterogeneity, all four configurations exhibited remarkably
308 similar electrophysiological properties. This surprising functional homogeneity may reflect
309 either: (1) dominant activation by the first responsive subunit as proposed previously, or (2)
310 limitations in detecting subtle gating differences with current methodologies (76). If
311 confirmed, such functional equivalence would imply that stoichiometric variation primarily
312 modulates channel density rather than biophysical properties—a possibility that warrants
313 further investigation.

314

315 Through chimeric constructs and high-resolution structures, we established that
316 KCNQ3's VSD drives the M-channel's characteristic subthreshold activation. While the
317 VSDs of KCNQ2 and KCNQ3 share overall architecture, subtle sequence variations create
318 distinct electrostatic landscapes that alter voltage sensitivity. Future studies mapping these

319 sequence-activity relationships could reveal precise molecular determinants of gating
320 differences.

321

322 Our development of CLM142 addresses the critical need for specific M-channel
323 therapeutics following retigabine's withdrawal (51-54, 56, 57, 59-61, 77, 78). This
324 optimized compound shows major improvements over retigabine, demonstrating both 10-
325 fold greater potency and superior specificity. Structural analysis revealed that it establishes
326 distinct interactions with S5/S6 helices while preserving retigabine's activation mechanism.
327 These structural innovations likely account for CLM142's improved pharmacological
328 properties, though further optimization may yield additional clinical benefits.

329

330 Our open-state structure suggests PIP₂ mediates VSD-pore coupling through a
331 conserved basic residue interface (R87/R117, R89/R119, R213/R242, R214/R243,
332 K327/K366). The activation mechanism revealed by the structure is in agreement with prior
333 studies (44, 46-48). While current densities were poorly resolved, future studies using PIP₂-
334 incorporated nanodiscs or liposomes may better capture these critical interactions and
335 reveal additional mechanistic details.

336

337 It is worth noting that our findings are subject to several limitations. First, both the
338 structural observations and functional characterizations are based on recombinant proteins
339 expressed in heterologous systems, which may not fully recapitulate the native neuronal
340 environment. Second, the enhanced potency and subtype specificity of CLM142, while
341 rigorously established under patch-clamp conditions, require further validation in

342 physiological disease models and clinical studies to substantiate its therapeutic superiority
343 over retigabine.

344

345 By elucidating the M-channel's structural principles, we have: (1) reconciled
346 conflicting stoichiometry models through demonstration of expression-dependent assembly,
347 (2) provided the first structural explanation for subthreshold activation, and (3) developed
348 CLM142 as a precision therapeutic candidate. These advances establish a framework for
349 understanding M-channel physiology and developing targeted treatments for epilepsy and
350 related disorders.

351

352 **MATERIALS AND METHODS**

353 **Cell culture and transient transfection**

354 Baculovirus was generated using *Sf9* insect cells cultured in Sf900-II SFM medium (GIBCO)
355 at 28°C. Recombinant proteins were expressed in HEK293F cells maintained in SMM 293-
356 T II serum-free medium (Sino Biological) at 37°C in a humidified incubator with 5% CO₂.
357 Cells were infected when the density reached 2.0-3.0×10⁶ cells/mL. HEK293T and CHO-K1
358 cells were used for electrophysiological recordings. HEK293T cells were cultured in
359 Dulbecco's Modified Eagle Medium (DMEM; BI) supplemented with 4.5 mg/mL glucose
360 and 10% (v/v) fetal bovine serum (FBS; BI). CHO-K1 cells were maintained in DMEM/F12
361 medium (Gibco) supplemented with 10% FBS and 1% (v/v) penicillin–streptomycin (Gibco).
362 All mammalian cells were incubated at 37°C in a 5% CO₂ atmosphere. Plasmids were
363 transfected when the cells reached ~70% confluency. HEK293T or CHO-K1 cells were
364 transiently transfected with 2.5 µg plasmid DNA per well using Lipofectamine 3000
365 (Invitrogen) following the manufacturer's instructions.

366

367 **Cloning, expression, and purification of M-Channel**

368 Gene encoding human KCNQ2 (UniProt: O43526) and KCNQ3 (UniProt: O43525) were
369 synthesized by GENEWIZ and confirmed by sequencing. KCNQ2 and KCNQ3 full-length
370 were cloned into a pEGBacMam expression vector with an N-terminal 8×His-GFP-tag and
371 FLAG-tag, respectively (79). Expression products of the two plasmids were NHis-GFP-
372 KCNQ2 (WT) and NFlag-KCNQ3 (WT). To improve the stability and increase the
373 production, amino acids (353-533AA) between HA and HB of the truncated KCNQ2 (64-
374 674AA) were replaced by GS-linker (GGGSGGGS), KCNQ3 was also truncated and kept

375 the 93-691AA. High-resolution structures, including M-channel^{apo}, M-channel^{CLM142}, and M-
376 channel^{open}, were obtained using plasmids engineered as described above. All plasmids were
377 confirmed by DNA sequencing.

378 To express M-channel, recombinant baculoviruses was generated using Bac-to-Bac system
379 (Thermo Fisher Scientific) as previously described (79). When cell density reached
380 approximately 2.5×10^6 cells/mL, P2 viruses of KCNQ2 and KCNQ3 were co-infected into
381 the cells at a ratio of 1:10 (v/v). After 8 h of culturing, 10 mM sodium butyrate (Sigma) was
382 added to the medium to boost protein expression at 30 °C. Cells were harvested after
383 ~48 hours of culturing and frozen in liquid nitrogen before being stored in a -80 °C
384 refrigerator for future use.

385 For the purification of M-channel, 6L cells were solubilized in extraction buffer containing
386 20 mM Tris-HCl pH 8.0, 200 mM KCl, 1% DDM/CHS (10:1, w/w; Anatrace), 2 uM
387 leupeptin, 1 uM pepstatin A, 1 ug/mL aprotinin, 1 mM PMSF for 2 hours at 4°C. Solubilized
388 cell lysis were clarified by centrifugation at 13,000 rpm for one hour. The resulting
389 supernatant was applied to Anti-Flag G1 Affinity Resin (GenScript) and the loaded resin was
390 washed by wash buffer containing 20 mM Tris-HCl pH 8.0, 200 mM KCl, 1mM PMSF and
391 0.03% GDN (Anatrace). The protein was eluted with 200 µg/mL FLAG peptide in wash
392 buffer and then loaded onto High Affinity Ni-Charged Resin (QIAGEN). The resin was
393 washed by wash buffer supplemented with 30 mM imidazole and the protein was eluted with
394 300 mM imidazole. The eluent was concentrated by 100 kDa MWCO Amicon Ultra-4
395 centrifugal filter (Millipore) and then applied to size-exclusion chromatography (Superose 6
396 Increase, 10/300 GL, GE Healthcare) in buffer containing 20 mM Tris-HCl pH 8.0, 150 mM
397 KCl, 1mM PMSF and 0.03% GDN. The peak fractions containing the KCNQ2/KCNQ3

398 complex were concentrated to about 12 mg/mL for further experiments. To prepare the
399 sample of the M-channel with CLM142, concentrated protein was incubated with 1mM
400 CLM142 at least 30 minutes at 4 °C prior to Cryo-EM sample preparation. To obtain the
401 open conformation of M-channel, the purified protein was incubated with 1 mM PIP2 and
402 1mM CLM142. CLM142 was synthesized by the laboratory of Professor Huaiyu Yang (East
403 China Normal University). The PIP₂ we used is 1,2-dioctanoyl-sn-glycero-3-phospho-(1'-
404 myo-inositol-4',5'-bisphosphate) (ammonium salt) purchased from Avanti.

405

406 **Cryo-EM sample preparation and data collection**

407 To prepare Cryo-EM sample, the concentrated complex mixture (3.5 μL) was placed on
408 glow-discharged holey carbon grids (Quantifoil Au R1.2/1.3), which were blotted for 3.5 s
409 and flash-frozen in liquid ethane cooled by liquid nitrogen with Vitrobot (Mark IV, Thermo
410 Fisher Scientific). The grids were loaded onto a 300 kV Titan Krios (Thermo Fisher Scientific
411 Inc.) equipped with K3 Summit detector (Gatan) and GIF Quantum energy filter. Automated
412 data collection was performed using EPU software (Thermo Fisher Scientific) in super-
413 resolution mode at nominal magnification of 81,000×, with a slit width of 20 eV on the
414 energy filter. A defocus series ranging from -1.5 μm to -2.0 μm was used. Each stack was
415 exposed for 2.56 s with an exposure time of 0.08 s per frame, resulting in a total of 32 frames
416 per stack and the total dose was approximately 50 e⁻/Å² for each stack. The stacks were
417 motion corrected with MotionCor2 and binned 2 fold, resulting in a pixel size of 1.087
418 Å/pixel (80). Meanwhile, dose weighting was performed (81). The defocus values were
419 estimated with Gctf (82).

420

421 **Cryo-EM data processing**

422 The data processing workflow for the M-channel is illustrated in figs. S5 to S7. All steps
423 were conducted in CryoSPARC v4.6.2 (83). For M-channel^{WT}, a total of 5,393 micrographs
424 were collected. Using the template picker, 5,223,566 particles were automatically selected.
425 After particle extraction, multiple rounds of 2D classification, ab initio reconstruction, and
426 heterogeneous refinement were performed, resulting in a dataset of 727,947 selected particles.
427 These particles were subjected to non-uniform refinement with C1 symmetry. To distinguish
428 between the KCNQ2 and KCNQ3 components, non-uniform refinement with C4 symmetry
429 was performed to align the symmetry axis along the Z-axis. A new particle stack was
430 subsequently generated via symmetry expansion using C4 symmetry. The expanded dataset
431 was classified into two distinct VSD domain states through multiple rounds of 3D
432 classification, using a focused mask on the VSD region. Particles corresponding to each state
433 were grouped based on their stoichiometric ratios by intersecting different VSD
434 classifications. The resulting particle stacks were further processed using heterogeneous
435 refinement followed by non-uniform refinement to enhance map quality and improve
436 resolution. A total of 16,214, 15,162, and 27,141 micrographs were collected for M-
437 channel^{apo}, M-channel^{CLM¹⁴²}, and M-channel^{open}, respectively. Two strategies were applied
438 for the data processing. The first one followed the same procedure as described for the M-
439 channel^{WT}. The second conducted 3D classification using four separate masks, each
440 enclosing an individual VSD domain. Particles of identical stoichiometries were combined
441 and refined via non-uniform refinement. CryoSieve was used to exclude unwanted particles
442 (84). The resolution was estimated with the gold-standard Fourier shell correlation 0.143
443 criterion with high resolution noise substitution (85, 86).

444

445 **Model building and structure refinement**

446 The AlphaFold-predicted models of KCNQ3 (AlphaFold DB ID: O43525) and KCNQ2
447 (AlphaFold DB ID: O43526) were initially docked into the final cryo-EM density maps using
448 UCSF ChimeraX (87-89). Manual model building and adjustment were subsequently
449 performed in Coot v0.9.8.1, with careful attention to the chemical properties of individual
450 amino acid residues (90). Due to insufficient electron density, the N-terminal and C-terminal
451 regions were not modeled. Several putative lipid molecules were tentatively placed into the
452 observed densities.

453 Real-space refinement was performed using phenix.real_space_refine in PHENIX 1.20, with
454 secondary structure and geometry restraints applied throughout (91). To avoid overfitting,
455 gold-standard refinement was employed by alternately refining against one of the two
456 independently calculated half-maps and validating against the other. Final refinement
457 statistics and map quality metrics are summarized in Tables S1 to S5.

458

459 **Design of KCNQ2 and KCNQ3 concatemers**

460 Concatemeric constructs were created by the sequential insertion of individual subunits into
461 a pEGBacMam expression vector with an N-terminal 8×His-GFP-tag. Every subunit of
462 KCNQ2 or KCNQ3 was of wild type without deletions or truncations. Four concatemers
463 were generated: M23, M2333, M2233, and M2223. Adjacent subunits were linked by a GS-
464 linker (GGGGSSGGGGSSGGGGSS). The accuracy of the final sequence was confirmed by
465 both inserts digestion and the third-generation long-read DNA sequencing.

466

467 **Whole-cell Electrophysiology**

468 For the whole-cell electrophysiological experiments of the KCNQ2/KCNQ3 concatemers
469 and chimeric constructs, the whole-cell K⁺ currents were recorded in HEK293T cells using
470 an EPC-10 amplifier with Patchmaster 2x92 software (HEKA Elektronik) and glass
471 micropipettes (2.5-4 MΩ) made by P-1000 pipette puller (Sutter Instrument). To record the
472 KCNQ current, the pipette solution contained 100 mM KCl, 50 mM KF, 5 mM EGTA, 10
473 mM HEPES, adjusted to pH 7.2 with KOH, and the bath contained 130 mM NaCl, 20 mM
474 KCl, 1 mM CaCl₂, 2 mM MgCl₂, 5 mM D-Glucose, 10 mM HEPES, adjusted to pH 7.2 with
475 NaOH. Fitmaster 2x92 (HEKA Elektronik) and Prism 10.1.2 (GraphPad Software) were used
476 for data analysis.

477 To record the currents, a series of 2,000 ms depolarizing steps (holding potential -80 mV)
478 was applied from -90 mV to +80 mV in 10 mV increments. Then, the cells were stimulated
479 by -120 mV for 250 ms to obtain tail currents. The linear component of leak current and
480 capacitive transients was subtracted using the -P/4 procedure and the voltage errors were
481 minimized using series resistance compensation. The normalized tail current amplitude of
482 the activation curves was plotted against step potentials and fitted by the Boltzmann
483 Sigmoidal function:

$$484 \frac{I}{I_{max}} = \frac{1}{1 + \exp\left(\frac{V_{1/2} - V_m}{k}\right)}$$

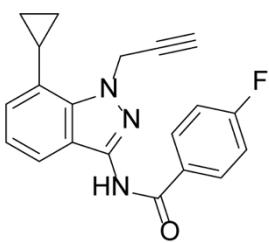
485 Where I refers to the tail current, V_{1/2} refers to the voltage for half-maximal activation, V_m
486 refers to the test potential, and k refers to the slope of the curve.

487 Whole-cell K⁺ currents of the M-channel/KCNQ2/KCNQ4 with CLM142/retigabine were
488 recorded at room temperature using HEKA EPC-10 amplifier. The series resistance (Rs) was

489 70-80% compensated using the internal compensation program of the amplifier. The patch
490 pipettes (World Precision Instruments) were pulled to a resistance of 3-5 M Ω . The pipette
491 solution consisted of 140 mM KCl, 3 mM MgCl₂, 5 mM EGTA, 5 mM K₂ATP and 10 mM
492 HEPES (pH 7.3, adjusted with KOH, all from Sigma-Aldrich). The extracellular solution
493 contained 145 mM NaCl, 5 mM KCl, 1 mM CaCl₂, 3 mM MgCl₂, 10 mM D-glucose and 10
494 mM HEPES (pH 7.3, adjusted with NaOH).

495 To construct the M-channel/KCNQ2/KCNQ4 activation curves, cells were held at -80 mV
496 and currents were elicited by a series of 2,000-ms depolarizing steps from -90 mV to +80
497 mV in 10-mV increments, followed by -120 mV to record tail currents. Activation curves
498 were fitted by the Boltzmann equation: $I_{tail} = (I_{max} - I_{min})/[1 + \exp(V_{1/2} - V_m)/k] + I_{min}$,
499 where I_{tail} is the normalized tail current recorded immediately after stepping to -120 mV from
500 different preceding V_m levels, I_{max} and I_{min} are the maximum and minimum normalized tail
501 currents, respectively, $V_{1/2}$ is the half-maximal activation voltage, and k is the slope factor of
502 the curve. Also, this protocol was used to study the M-channel channel activation kinetics.
503 The M-channel deactivation kinetics were measured by tail currents elicited by a
504 hyperpolarizing voltage of -120 mV for 1,200 ms after a 2,000-ms depolarized potential of
505 +50 mV, with a holding potential of -80 mV. The activation and deactivation traces were
506 fitted to a single exponential function: $I = A \times [1 - \exp(-t/\tau)] + I_0$, where I is the current, I_0
507 is the steady-state amplitude of the current, A is the difference between the peak and steady-
508 state current amplitudes; t is time; and τ is the time constant. The concentration-response
509 curves were analyzed by three parameters logistics regression model. For recordings of
510 KCNQ4 channel currents, pipettes were filled with the intracellular solution of the following
511 composition: 150 mM KCl, 3 mM MgCl₂, 5 mM EGTA and 10 mM HEPES (pH 7.3, adjusted

512 with KOH). Extracellular solution contained 145 mM NaCl, 5 mM KCl, 1 mM CaCl₂, 3 mM
513 MgCl₂ and 10 mM HEPES (pH 7.4, adjusted with NaOH). The methods used to record
514 KCNQ4 were the same as those used to record M-channel currents.
515 Processed by Clampfit 10.4, patch clamp data were analyzed in GraphPad Prism 8.0.2. An
516 unpaired two-tailed Student's *t*-test was used to determine significance between groups. n.s.
517 indicates no significance. *p < 0.05, **p < 0.01, ***p < 0.001, and ****p < 0.0001. All data
518 are presented as mean \pm SEM.

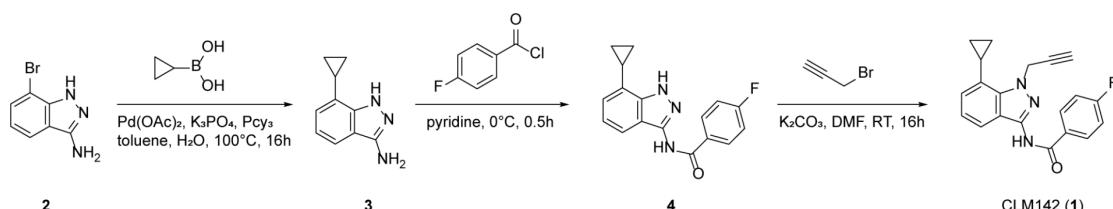

519

520 **Inside-out single-channel recordings**

521 Inside-out recordings were performed 48 hours after transfection using EPC10-USB
522 amplifier (HEKA). Patch recordings were digitized at 10 kHz and filtered at 2 kHz. The bath
523 solution contained 175 mM KCl, 4 mM MgCl₂, and 10 mM HEPES (pH 7.4, adjusted with
524 KOH). The pipette solution was 150 mM NaCl, 5 mM KCl, 1 mM MgCl₂, and 10 mM
525 HEPES (pH 7.4, adjusted with NaOH). The patch pipette was pulled to a resistance of 8–12
526 M Ω . Single-channel statistical analysis was conducted by Clampfit 10.4 software. All-point
527 histograms were fitted with Gaussian functions to obtain the mean single-channel current (i).
528 Single-channel conductance (γ) was obtained by the equation $\gamma = i/(V - V_E)$, where V is the
529 test potential and V_E is the reversal potential of potassium.

530

531 **Synthetic scheme of CLM142**



532

CLM142 (1)

533

534 Synthetic Route:

535

2

3

4

CLM142 (1)

536 Step 1: 7-cyclopropyl-1H-indazol-3-amine

537 7-bromo-1H-indazol-3-amine (**2**, 2.00 g, 9.43 mmol) was dissolved in toluene (20 mL) and
538 water (6 mL). Cyclopropylboronic acid (5.67 g, 66.01 mmol), tricyclohexylphosphine (0.53
539 g, 1.89 mmol), potassium phosphate (6.01 g, 28.29 mmol) and palladium acetate (0.42 g,
540 1.89 mmol) were added sequentially. Under nitrogen protection, the mixture was heated to
541 100 °C and stirred for 16 hours. TLC (PE:EA = 1:1, Rf = 0.1) indicated the complete
542 consumption of the starting material. The reaction solution was cooled to room
543 temperature, filtered through Celite, quenched with water (10 mL), and extracted with ethyl
544 acetate (10 mL × 3). The combined organic phases were washed with saturated brine (20
545 mL × 3), dried over anhydrous sodium sulfate, and concentrated. The crude product was
546 purified by silica gel column chromatography (PE:EA = 2:1 - 2:3) to afford the title
547 compound **3** as a white solid (0.69 g, yield 42%).
548 LC-MS: m/z = 174.2 [M+H]⁺

549 Step 2: N-(7-cyclopropyl-1H-indazol-3-yl)-4-fluorobenzamide

550 Compound **3** (380 mg, 2.19 mmol) was dissolved in pyridine (2 mL), cooled to 0 °C, and 4-
551 fluorobenzoyl chloride (347 mg, 2.19 mmol) was added dropwise. The mixture was stirred
552 at this temperature for 30 minutes. TLC (PE:EA = 1:1, R_f = 0.4) showed the complete
553 reaction of the starting material. The reaction was quenched with water (10 mL) and
554 extracted with ethyl acetate (10 mL × 3). The combined organic phases were washed with
555 saturated brine (20 mL × 3), dried over anhydrous sodium sulfate, and concentrated. The
556 crude product was purified by silica gel column chromatography (PE:EA = 5:1 - 2:1) to
557 obtain the title Compound **4** as a brown solid (325 mg, yield 50%).

558 LC-MS: m/z = 296.1 [M+H]⁺

559 Step 3: N-(7-cyclopropyl-1-(prop-2-yn-1-yl)-1H-indazol-3-yl)-4-fluorobenzamide

560 Compound **4** (80 mg, 0.27 mmol) was dissolved in N,N-dimethylformamide (2 mL). 3-
561 bromopropyne (39 mg, 0.33 mmol) and potassium carbonate (75 mg, 0.54 mmol) were
562 added at room temperature, and the mixture was stirred at room temperature for 16 hours.
563 TLC (PE:EA = 2:1, R_f = 0.4) indicated a small amount of starting material remaining. The
564 reaction was quenched with water (10 mL) and extracted with ethyl acetate (10 mL × 3).
565 The combined organic phases were washed with saturated brine (20 mL × 3), dried over
566 anhydrous sodium sulfate, and concentrated. Purification by preparative HPLC (TFA) gave
567 the title compound CLM142 (**1**) as a white solid (18 mg, yield 20%).

568 LC-MS: m/z = 334.2 [M+H]⁺

569 HPLC:99.10% purity, 220 nm

Wang *et al*

570 ^1H NMR (400 MHz, *DMSO-d*6) δ 10.88 (s, 1H), 8.15 (dd, J = 8.4, 5.6 Hz, 2H), 7.53 (d, J =
571 8.4 Hz, 1H), 7.39 (t, J = 8.8 Hz, 2H), 7.17 (d, J = 7.2 Hz, 1H), 7.04 (t, J = 8.0 Hz, 1H), 5.56
572 (d, J = 1.6 Hz, 2H), 3.44 (s, 1H), 2.49-2.44 (m, 1H), 1.10-1.05 (m, 2H), 0.89-0.83 (m, 2H).

573

574 REFERENCES AND NOTES

- 575 1. W.-P. Yang *et al.*, Functional expression of two KvLQT1-related potassium
576 channels responsible for an inherited idiopathic epilepsy. *Journal of Biological
577 Chemistry* **273**, 19419-19423 (1998).
- 578 2. H. S. Wang *et al.*, KCNQ2 and KCNQ3 potassium channel subunits: molecular
579 correlates of the M-channel. *Science* **282**, 1890-1893 (1998).
- 580 3. B. C. Schroeder, C. Kubisch, V. Stein, T. J. Jentsch, Moderate loss of function of
581 cyclic-AMP-modulated KCNQ2/KCNQ3 K⁺ channels causes epilepsy. *Nature* **396**,
582 687-690 (1998).
- 583 4. D. A. Brown, P. R. Adams, Muscarinic suppression of a novel voltage-sensitive K⁺
584 current in a vertebrate neurone. *Nature* **283**, 673-676 (1980).
- 585 5. T. J. Jentsch, Neuronal KCNQ potassium channels: physiology and role in disease.
586 *Nat Rev Neurosci* **1**, 21-30 (2000).
- 587 6. S. Maljevic, T. V. Wuttke, H. Lerche, Nervous system KV7 disorders: breakdown
588 of a subthreshold brake. *J Physiol* **586**, 1791-1801 (2008).
- 589 7. N. V. Marrion, Control of M-current. *Annu Rev Physiol* **59**, 483-504 (1997).
- 590 8. P. Delmas, D. A. Brown, Pathways modulating neural KCNQ/M (Kv7) potassium
591 channels. *Nat Rev Neurosci* **6**, 850-862 (2005).
- 592 9. D. L. Greene, N. Hoshi, Modulation of Kv7 channels and excitability in the brain.
593 *Cell Mol Life Sci* **74**, 495-508 (2017).
- 594 10. B. P. Bean, The action potential in mammalian central neurons. *Nat Rev Neurosci* **8**,
595 451-465 (2007).
- 596 11. C. Yue, Y. Yaari, KCNQ/M channels control spike afterdepolarization and burst
597 generation in hippocampal neurons. *J Neurosci* **24**, 4614-4624 (2004).
- 598 12. E. C. Cooper *et al.*, Colocalization and coassembly of two human brain M-type
599 potassium channel subunits that are mutated in epilepsy. *Proceedings of the
600 National Academy of Sciences* **97**, 4914-4919 (2000).
- 601 13. N. A. Singh *et al.*, A novel potassium channel gene, KCNQ2, is mutated in an
602 inherited epilepsy of newborns. *Nat Genet* **18**, 25-29 (1998).
- 603 14. C. Biervert *et al.*, A potassium channel mutation in neonatal human epilepsy.
604 *Science* **279**, 403-406 (1998).
- 605 15. C. Charlier *et al.*, A pore mutation in a novel KQT-like potassium channel gene in
606 an idiopathic epilepsy family. *Nat Genet* **18**, 53-55 (1998).
- 607 16. N. Tinel, I. Lauritzen, C. Chouabe, M. Lazdunski, M. Borsotto, The KCNQ2
608 potassium channel: splice variants, functional and developmental expression. Brain
609 localization and comparison with KCNQ3. *FEBS Lett* **438**, 171-176 (1998).
- 610 17. M. Schwake, M. Pusch, T. Kharkovets, T. J. Jentsch, Surface expression and single
611 channel properties of KCNQ2/KCNQ3, M-type K⁺ channels involved in epilepsy. *J
612 Biol Chem* **275**, 13343-13348 (2000).
- 613 18. W. P. Yang *et al.*, Functional expression of two KvLQT1-related potassium
614 channels responsible for an inherited idiopathic epilepsy. *J Biol Chem* **273**, 19419-
615 19423 (1998).
- 616 19. B. E. Grinton *et al.*, Familial neonatal seizures in 36 families: Clinical and genetic
617 features correlate with outcome. *Epilepsia* **56**, 1071-1080 (2015).

618 20. F. Zara *et al.*, Genetic testing in benign familial epilepsies of the first year of life:
619 clinical and diagnostic significance. *Epilepsia* **54**, 425-436 (2013).

620 21. K. Dedek *et al.*, Myokymia and neonatal epilepsy caused by a mutation in the
621 voltage sensor of the KCNQ2 K⁺ channel. *Proc Natl Acad Sci U S A* **98**, 12272-
622 12277 (2001).

623 22. N. A. Singh *et al.*, KCNQ2 and KCNQ3 potassium channel genes in benign familial
624 neonatal convulsions: expansion of the functional and mutation spectrum. *Brain*
625 **126**, 2726-2737 (2003).

626 23. N. Trump *et al.*, Improving diagnosis and broadening the phenotypes in early-onset
627 seizure and severe developmental delay disorders through gene panel analysis. *J
628 Med Genet* **53**, 310-317 (2016).

629 24. E. Miraglia del Giudice *et al.*, Benign familial neonatal convulsions (BFNC)
630 resulting from mutation of the KCNQ2 voltage sensor. *Eur J Hum Genet* **8**, 994-997
631 (2000).

632 25. T. S. Surti, L. Huang, Y. N. Jan, L. Y. Jan, E. C. Cooper, Identification by mass
633 spectrometry and functional characterization of two phosphorylation sites of
634 KCNQ2/KCNQ3 channels. *Proc Natl Acad Sci U S A* **102**, 17828-17833 (2005).

635 26. S. Hirose *et al.*, A novel mutation of KCNQ3 (c.925T-->C) in a Japanese family
636 with benign familial neonatal convulsions. *Ann Neurol* **47**, 822-826 (2000).

637 27. C. Biervert *et al.*, A potassium channel mutation in neonatal human epilepsy.
638 *Science* **279**, 403-406 (1998).

639 28. F. Miceli, M. V. Soldovieri, S. Weckhuysen, E. Cooper, M. Taglialatela, KCNQ2-
640 related disorders. (2022).

641 29. S. Weckhuysen *et al.*, KCNQ2 encephalopathy: emerging phenotype of a neonatal
642 epileptic encephalopathy. *Annals of neurology* **71**, 15-25 (2012).

643 30. S. Dimassi *et al.*, Whole-exome sequencing improves the diagnosis yield in
644 sporadic infantile spasm syndrome. *Clin Genet* **89**, 198-204 (2016).

645 31. R. Borgatti *et al.*, A novel mutation in KCNQ2 associated with BFNC, drug
646 resistant epilepsy, and mental retardation. *Neurology* **63**, 57-65 (2004).

647 32. M. Kato *et al.*, Clinical spectrum of early onset epileptic encephalopathies caused
648 by KCNQ2 mutation. *Epilepsia* **54**, 1282-1287 (2013).

649 33. S. Syrbe *et al.*, De novo loss-or gain-of-function mutations in KCNA2 cause
650 epileptic encephalopathy. *Nat Genet* **47**, 393-399 (2015).

651 34. A. Nissenkorn *et al.*, Donepezil as a new therapeutic potential in KCNQ2-and
652 KCNQ3-related autism. *Front Cell Neurosci* **18**, 1380442 (2024).

653 35. M. Siracusano, C. Marcovecchio, A. Riccioni, C. Dante, L. Mazzone, Autism
654 spectrum disorder and a De Novo Kcnq2 gene mutation: a case report. *Pediatric
655 Reports* **14**, 200-206 (2022).

656 36. K. Springer, N. Varghese, A. V. Tzingounis, Flexible Stoichiometry: Implications
657 for KCNQ2- and KCNQ3-Associated Neurodevelopmental Disorders. *Dev
658 Neurosci* **43**, 191-200 (2021).

659 37. T. T. Sands *et al.*, Autism and developmental disability caused by KCNQ3 gain-of-
660 function variants. *Annals of neurology* **86**, 181-192 (2019).

661 38. T. S. Surti, L. Y. Jan, A potassium channel, the M-channel, as a therapeutic target.
662 *Curr Opin Investig Drugs* **6**, 704-711 (2005).

663 39. X. Li *et al.*, Molecular basis for ligand activation of the human KCNQ2 channel.
664 *Cell Res* **31**, 52-61 (2021).

665 40. J. K. Hadley *et al.*, Stoichiometry of expressed KCNQ2/KCNQ3 potassium
666 channels and subunit composition of native ganglionic M channels deduced from
667 block by tetraethylammonium. *J Neurosci* **23**, 5012-5019 (2003).

668 41. A. P. Stewart *et al.*, The Kv7.2/Kv7.3 heterotetramer assembles with a random
669 subunit arrangement. *J Biol Chem* **287**, 11870-11877 (2012).

670 42. M. S. Shapiro *et al.*, Reconstitution of muscarinic modulation of the
671 KCNQ2/KCNQ3 K(+) channels that underlie the neuronal M current. *J Neurosci*
672 **20**, 1710-1721 (2000).

673 43. J. Sun, R. MacKinnon, Cryo-EM Structure of a KCNQ1/CaM Complex Reveals
674 Insights into Congenital Long QT Syndrome. *Cell* **169**, 1042-1050 e1049 (2017).

675 44. J. Sun, R. MacKinnon, Structural Basis of Human KCNQ1 Modulation and Gating.
676 *Cell* **180**, 340-347 e349 (2020).

677 45. T. Li *et al.*, Structural Basis for the Modulation of Human KCNQ4 by Small-
678 Molecule Drugs. *Mol Cell* **81**, 25-37 e24 (2021).

679 46. Y. Zheng *et al.*, Structural insights into the lipid and ligand regulation of a human
680 neuronal KCNQ channel. *Neuron* **110**, 237-247 e234 (2022).

681 47. Z. Yang *et al.*, Phosphatidylinositol 4,5-bisphosphate activation mechanism of
682 human KCNQ5. *Proc Natl Acad Sci U S A* **122**, e2416738122 (2025).

683 48. S. Zhang *et al.*, A small-molecule activation mechanism that directly opens the
684 KCNQ2 channel. *Nature Chemical Biology* **20**, 847-856 (2024).

685 49. N. D. Yang *et al.*, Electro-mechanical coupling of KCNQ channels is a target of
686 epilepsy-associated mutations and retigabine. *Sci Adv* **8**, eab03625 (2022).

687 50. V. Telezhkin, D. A. Brown, A. J. Gibb, Distinct subunit contributions to the
688 activation of M-type potassium channels by PI(4,5)P2. *J Gen Physiol* **140**, 41-53
689 (2012).

690 51. Y. Liu, X. Bian, K. Wang, Pharmacological Activation of Neuronal Voltage-Gated
691 Kv7/KCNQ/M-Channels for Potential Therapy of Epilepsy and Pain. *Handb Exp
692 Pharmacol* **267**, 231-251 (2021).

693 52. V. Barrese, J. B. Stott, I. A. Greenwood, KCNQ-Encoded Potassium Channels as
694 Therapeutic Targets. *Annu Rev Pharmacol Toxicol* **58**, 625-648 (2018).

695 53. M. J. Gunthorpe, C. H. Large, R. Sankar, The mechanism of action of retigabine
696 (ezogabine), a first-in-class K⁺ channel opener for the treatment of epilepsy.
697 *Epilepsia* **53**, 412-424 (2012).

698 54. L. Tatulian, P. Delmas, F. C. Abogadie, D. A. Brown, Activation of expressed
699 KCNQ potassium currents and native neuronal M-type potassium currents by the
700 anti-convulsant drug retigabine. *J Neurosci* **21**, 5535-5545 (2001).

701 55. J. E. Linley, L. Pettinger, D. Huang, N. Gamper, M channel enhancers and
702 physiological M channel block. *J Physiol* **590**, 793-807 (2012).

703 56. R. J. Porter, V. Nohria, C. Rundfeldt, Retigabine. *Neurotherapeutics* **4**, 149-154
704 (2007).

705 57. J. A. French *et al.*, Randomized, double-blind, placebo-controlled trial of ezogabine
706 (retigabine) in partial epilepsy. *Neurology* **76**, 1555-1563 (2011).

707 58. C. Rundfeldt, The new anticonvulsant retigabine (D-23129) acts as an opener of K⁺
708 channels in neuronal cells. *Eur J Pharmacol* **336**, 243-249 (1997).

709 59. N. Brickel, P. Gandhi, K. VanLandingham, J. Hammond, S. DeRossett, The urinary
710 safety profile and secondary renal effects of retigabine (ezogabine): a first-in-class
711 antiepileptic drug that targets KCNQ (K(v)7) potassium channels. *Epilepsia* **53**,
712 606-612 (2012).

713 60. J. Daniluk, J. A. Cooper, M. Stender, A. Kowalczyk, Survey of Physicians'
714 Understanding of Specific Risks Associated with Retigabine. *Drugs Real World*
715 *Outcomes* **3**, 155-163 (2016).

716 61. M. A. Faulkner, R. A. Burke, Safety profile of two novel antiepileptic agents
717 approved for the treatment of refractory partial seizures: ezogabine (retigabine) and
718 perampanel. *Expert Opin Drug Saf* **12**, 847-855 (2013).

719 62. Y. Jiang *et al.*, X-ray structure of a voltage-dependent K⁺ channel. *Nature* **423**, 33-
720 41 (2003).

721 63. M. Schwake, M. Pusch, T. Kharkovets, T. J. Jentsch, Surface expression and single
722 channel properties of KCNQ2/KCNQ3, M-type K⁺ channels involved in epilepsy.
723 *Journal of Biological Chemistry* **275**, 13343-13348 (2000).

724 64. X. Tao, A. Lee, W. Limapichat, D. A. Dougherty, R. MacKinnon, A gating charge
725 transfer center in voltage sensors. *Science* **328**, 67-73 (2010).

726 65. X. Zhang, N. Yan, The conformational shifts of the voltage sensing domains
727 between Na(v)Rh and Na(v)Ab. *Cell Res* **23**, 444-447 (2013).

728 66. M. A. Zayzman, J. Cui, PIP2 regulation of KCNQ channels: biophysical and
729 molecular mechanisms for lipid modulation of voltage-dependent gating. *Front
730 Physiol* **5**, 195 (2014).

731 67. Y. Li, N. Gamper, D. W. Hilgemann, M. S. Shapiro, Regulation of Kv7 (KCNQ)
732 K⁺ channel open probability by phosphatidylinositol 4,5-bisphosphate. *J Neurosci*
733 **25**, 9825-9835 (2005).

734 68. M. A. Zayzman *et al.*, Kv7.1 ion channels require a lipid to couple voltage sensing
735 to pore opening. *Proc Natl Acad Sci U S A* **110**, 13180-13185 (2013).

736 69. P. Delmas, D. A. Brown, Pathways modulating neural KCNQ/M (Kv7) potassium
737 channels. *Nat Rev Neurosci* **6**, 850-862 (2005).

738 70. J. Li *et al.*, Small molecule inhibits KCNQ channels with a non-blocking
739 mechanism. *Nature Chemical Biology*, 1-10 (2025).

740 71. N. Dirkx, F. Miceli, M. Taglialatela, S. Weckhuysen, The role of Kv7.2 in
741 neurodevelopment: insights and gaps in our understanding. *Frontiers in Physiology*
742 **11**, 570588 (2020).

743 72. J. K. Hadley *et al.*, Stoichiometry of expressed KCNQ2/KCNQ3 potassium
744 channels and subunit composition of native ganglionic M channels deduced from
745 block by tetraethylammonium. *Journal of Neuroscience* **23**, 5012-5019 (2003).

746 73. T. Kanaumi *et al.*, Developmental changes in KCNQ2 and KCNQ3 expression in
747 human brain: possible contribution to the age-dependent etiology of benign familial
748 neonatal convulsions. *Brain and Development* **30**, 362-369 (2008).

749 74. F. Klinger, G. Gould, S. Boehm, M. S. Shapiro, Distribution of M-channel subunits
750 KCNQ2 and KCNQ3 in rat hippocampus. *Neuroimage* **58**, 761-769 (2011).

751 75. T. Kanaumi *et al.*, Developmental changes in KCNQ2 and KCNQ3 expression in
752 human brain: possible contribution to the age-dependent etiology of benign familial
753 neonatal convulsions. *Brain Dev* **30**, 362-369 (2008).

754 76. J. D. Osteen *et al.*, Allosteric gating mechanism underlies the flexible gating of
755 KCNQ1 potassium channels. *Proc Natl Acad Sci U S A* **109**, 7103-7108 (2012).
756 77. A. Zahra, R. Liu, J. Wang, J. Wu, Identifying the mechanism of action of the Kv7
757 channel opener, retigabine in the treatment of epilepsy. *Neurol Sci* **44**, 3819-3825
758 (2023).
759 78. G. Orhan, T. V. Wuttke, A. T. Nies, M. Schwab, H. Lerche, Retigabine/Ezogabine,
760 a KCNQ/K(V)7 channel opener: pharmacological and clinical data. *Expert Opin
761 Pharmacother* **13**, 1807-1816 (2012).
762 79. A. Goehring *et al.*, Screening and large-scale expression of membrane proteins in
763 mammalian cells for structural studies. *Nat Protoc* **9**, 2574-2585 (2014).
764 80. S. Q. Zheng *et al.*, MotionCor2: anisotropic correction of beam-induced motion for
765 improved cryo-electron microscopy. *Nat Methods* **14**, 331-332 (2017).
766 81. T. Grant, N. Grigorieff, Measuring the optimal exposure for single particle cryo-EM
767 using a 2.6 Å reconstruction of rotavirus VP6. *Elife* **4**, e06980 (2015).
768 82. K. Zhang, Gctf: Real-time CTF determination and correction. *J Struct Biol* **193**, 1-
769 12 (2016).
770 83. A. Punjani, J. L. Rubinstein, D. J. Fleet, M. A. Brubaker, cryoSPARC: algorithms
771 for rapid unsupervised cryo-EM structure determination. *Nat Methods* **14**, 290-296
772 (2017).
773 84. J. Zhu *et al.*, A minority of final stacks yields superior amplitude in single-particle
774 cryo-EM. *Nat. Commun.* **14**, 7822 (2023).
775 85. P. B. Rosenthal, R. Henderson, Optimal determination of particle orientation,
776 absolute hand, and contrast loss in single-particle electron cryomicroscopy. *J Mol
777 Biol* **333**, 721-745 (2003).
778 86. S. Chen *et al.*, High-resolution noise substitution to measure overfitting and validate
779 resolution in 3D structure determination by single particle electron cryomicroscopy.
780 *Ultramicroscopy* **135**, 24-35 (2013).
781 87. M. Varadi *et al.*, AlphaFold Protein Structure Database in 2024: providing structure
782 coverage for over 214 million protein sequences. *Nucleic Acids Res* **52**, D368-D375
783 (2024).
784 88. J. Jumper *et al.*, Highly accurate protein structure prediction with AlphaFold.
785 *Nature* **596**, 583-589 (2021).
786 89. E. F. Pettersen *et al.*, UCSF ChimeraX: Structure visualization for researchers,
787 educators, and developers. *Protein Sci* **30**, 70-82 (2021).
788 90. P. Emsley, B. Lohkamp, W. G. Scott, K. Cowtan, Features and development of
789 Coot. *Acta Crystallogr D Biol Crystallogr* **66**, 486-501 (2010).
790 91. P. D. Adams *et al.*, PHENIX: a comprehensive Python-based system for
791 macromolecular structure solution. *Acta Crystallogr D Biol Crystallogr* **66**, 213-221
792 (2010).
793 92. E. F. Pettersen *et al.*, UCSF ChimeraX: Structure visualization for researchers,
794 educators, and developers. *Protein science* **30**, 70-82 (2021).
795 93. F. Madeira *et al.*, The EMBL-EBI Job Dispatcher sequence analysis tools
796 framework in 2024. *Nucleic acids research* **52**, W521-W525 (2024).
797 94. X. Robert, P. Gouet, Deciphering key features in protein structures with the new
798 ENDscript server. *Nucleic acids research* **42**, W320-W324 (2014).
799

800 **Acknowledgments**

801 We thank the Cryo-EM Facility and the HPC Center of Westlake University for providing
802 data collection and computation support, respectively. We are also thankful for the support
803 of the East China Normal University Multifunctional Platform for Innovation (001).

804 **Funding:** This work was supported by grants from the National Key Research and
805 Development Program of China (2024YFA0916903 to H.S. and 2022YFE0205600 to
806 H.Y.), the National Natural Science Foundation of China (82373792 to H.Y.), the Zhejiang
807 Provincial Natural Science Foundation (DQ24C050001 to H.S.), the Research Center for
808 Industries of the Future (RCIF), Westlake University, the Westlake Education Foundation
809 (to H.S.), and the East China Normal University Medicine and Health Joint Fund
810 (2022JKXYD07001 to H.Y.).

Author contributions: The project was conceived by H.S. Y.W. and Hui Yang performed molecular cloning, protein purification, sample preparation, and cryo-EM micrograph collection. Y.Q. carried out cryo-EM data processing, structure determination, and model building. J.L. identified the CLM142 activator and conducted electrophysiological studies under the supervision of Huaiyu Yang. Y.Y. synthesized the CLM142 molecule. W.H. performed electrophysiological characterization of KCNQ2 and KCNQ3 concatemers and chimeras under the supervision of K.W. G.X. validated the sequences of KCNQ2 and KCNQ3 concatemers using third-generation sequencing data under the supervision of X.W. All authors contributed to data analysis. H.S. and Huaiyu Yang wrote the manuscript with intellectual input from all authors. **Competing interests:** J. Li and H.Y. are inventors of patent application 202311463618.7 that covers the potential usage of CLM142. The authors declare no other competing interests. **Data and materials availability:** Atomic coordinates and EM maps of

823 M-channels reported in this study (M2223^{WT}: XXXX and EMD-XXXXXX; M2223^{apo}:
824 XXXX and EMD-XXXXXX; M2223^{CLM142}: XXXX and EMD-XXXXXX; M2223^{open}: XXXX
825 and EMD-XXXXXX) have been deposited in the Protein Data Bank (<http://www.rcsb.org>)
826 and the Electron Microscopy Data Bank (<https://www.ebi.ac.uk/pdbe/emdb/>).

827

828 **Supplementary Materials**

829 Figs. S1-S17

830 Tables S1-S5

831 References and notes

832

833 **Figure legends**

834 **Fig. 1 | Structural architecture and stoichiometric flexibility of the human M-channel.**

835 (A) Cryo-EM reconstructions of the four distinct M-channel stoichiometries (M2223,
836 M2233, M2323, M2333) with their relative abundances indicated. KCNQ2 and KCNQ3
837 subunits are colored blue and yellow, respectively. (B) Representative cryo-EM density
838 map for the M2223^{apo} configuration. (C) Atomic model corresponding to the map in (B),
839 displayed in three orthogonal views. (D) Differential positioning of the voltage-sensing
840 domains (VSDs) relative to the pore domain (PD) in KCNQ2 versus KCNQ3, illustrated by
841 a comparison of their tilt angles. (E) Structural alignment of M2223^{apo} and KCNQ2
842 homotetramer highlighting the differential positioning of their VSDs. (F) The extracellular
843 loop (ECL) of KCNQ3 is markedly longer than that of KCNQ2, resulting in a pronounced
844 difference in cryo-EM density. (G) High-resolution features that enable unambiguous
845 subunit discrimination, including characteristic side chain densities for Y284, Y226, and
846 F316 in KCNQ2 and T323, C255, and L355 in KCNQ3 within the pore domain. All
847 structure figures are generated in ChimeraX (92).

848

849 **Fig. 2 | Concatemeric KCNQ2/KCNQ3 channels recapitulate wild-type M-**

850 **channel properties.** (A) Left: Whole-cell recording protocol. Right: Representative
851 current traces from wild-type M-channels (KCNQ2/KCNQ3 co-expression). Currents
852 were elicited by 2 s depolarizing steps from -90 to +80 mV in 10 mV increments from
853 a holding potential of -80 mV, followed by a -120 mV tail pulse (250 ms). (B)
854 Schematic representations of the engineered concatemeric constructs with defined
855 KCNQ2 (blue) and KCNQ3 (yellow) subunit stoichiometries. (C) Whole-cell current-

856 voltage (I-V) relationships for the indicated concatemers and wild-type channels. **(D)**
857 Half-maximal activation voltages ($V_{1/2}$) show that all concatemeric channels exhibit
858 significantly hyperpolarized activation compared to KCNQ2 homomers, recapitulating
859 the wild-type M-channel phenotype. **(E)** Representative single-channel current traces
860 for each concatemeric variant. Scale bars: 1.5 pA (vertical), 500 ms (horizontal). **(F)**
861 Summary of unitary current amplitudes from single-channel recordings. **(G)** Summary
862 of open probability (P_o) for each concatemeric channel. Data in **(C)**, **(D)**, **(F)**, and **(G)**
863 are presented as mean \pm SEM ($n \geq 10$). Statistical significance was determined by an
864 unpaired two-tailed Student's *t*-test (* $p < 0.05$, ** $p < 0.01$, *** $p < 0.001$, **** $p <$
865 0.0001).

866

867 **Fig. 3 | The KCNQ3 voltage-sensing domain confers hyperpolarized activation**
868 **kinetics.** **(A)** Structural comparison of the voltage-sensing domains (VSDs) from
869 KCNQ2 (blue) and KCNQ3 (yellow) in the M2223^{apo} structure. The relative positions
870 of the S4 arginine residues (R2–R6) to the charge transfer center (CTC) on S2 reveal
871 that the KCNQ3 VSD adopts a more depolarized conformation. **(B)** Design strategy
872 for chimeric constructs in which the VSDs were swapped between KCNQ2 and
873 KCNQ3, creating VSD₃-PD₂ and VSD₂-PD₃ subunits. **(C)** Whole-cell current-voltage
874 (I-V) relationships for wild-type and chimeric channels. **(D)** Half-maximal activation
875 voltages ($V_{1/2}$) show that channels incorporating the KCNQ3 VSD (VSD₃-PD₂ +
876 KCNQ3) activate at more hyperpolarized potentials, while channels with the KCNQ2
877 VSD (VSD₂-PD₃ + KCNQ2) exhibit depolarized activation akin to KCNQ2

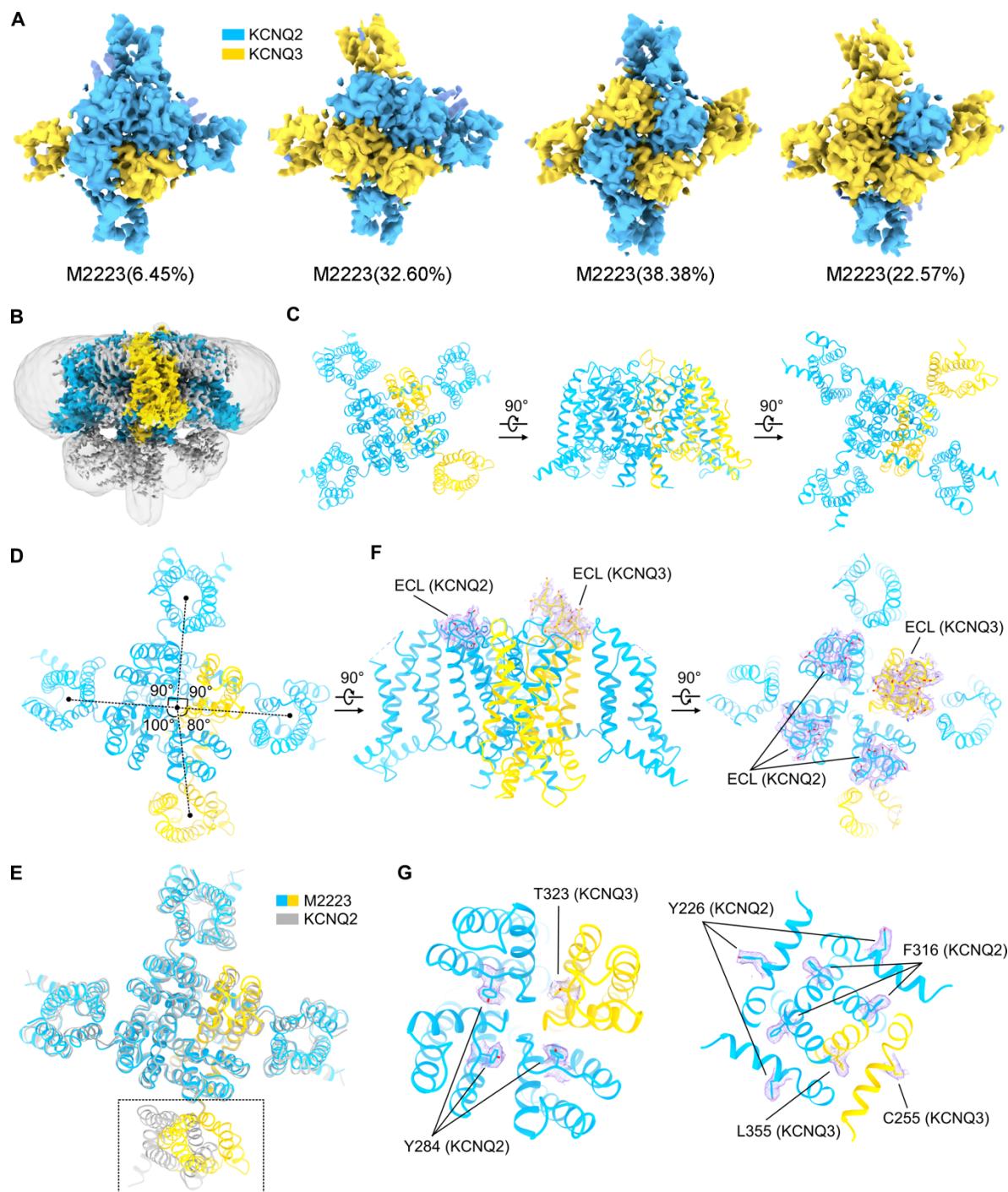
878 homomers. Data are presented as mean \pm SEM ($n \geq 12$). Statistical significance was
879 determined by an unpaired two-tailed Student's *t*-test (**** $p < 0.0001$).

880

881 **Fig. 4 | CLM142 is a potent and selective M-channel activator with superior properties**
882 **to retigabine.** (A) Chemical structure of the novel M-channel activator CLM142, with key
883 functional groups labeled. (B) Chemical structure of the canonical M-channel activator
884 retigabine for comparison. (C) Representative whole-cell current traces from M-channel
885 showing potent activation by 1 μ M CLM142. (D) Left: Concentration-dependent
886 conductance-voltage (G-V) relationships for CLM142. Right: Summary of the
887 concentration-dependent hyperpolarizing shifts in the half-maximal activation voltage
888 ($\Delta V_{1/2}$) induced by CLM142. (E) Left: Concentration-dependent G-V relationships for
889 retigabine. Right: Summary of the $\Delta V_{1/2}$ shifts induced by retigabine. CLM142 exhibits an
890 approximate 10-fold greater potency ($EC_{50} = 0.19 \pm 0.09 \mu$ M) than retigabine ($EC_{50} = 2.16$
891 $\pm 0.15 \mu$ M). (F) G-V curves showing the weak effect of CLM142 on homomeric KCNQ4
892 channels. (G) Quantitative comparison of the $\Delta V_{1/2}$ induced by CLM142 on human M-
893 channel versus KCNQ4, demonstrating CLM142's high selectivity for the neuronal M-
894 channel. Data in (D-G) are presented as mean \pm SEM ($n \geq 5$).

895

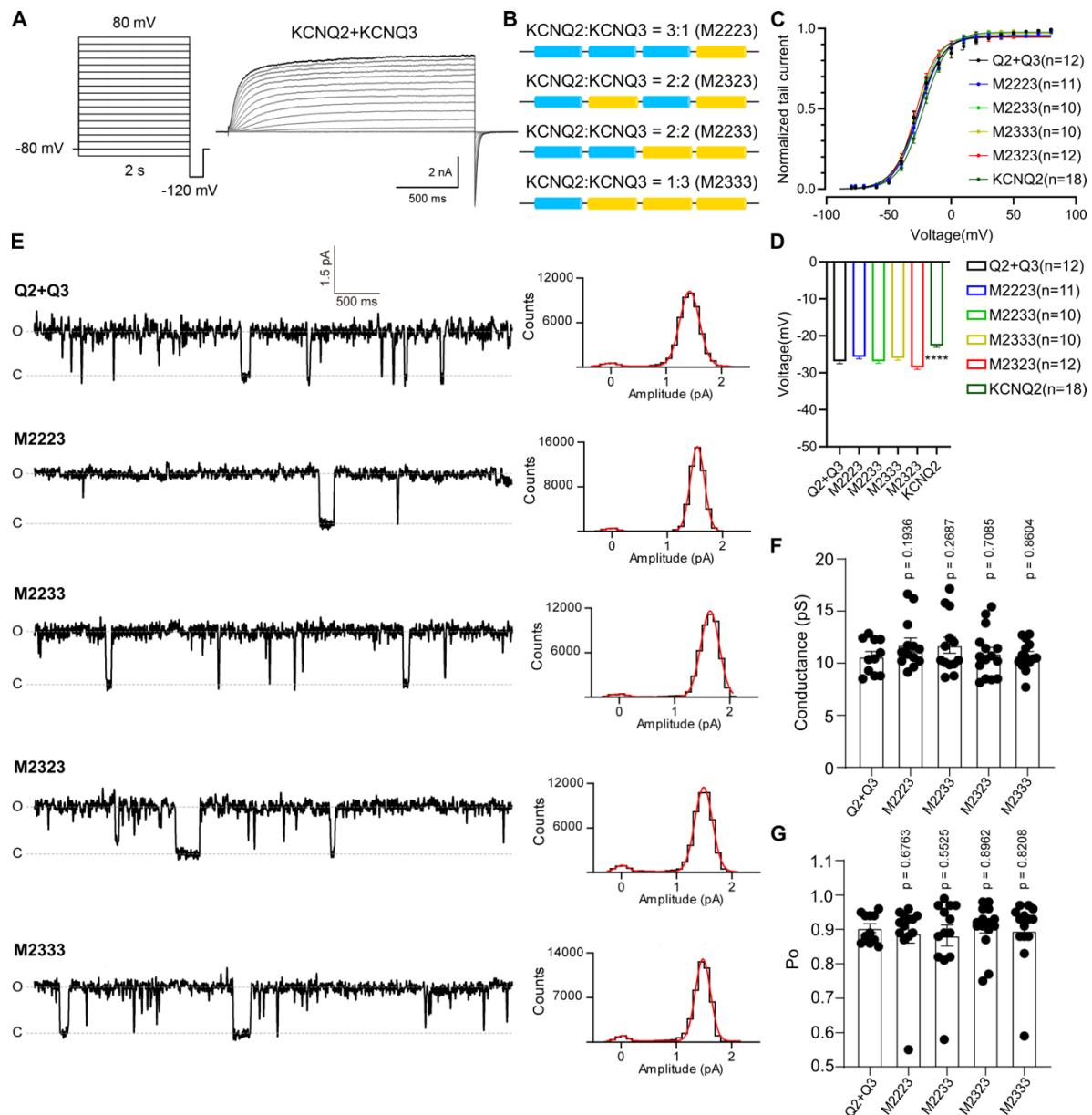
896 **Fig. 5 | Structural basis for potent activation of the M-channel by CLM142.** (A) Cryo-
897 EM density map of the M2223^{CLM142} complex. (B) Atomic model of the
898 M2223^{CLM142} complex, displayed in two orthogonal views. (C) Detailed architecture of the
899 CLM142 binding pocket, located at the interface between the S5 and S6 helices of adjacent
900 subunits. Four drug molecules (black) are present per tetramer. CLM142 forms extensive


901 hydrophobic and π - π stacking interactions with surrounding residues, with the atomic
902 model showing excellent agreement with the high-resolution cryo-EM density. **(D)**
903 Activation mechanism. Binding of CLM142 induces a displacement of the conserved
904 tryptophan (W236 in KCNQ2; W265 in KCNQ3) and a clockwise rotation of the S5 helices
905 (intracellular view), which favors the activation of the pore domain.

906

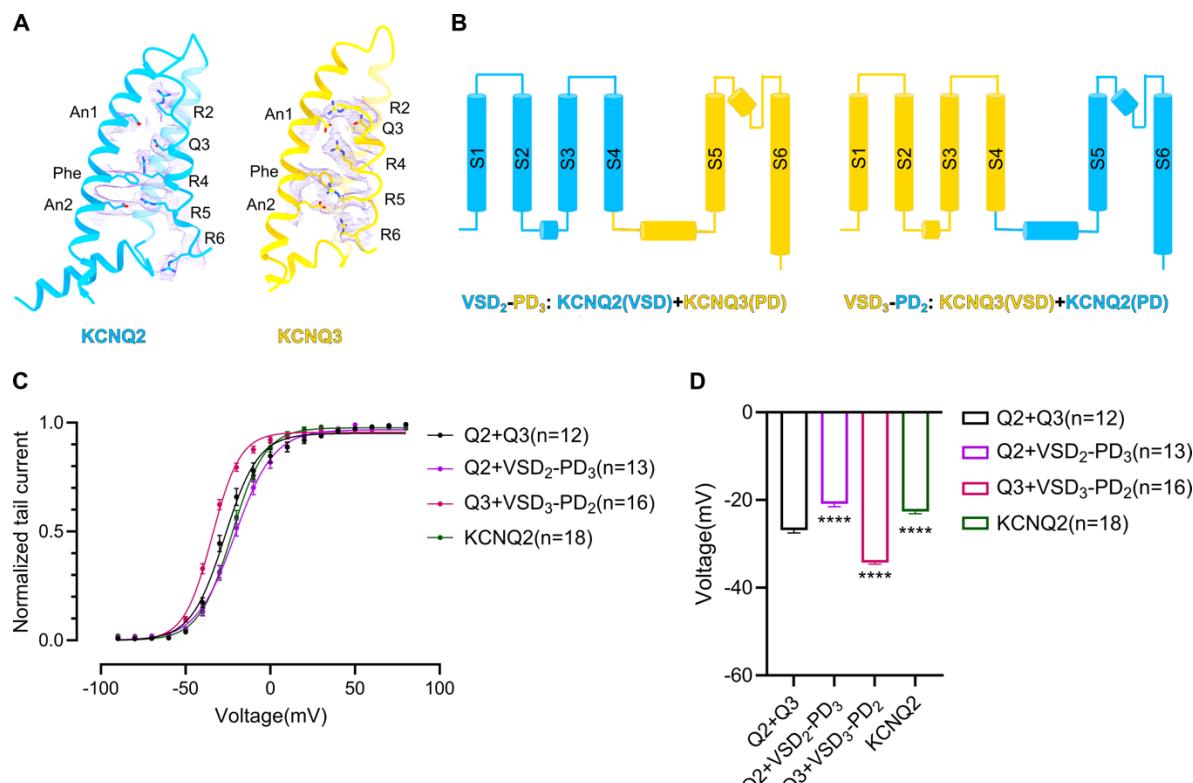
907 **Fig. 6 | Structural elucidation of the PIP₂-dependent M-channel open state. (A)** Cryo-
908 EM density map of the PIP₂-bound M2223^{open} structure. **(B)** Atomic model of the activated,
909 PIP₂-bound M2223^{open} structure, displayed in two orthogonal views. **(C)** Structural
910 visualization of the pore radius in the closed (M2223^{CLM142}, left) and open (M2223^{open},
911 right) states. Key constriction residues are labeled. **(D)** Quantitative analysis of the pore
912 radius along the ion permeation pathway for the closed (blue) and open (red) states,
913 confirming gate opening. **(E)** Conformational changes in the S6 helices during channel
914 activation, highlighting the rearrangement that underlies pore dilation. **(F)** The PIP₂ binding
915 site at the interface of the voltage-sensing domain (VSD), S4-S5 linker, and S6 helix. The
916 negatively charged PIP₂ headgroup is coordinated by a constellation of basic residues
917 (R87/R117, R89/R119, R213/R242, R214/R243, K327/K366; KCNQ2/KCNQ3
918 numbering).

919


920 **Figure 1**

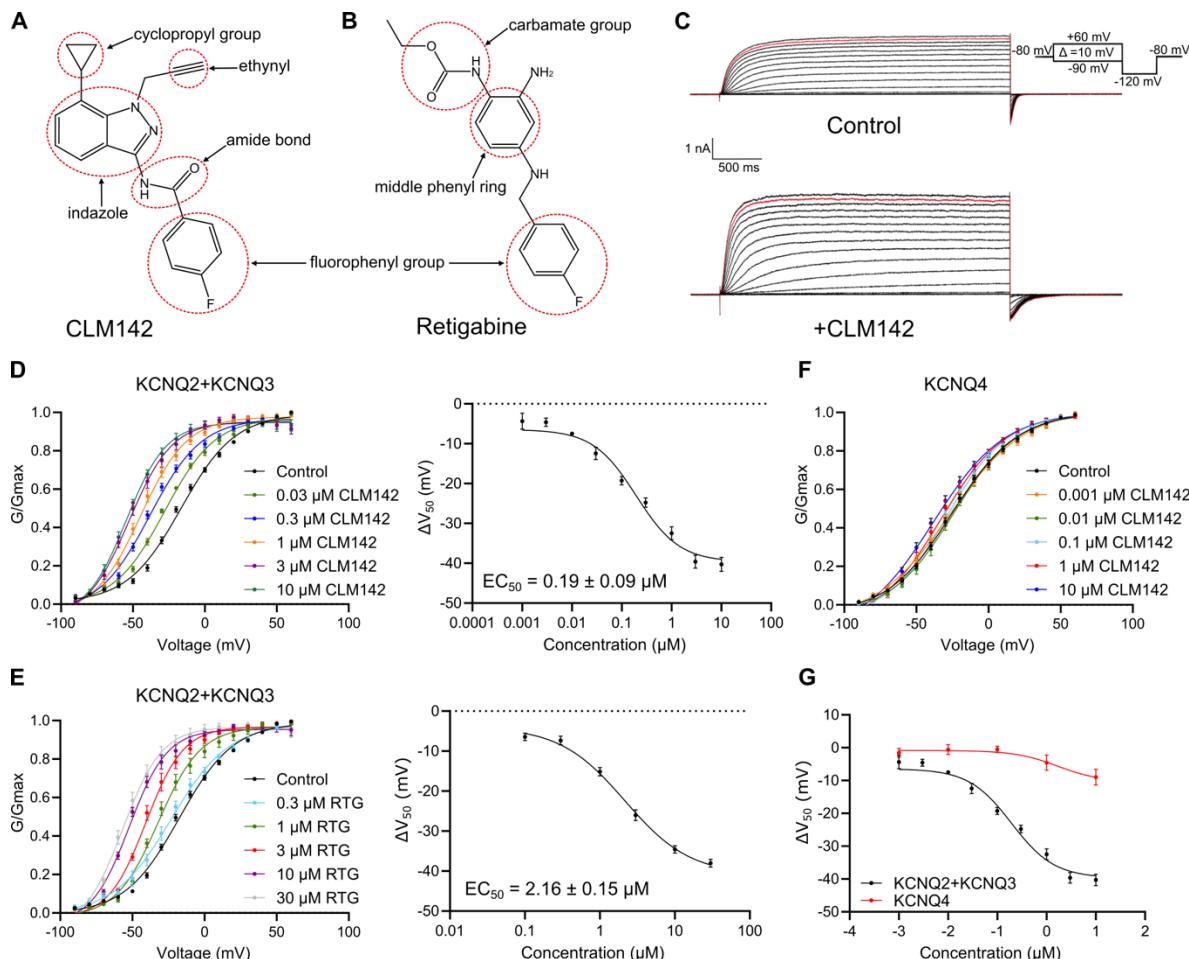
921

922


923 **Figure 2**

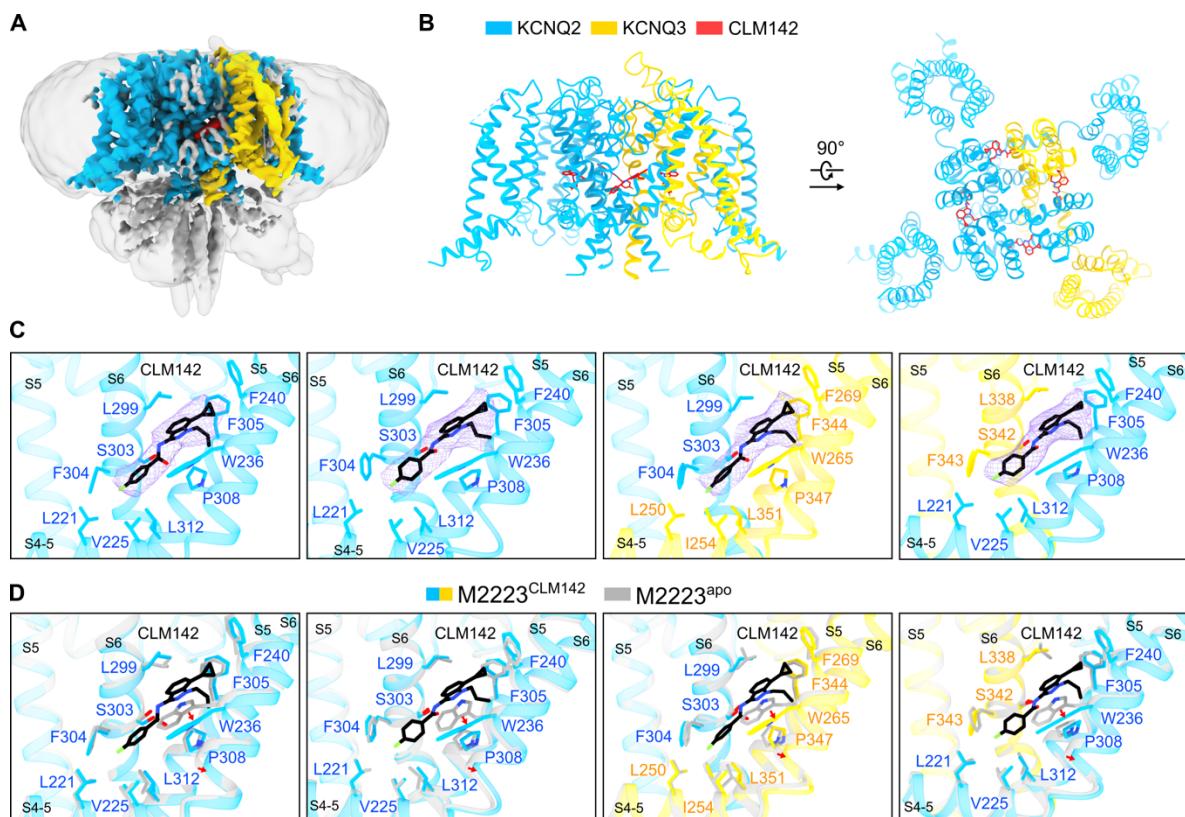
924

925


926 **Figure 3**

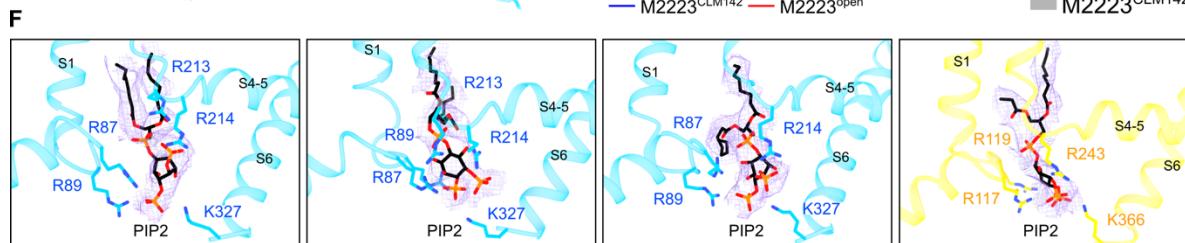
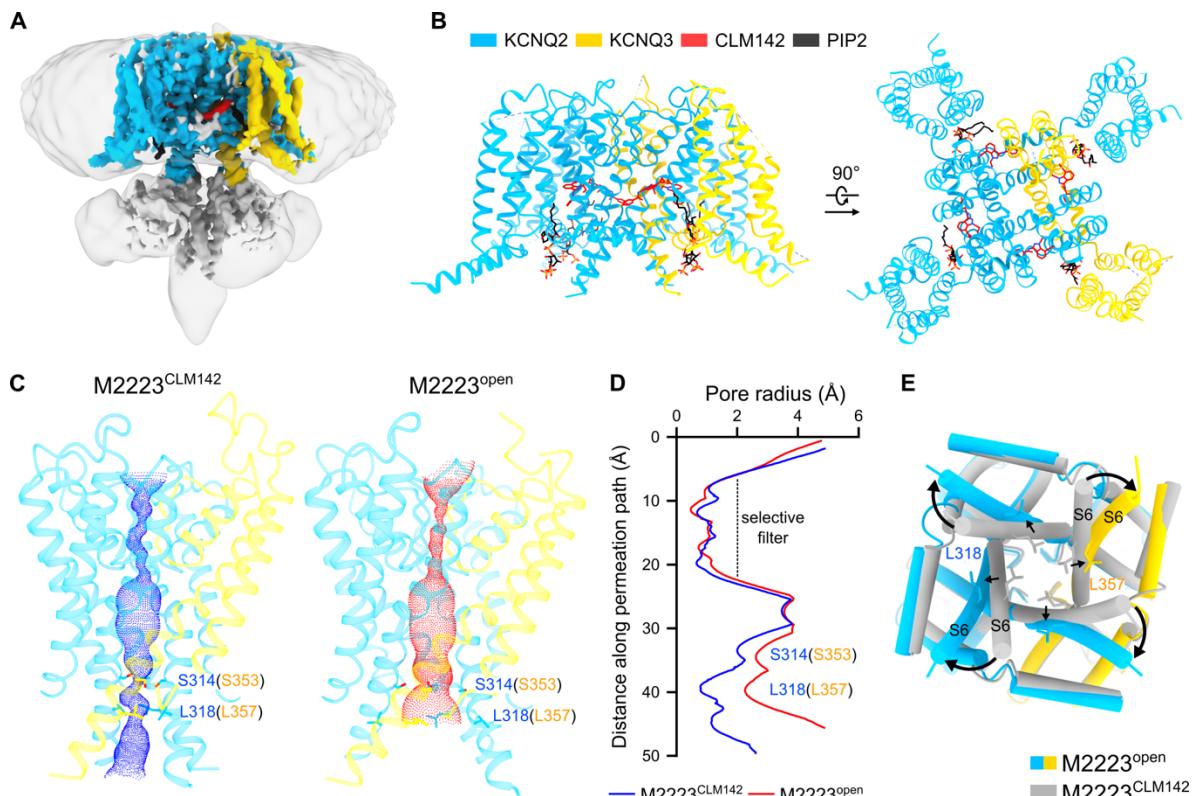
927

928


929 **Figure 4**

930

931



932 **Figure 5**

933

934

935 **Figure 6**

936

937

938

939

940

941

942 **Structural basis for heteromeric assembly and subthreshold**

943 **activation of human M-channel**

944 Yifei Wang, Hui Yang, Yannan Qu , Junnan Li, Wenxin Hou, Kun Wu, Guanglei Xie, Xi
945 Wang, Yangliang Ye, Huaiyu Yang, and Huaizong Shen

946

947 Correspondence to: H. Yang (hyyang@bio.ecnu.edu.cn); H. Shen

948 (shenhuazong@westlake.edu.cn).

949

950

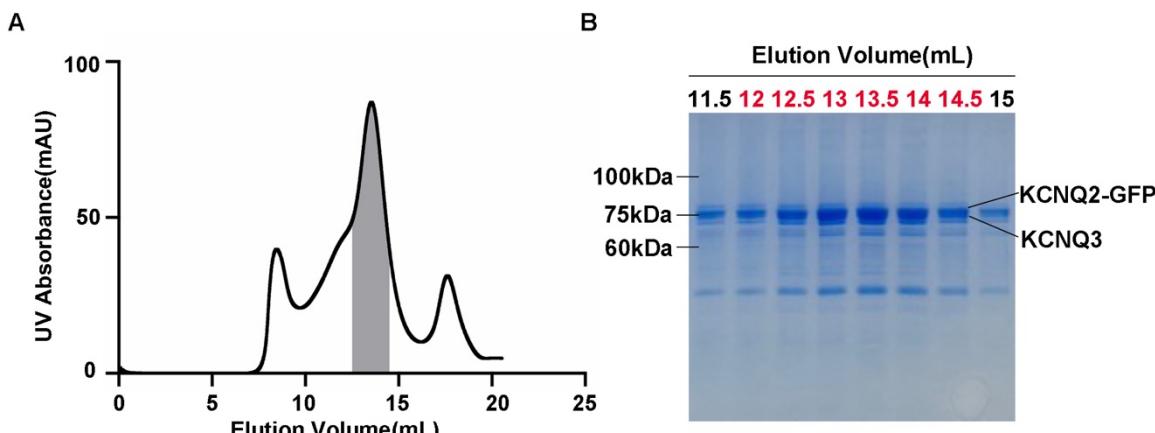
951

952 **This PDF file includes:**

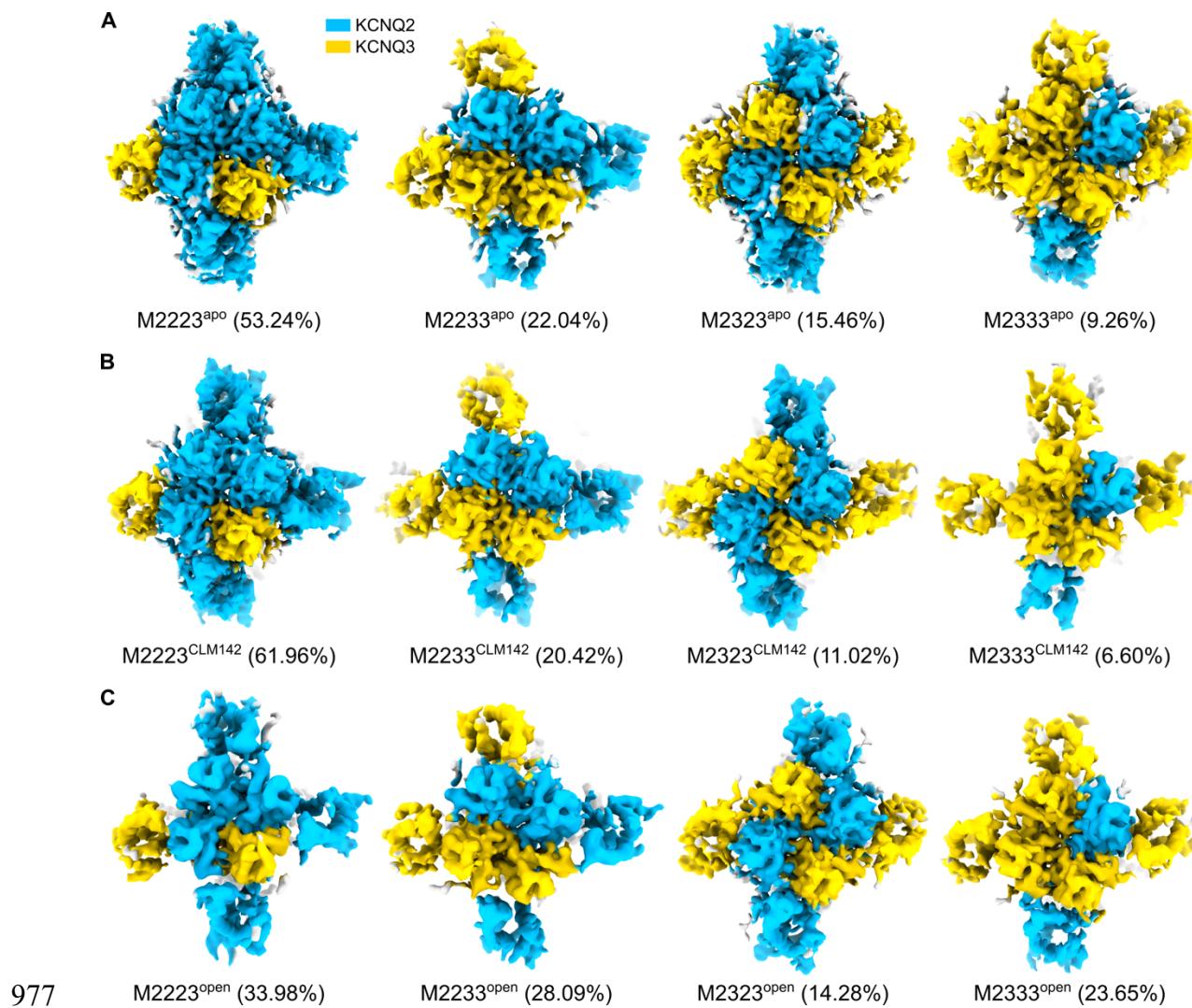
953

954 Figs. S1 to S17

955 Tables S1-S5

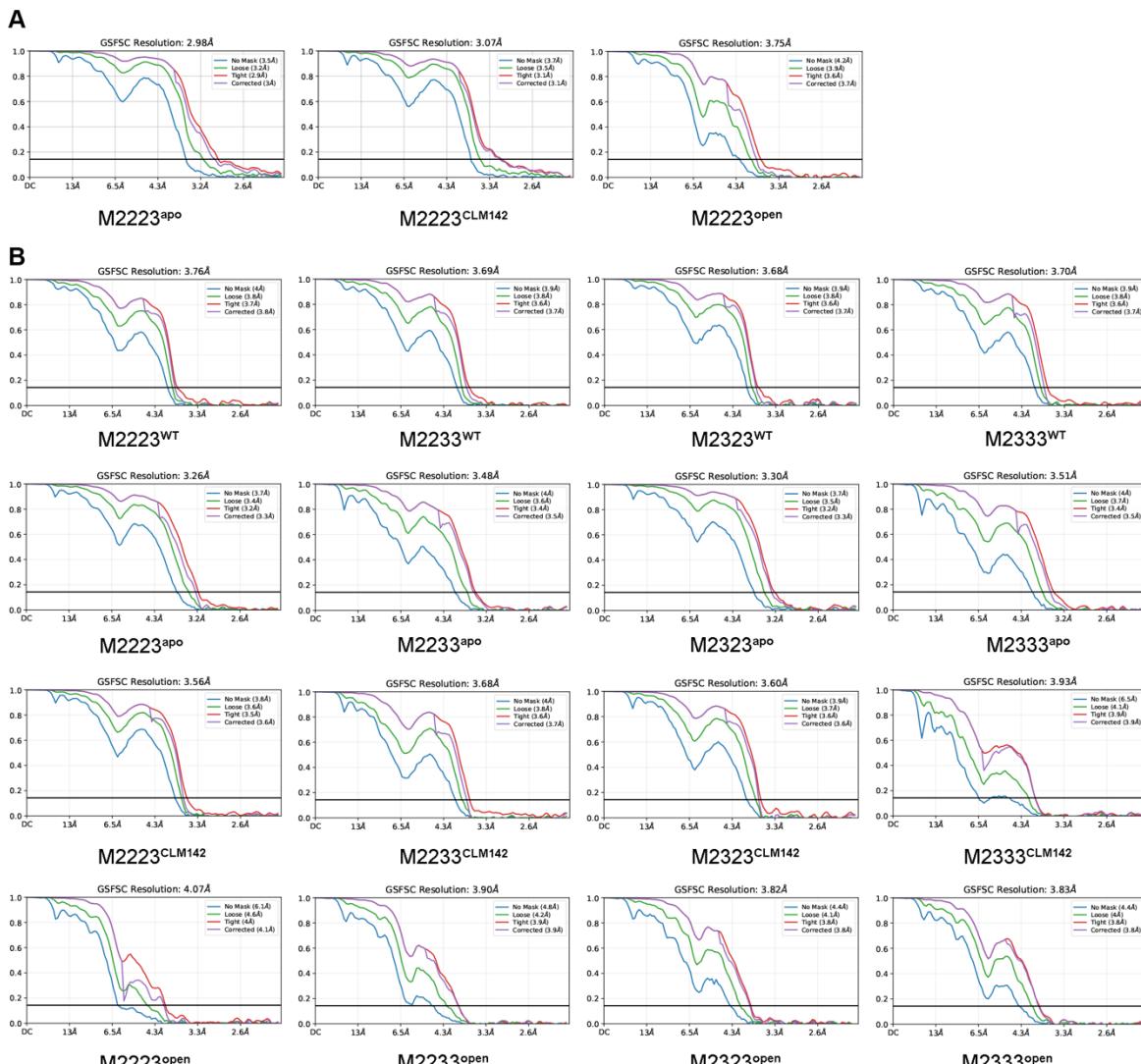

956 References and Notes

957


959 **Fig. S1 | Sequence alignment of human KCNQ channels.** Multiple sequence alignment of
960 human KCNQ1 through KCNQ5, performed with Clustal Omega (93) and colored with
961 ENDscript 2 (94). Invariant residues are shaded red, and conserved residues are printed in
962 red. Key functional motifs are highlighted: residues forming the selectivity filter (SF) are
963 shaded yellow and colored red; gating charge residues in the S4 helix and the F137/F167
964 residue (KCNQ2/KCNQ3 numbering) of the charge transfer center (CTC) are colored yellow.
965 The extended extracellular loop between the S5 segment and the pore helix (PH) in KCNQ3,
966 along with other key residues used for subtype discrimination between KCNQ2 and KCNQ3,
967 are indicated with green triangles.
968 UniProt accession numbers: KCNQ1 (P51787), KCNQ2 (O43526), KCNQ3 (O43525),
969 KCNQ4 (P56696), KCNQ5 (Q9NR82).

970

971


972 **Fig. S2 | Protein purification of human M-channel^{apo}.** (A) Representative size-exclusion
973 chromatography (SEC) profile of the heteromeric KCNQ2/3 (M-channel^{apo}) complex. (B)
974 SDS-PAGE analysis (Coomassie Brilliant Blue staining) of the peak fractions from the SEC
975 run. The fractions concentrated for cryo-EM grid preparation are indicated in red.
976

978 **Fig. S3 | Cryo-EM reconstructions of M-channel in three functional states. (A-C)**

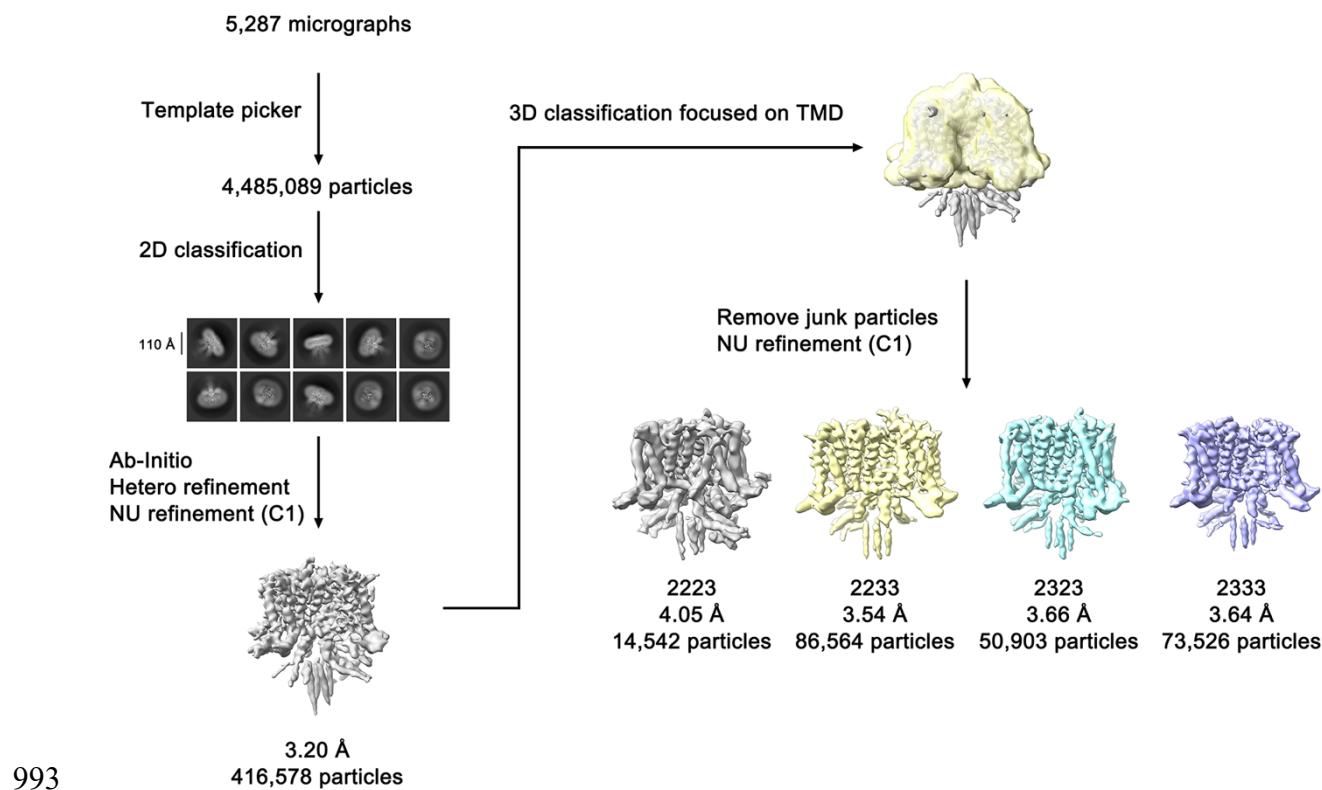
979 Cryo-EM reconstructions of the heteromeric KCNQ2/3 channel in the apo (A), CLM142-
980 bound (B), and PIP₂-bound open (C) states. The relative proportions of the distinct
981 stoichiometric assemblies (M2223, M2233, M2323, M2333) identified in each
982 reconstruction are indicated. KCNQ2 and KCNQ3 subunits are colored blue and yellow,
983 respectively.

984

985

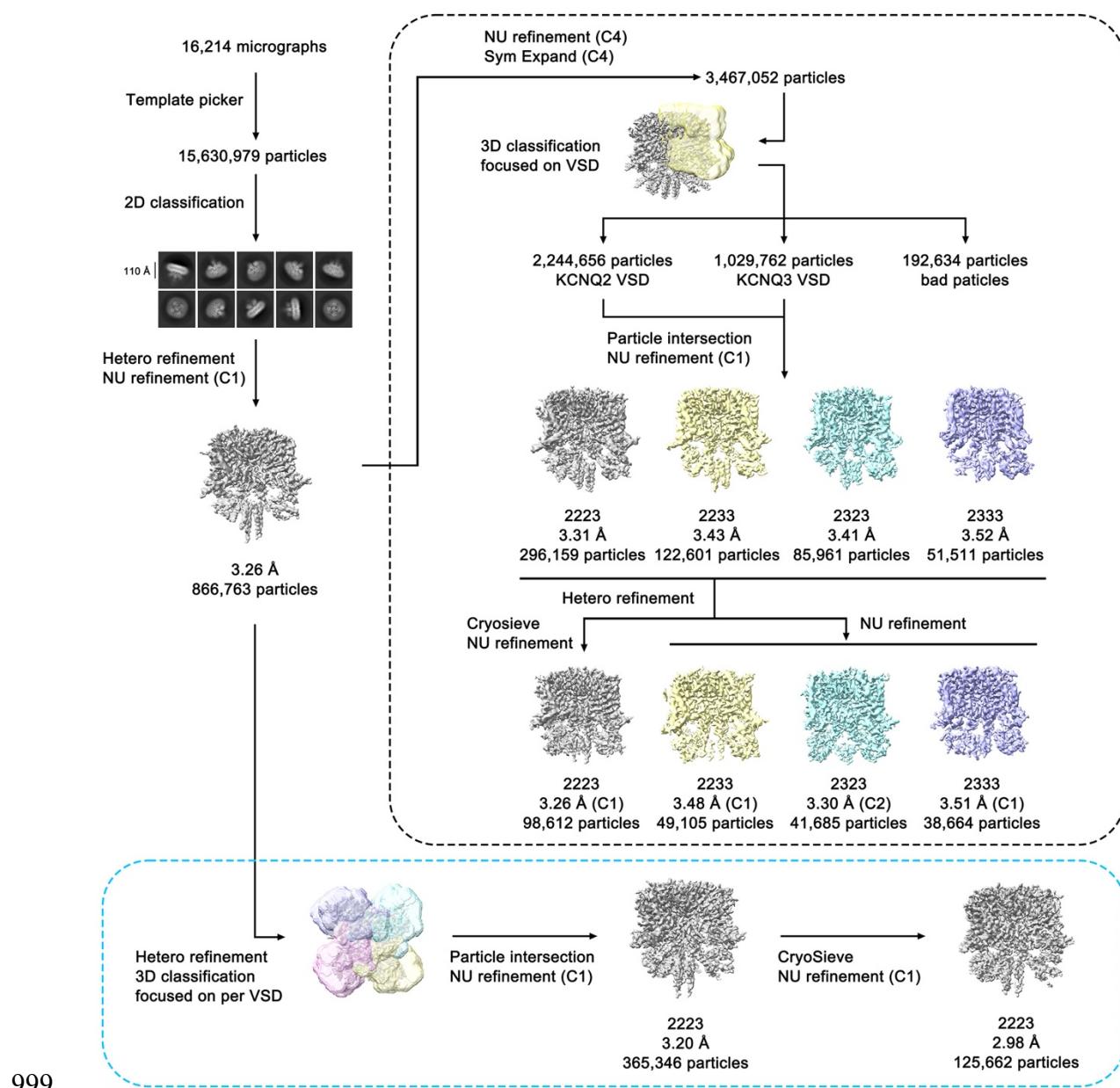
986 **Fig. S4 | Fourier shell correlation (FSC) curves for M-channel reconstructions. (A)**

987 Gold-standard FSC curves for the M2223^{apo}, M2223^{CLM142}, and M2223^{open} reconstructions,

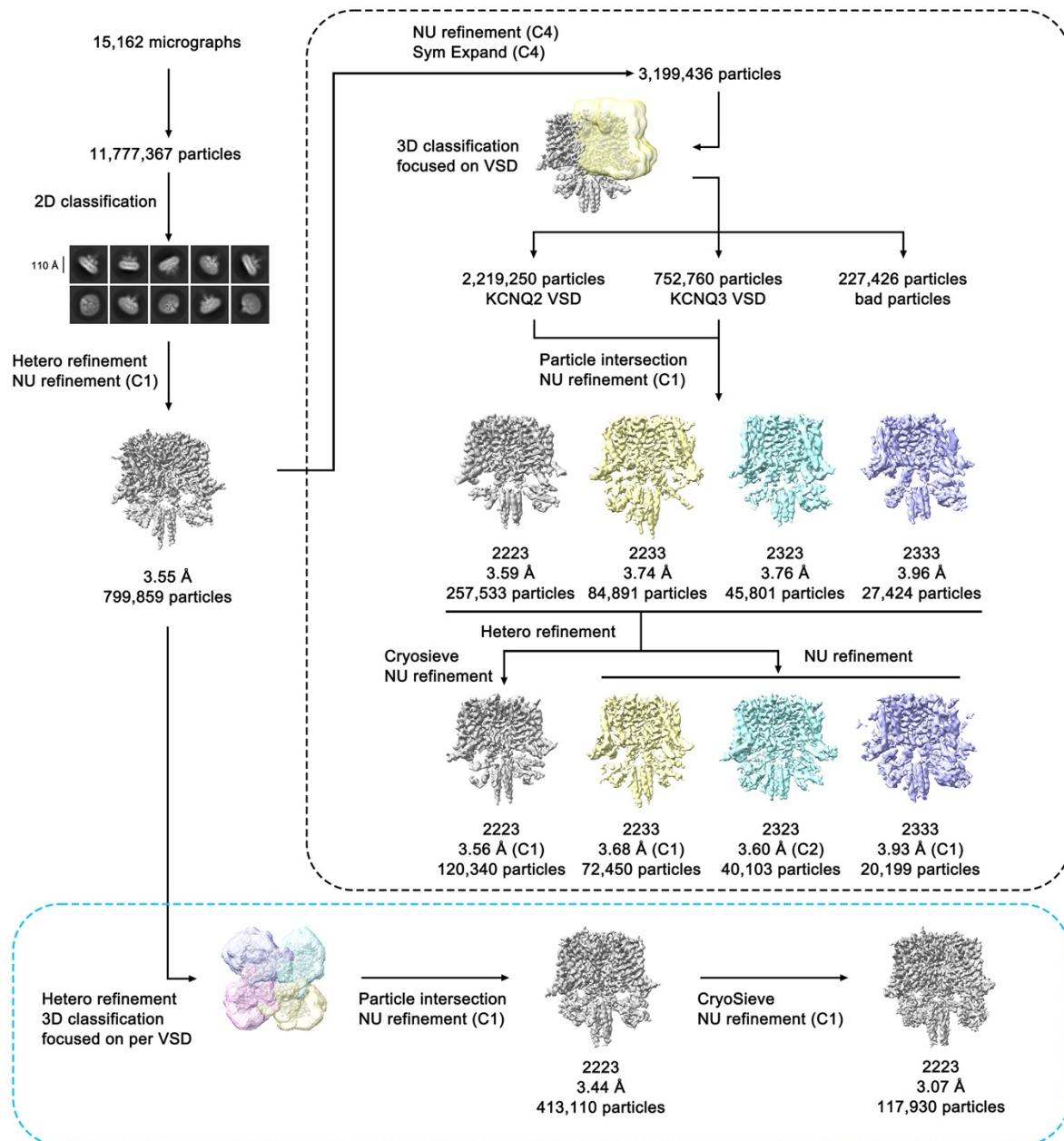

988 determined without symmetry expansion. (B) FSC curves for all four different

989 stoichiometric assemblies (M2223, M2233, M2323, M2333) reconstructions of M-

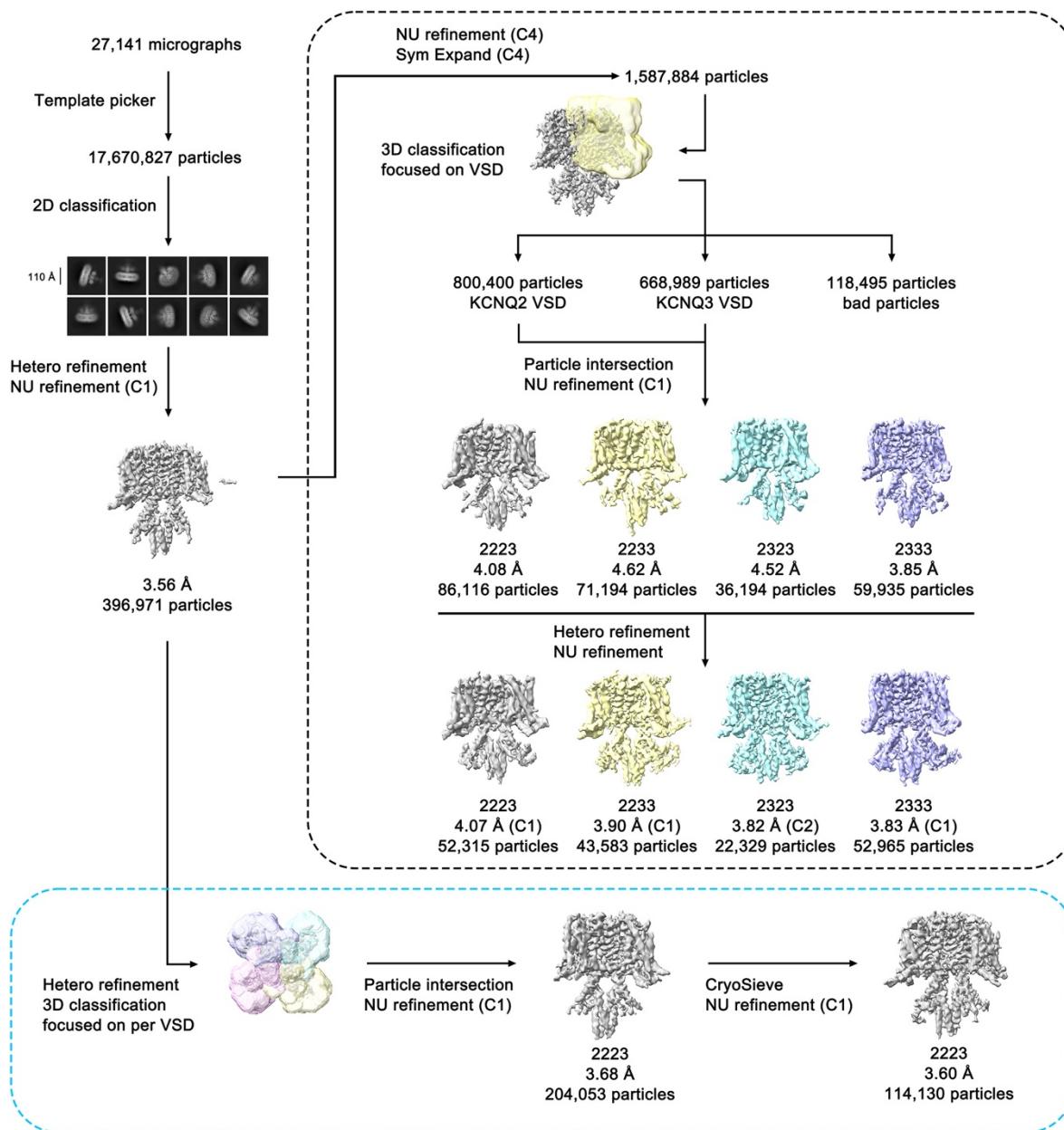
990 channel^{WT}, M-channel^{apo}, M-channel^{CLM142}, and M-channel^{open}, determined using C4


991 symmetry expansion during processing.

992

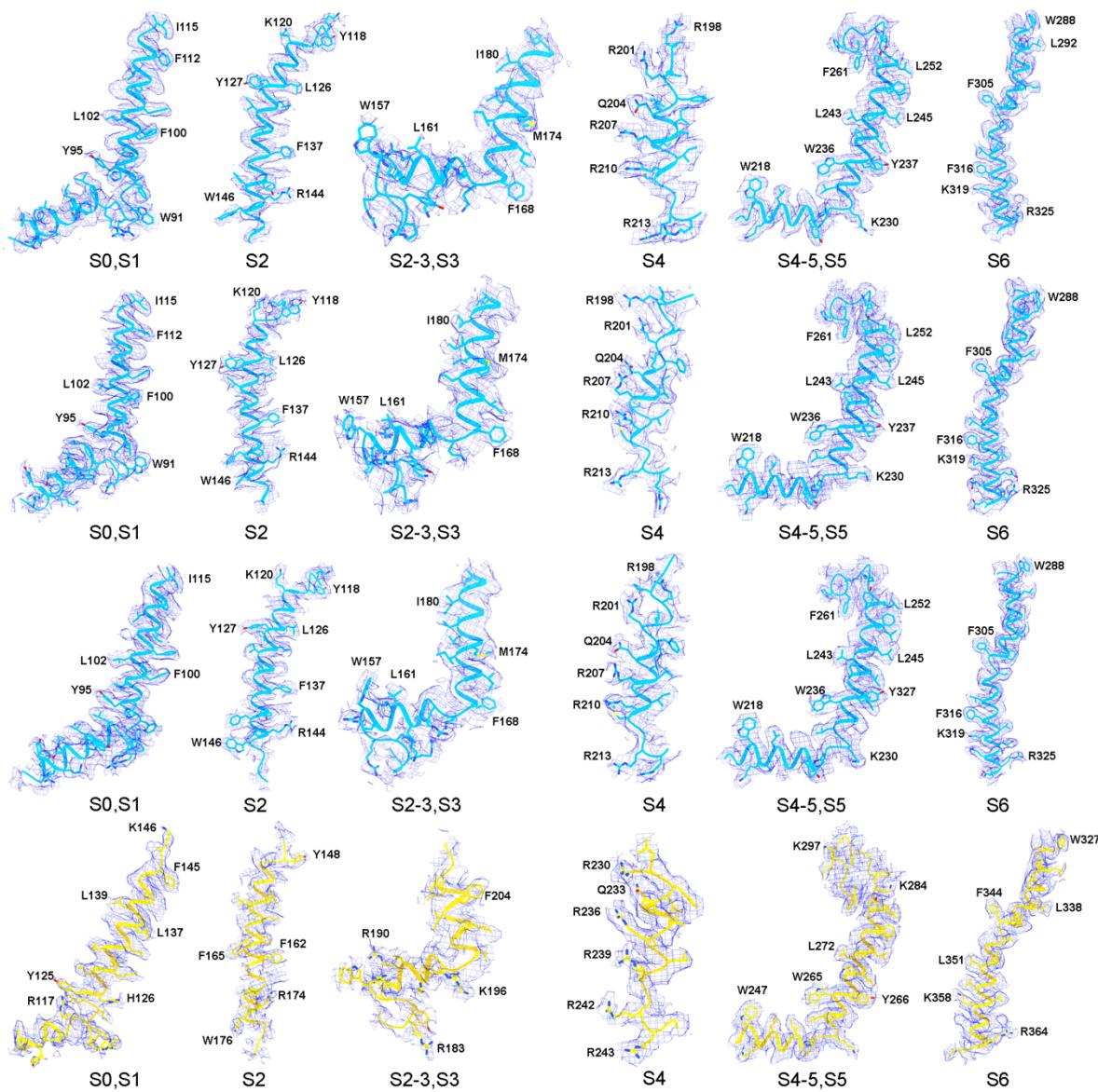

994 **Fig. S5 | Cryo-EM data processing flowchart for M-channel^{WT}.** Detailed flowchart of
995 the cryo-EM data processing strategy for the wild-type M-channel reconstruction. Please
996 refer to the "Cryo-EM data processing" section in MATERIALS AND METHODS for
997 complete details.

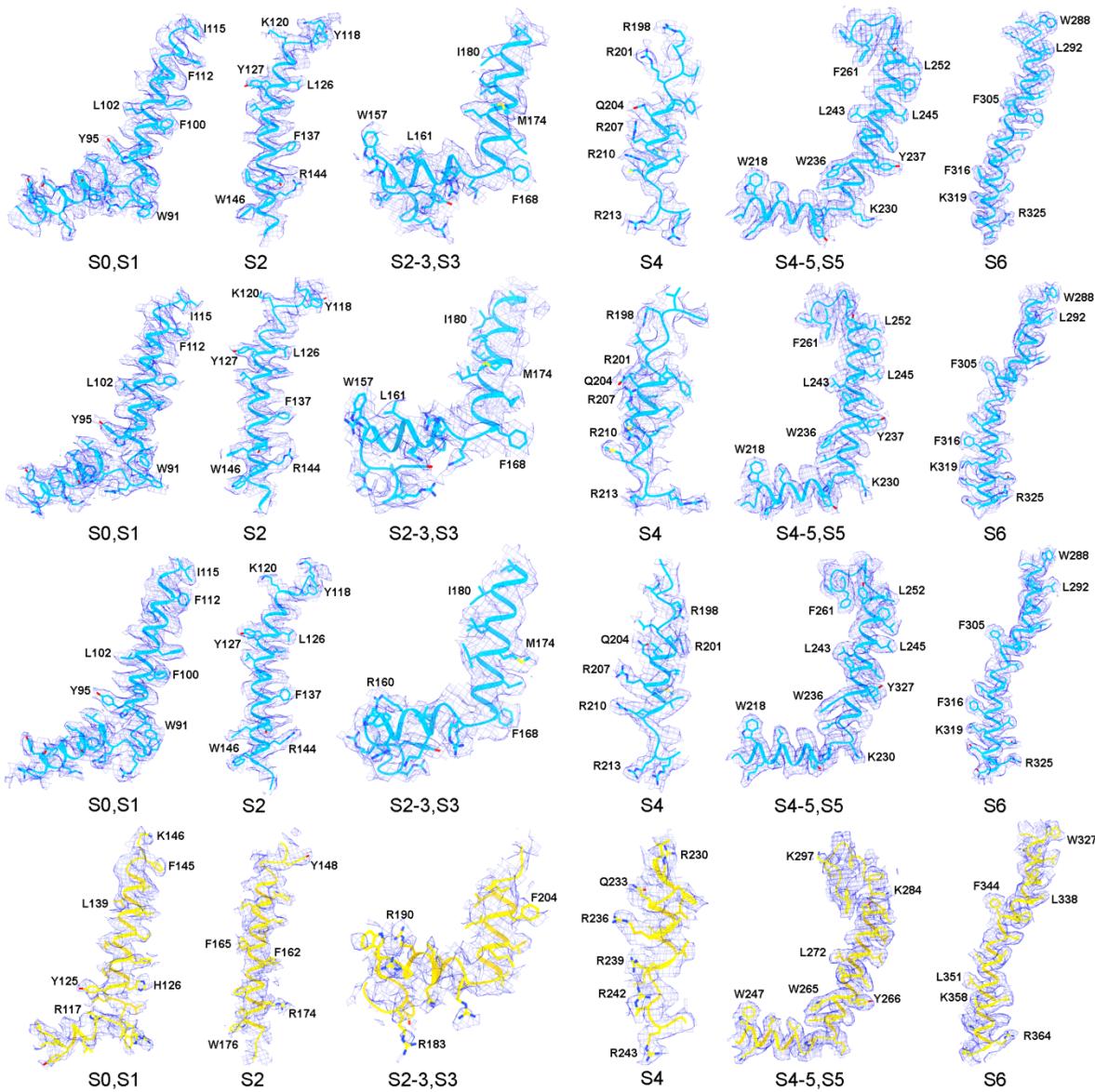
998


1000 **Fig. S6 | Cryo-EM data processing flowchart for M-channel^{apo}.** Detailed flowchart of the
 1001 cryo-EM data processing strategy for the M-channel^{apo} reconstruction. Please refer to the
 1002 "Cryo-EM data processing" section in MATERIALS AND METHODS for complete details.
 1003

1004

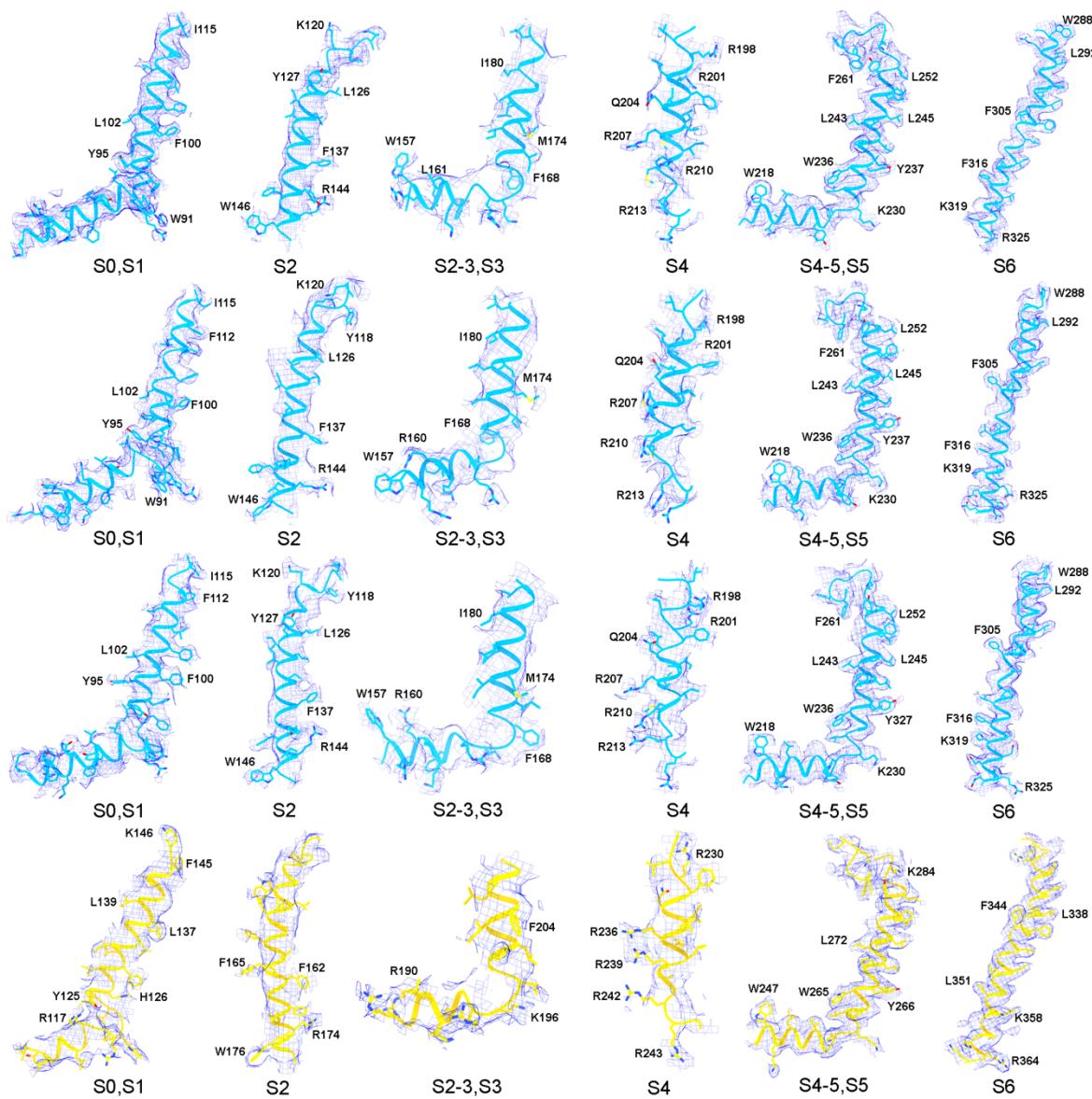
1005


1006 **Fig. S7 | Cryo-EM data processing flowchart for M-channel^{CLM142}.** Detailed flowchart of
1007 the cryo-EM data processing strategy for the M-channel^{CLM142} reconstruction. Please refer to
1008 the "Cryo-EM data processing" section in MATERIALS AND METHODS for complete
1009 details.

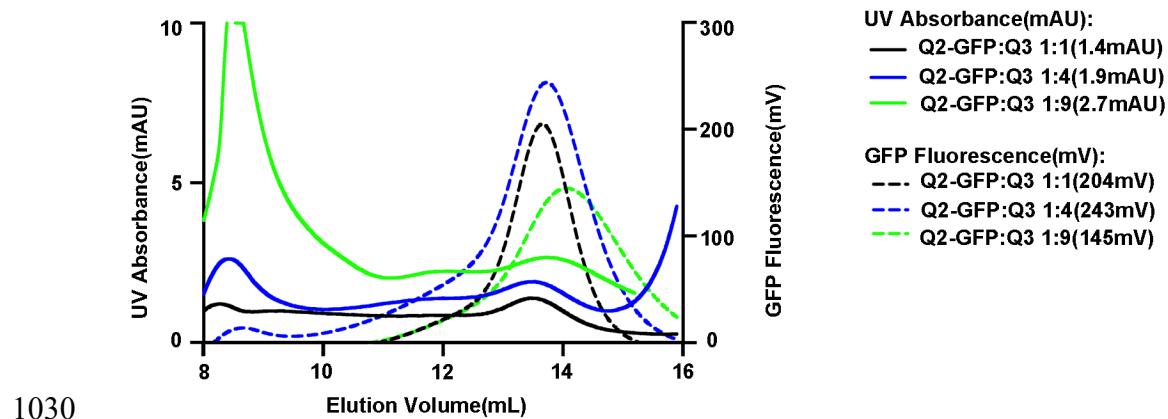

Fig. S8 | Cryo-EM data processing flowchart for M-channel^{open}. Detailed flowchart of the

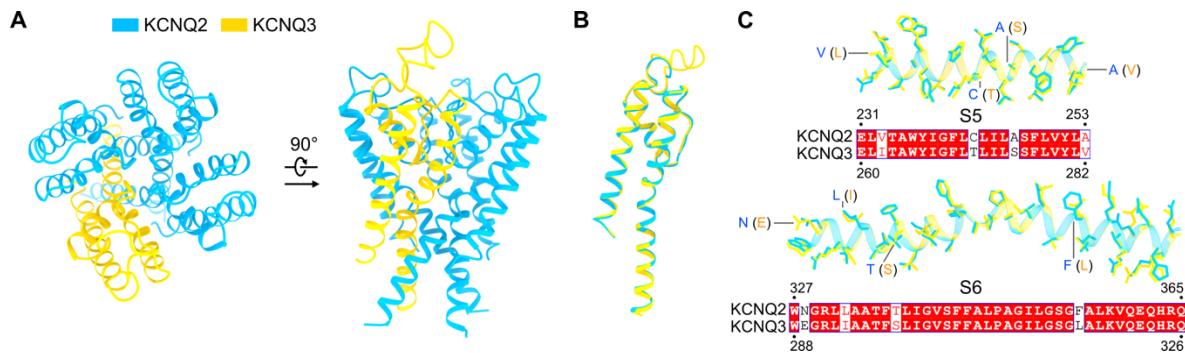
cryo-EM data processing strategy for the M-channel^{open} reconstruction. Please refer to the

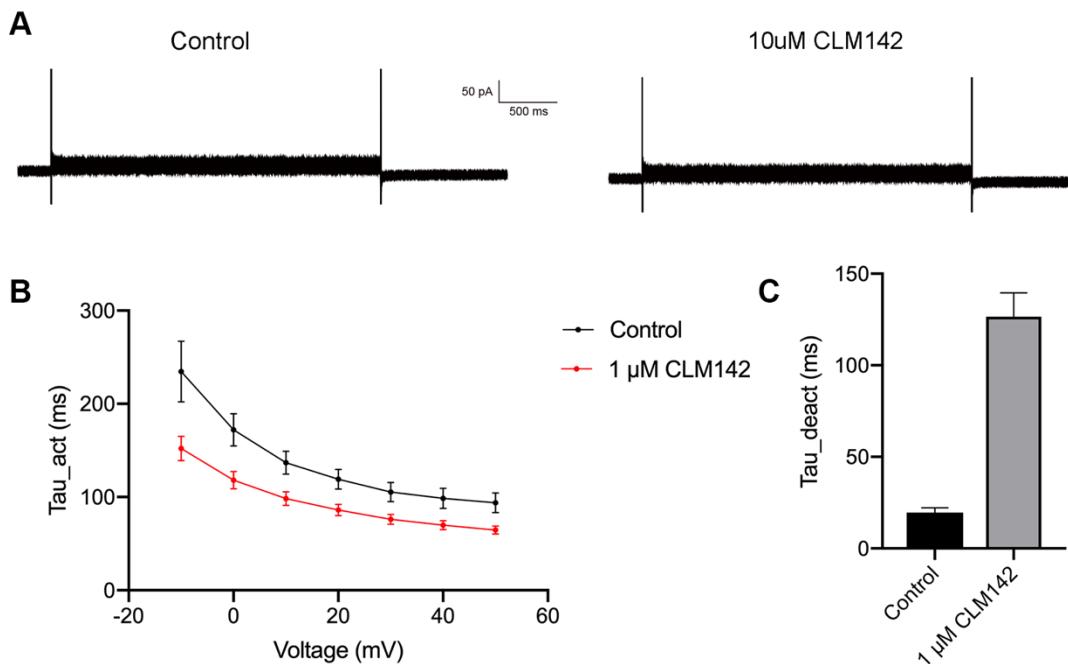
"Cryo-EM data processing" section in MATERIALS AND METHODS for complete details.

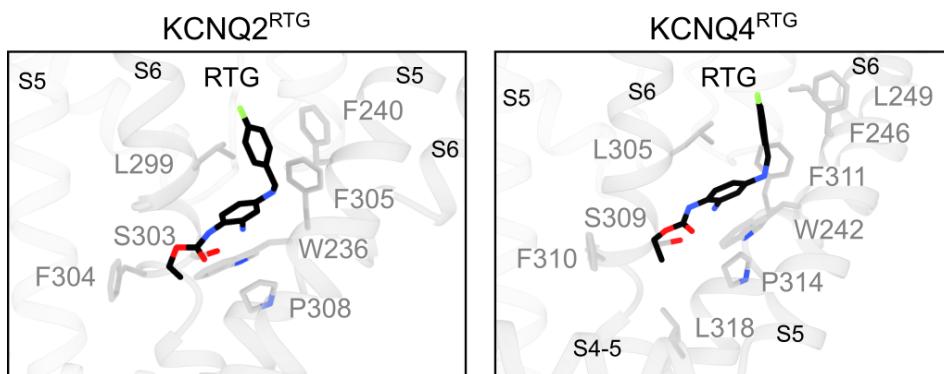


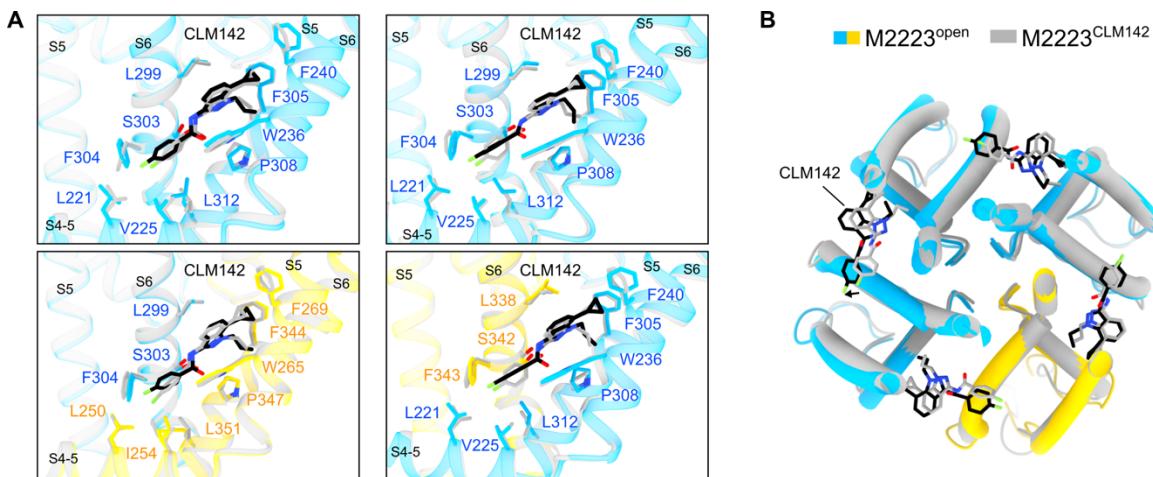
1015
1016 **Fig. S9 | Cryo-EM densities of M2223^{apo}.** Representative cryo-EM density maps for the
1017 M2223^{apo} atomic model, visualized in UCSF ChimeraX. Select residues with large side
1018 chains are labeled.
1019



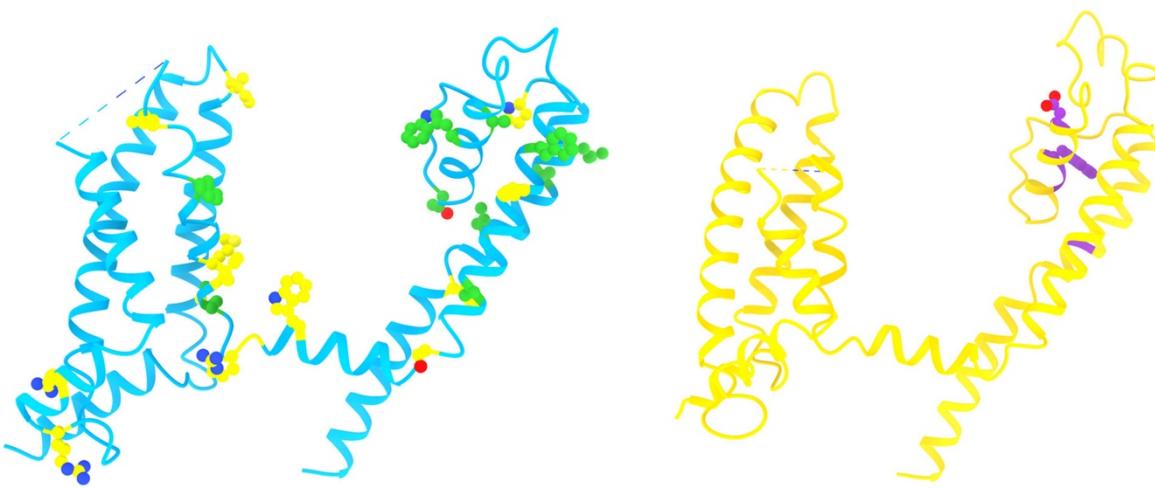

Fig. S10 | Cryo-EM densities of M2223^{CLM142}. Representative cryo-EM density maps for the M2223^{CLM142} atomic model, visualized in UCSF ChimeraX. Select residues with large side chains are labeled.


1024


Fig. S11 | Cryo-EM densities of M2223^{open}. Representative cryo-EM density maps for the M2223^{open} atomic model, visualized in UCSF ChimeraX. Select residues with large side chains are labeled.


1048
1049 **Fig. S14 | Functional characterization of CLM142 specificity and kinetics.** (A) Whole-
1050 cell patch-clamp recordings from non-transfected cells before and after application of 10
1051 μ M CLM142, demonstrating the compound has no direct effect on endogenous currents.
1052 (B) Analysis of activation time constants (τ activation) for KCNQ2/KCNQ3 channels in the
1053 absence and presence of 1 μ M CLM142. (C) Analysis of deactivation time constants (τ
1054 deactivation) for KCNQ2/KCNQ3 channels in the absence and presence of 1 μ M CLM142.
1055 Data are presented as mean \pm SEM.
1056

1057


1058 **Fig. S15 | Retigabine binding in KCNQ2 and KCNQ4. (A)** Molecular interactions
1059 between retigabine (black) and the pore domain of KCNQ2 (PDB: 7CR2),(39) with key
1060 coordinating residues shown as sticks. **(B)** Molecular interactions between retigabine
1061 (black) and the pore domain of KCNQ4 (PDB: 7BYM),(45) with key coordinating residues
1062 shown as sticks.

1063

1065 **Fig. S16 | Structural comparison of M2223^{CLM142} and M2223^{open}.** (A) Structural
1066 alignment of the M2223^{CLM142} and M2223^{open} complexes reveals subtle conformational
1067 changes. While the four bound CLM142 molecules undergo slight positional shifts, their
1068 key interacting residues in KCNQ2 and KCNQ3 remain largely unchanged. (B)
1069 Intracellular view of the activation-associated structural transitions of the pore domain,
1070 highlighting the displacement of the CLM142 molecules during pore opening.

1071

1072 ■ KCNQ2 BFNS1 ■ KCNQ2 DEE7 ■ KCNQ3 BFNS2
1073 **Fig. S17 | Structural mapping of M-channel disease mutations.** Structural mapping of
1074 disease-related mutations in human KCNQ2 and KCNQ3 subunits. Mutations associated
1075 with Benign Familial Neonatal Seizures 1 (BFNS1) and Developmental and Epileptic
1076 Encephalopathy 7 (DEE7) in KCNQ2, and Benign Familial Neonatal Seizures 2 (BFNS2)
1077 in KCNQ3, are highlighted on the M-channel structure.

1078

1079

1080 **Table S1 | Statistics for data collection and structural refinement for M2223^{apo},**
1081 **M2223^{CLM142}, and M2223^{open} determined without using symmetry expansion.**

	M2223 ^{apo}	M2223 ^{CLM142}	M2223 ^{open}
Data collection			
EM equipment		Titan Krios (Thermo Fisher Scientific Inc.)	
Voltage (kV)		300	
Detector		Gatan K3 Summit	
Energy filter		Gatan GIF Quantum, 20 eV slit	
Pixel size (Å)	1.0773	1.087	1.087
Electron dose (e ⁻ /Å ²)		50	
Defocus range (μm)		-1.5 ~ -2.0	
Number of collected movie stacks	16,214	15,162	27,141
Reconstruction			
Software		CryoSPARC v4	
Number of used particles	125,662	117,930	85,732
Symmetry	C1	C1	C1
Overall resolution (Å)	2.98	3.07	3.75
Map sharpening B-factor (Å ²)	126.1	131.7	157.7
Refinement			
Software		Phenix	
Cell dimensions			
a=b=c (Å)	258.552	260.88	260.88
α=β=γ (°)	90	90	90
Model composition			
Protein residues	975	975	938
Side chains assigned	975	975	938
Ligands	GDN: 3 9PE: 3	LIG: 4 GDN: 3 9PE: 3	LIG: 4 PIO: 3
R.m.s deviations			
Bonds length (Å)	0.004	0.003	0.006
Bonds angle (°)	0.946	0.731	0.952
Ramachandran plot statistics (%)			
Preferred	93.12%	93.01%	92.21%
Allowed	6.47%	6.78%	7.13%
Outlier	0.42%	0.21%	0.66%

1082

1083 **Table S2 | Statistics for data collection and structural refinement for M-channel^{WT}**
1084 **determined using C4 symmetry expansion.**

Data collection	M2223^{WT}	M2233^{WT}	M2323^{WT}	M2333^{WT}
EM equipment		Titan Krios (Thermo Fisher Scientific Inc.)		
Voltage (kV)		300		
Detector		Gatan K3 Summit		
Energy filter		Gatan GIF Quantum, 20 eV slit		
Pixel size (Å)		1.087		
Electron dose (e ⁻ /Å ²)		50		
Defocus range (μm)		-1.5 ~ -2.0		
Number of collected movie stacks		5,393		
Reconstruction				
Software		CryoSPARC v4		
Number of used particles	102,370	80,651	47,614	74,317
Symmetry	C1	C1	C2	C1
Overall resolution (Å)	3.76	3.69	3.75	3.70
Map sharpening B-factor (Å ²)	129.3	134.8	137.8	122.8
Refinement				
Software		Phenix		
Cell dimensions				
a=b=c (Å)		260.88		
α=β=γ (°)		90		
Model composition				
Protein residues	975	971	968	964
Side chains assigned	975	971	968	964
Ligands	GDN: 3 9PE: 3	GDN: 2 9PE: 2	GDN: 2 9PE: 2	GDN: 1 9PE: 1
R.m.s deviations				
Bonds length (Å)	0.003	0.003	0.003	0.004
Bonds angle (°)	0.763	0.730	0.694	0.753
Ramachandran plot statistics (%)				
Preferred	93.01%	93.19%	92.33%	91.67%
Allowed	6.78%	6.81%	7.56%	8.02%
Outlier	0.21%	0.00%	0.11%	0.32%

1085

1086 **Table S3 | Statistics for data collection and structural refinement for M-channel^{apo}**
1087 **determined using symmetry expansion.**

Data collection	M2223^{apo}	M2233^{apo}	M2323^{apo}	M2333^{apo}
EM equipment		Titan Krios (Thermo Fisher Scientific Inc.)		
Voltage (kV)		300		
Detector		Gatan K3 Summit		
Energy filter		Gatan GIF Quantum, 20 eV slit		
Pixel size (Å)		1.0773		
Electron dose (e ⁻ /Å ²)		50		
Defocus range (μm)		-1.5 ~ -2.0		
Number of collected movie stacks		16,214		
Reconstruction				
Software		CryoSPARC v4		
Number of used particles	98,612	49,105	41,685	38,664
Symmetry	C1	C1	C2	C1
Overall resolution (Å)	3.26	3.48	3.30	3.51
Map sharpening B-factor (Å ²)	128.0	124.1	132.0	119.5
Refinement				
Software		Phenix		
Cell dimensions				
$a=b=c$ (Å)		258.552		
$\alpha=\beta=\gamma$ (°)		90		
Model composition				
Protein residues	975	971	968	964
Side chains assigned	975	971	968	964
Ligands	GDN: 3 9PE: 3	GDN: 2 9PE: 2	GDN: 2 9PE: 2	GDN: 1 9PE: 1
R.m.s deviations				
Bonds length (Å)	0.003	0.003	0.003	0.004
Bonds angle (°)	0.657	0.745	0.896	0.729
Ramachandran plot statistics (%)				
Preferred	93.85%	93.09%	92.44%	92.62%
Allowed	5.94%	6.81%	7.25%	6.96%
Outlier	0.21%	0.10%	0.32%	0.42%

1088

1089 **Table S4 | Statistics for data collection and structural refinement for M-channel^{CLM142}**

1090 **determined using symmetry expansion.**

Data collection	M2223^{CLM142}	M2233^{CLM142}	M2323^{CLM142}	M2333^{CLM142}
EM equipment		Titan Krios (Thermo Fisher Scientific Inc.)		
Voltage (kV)		300		
Detector		Gatan K3 Summit		
Energy filter		Gatan GIF Quantum, 20 eV slit		
Pixel size (Å)		1.087		
Electron dose (e ⁻ /Å ²)		50		
Defocus range (μm)		-1.5 ~ -2.0		
Number of collected movie stacks		15,162		
Reconstruction				
Software		CryoSPARC v4		
Number of used particles	120,340	72,450	40,103	20,199
Symmetry	C1	C1	C2	C1
Overall resolution (Å)	3.56	3.68	3.60	3.93
Map sharpening B-factor (Å ²)	123.8	126.2	123.2	105.5
Refinement				
Software		Phenix		
Cell dimensions				
a=b=c (Å)		260.88		
α=β=γ (°)		90		
Model composition				
Protein residues	975	971	968	964
Side chains assigned	975	971	968	964
Ligands	LIG: 4 GDN: 3 9PE: 3	LIG: 4 GDN: 2 9PE: 2	LIG: 4 GDN: 2 9PE: 2	LIG: 4 GDN: 1 9PE: 1
R.m.s deviations				
Bonds length (Å)	0.003	0.004	0.003	0.006
Bonds angle (°)	0.719	0.836	0.796	1.012
Ramachandran plot statistics (%)				
Preferred	94.06%	92.46%	93.28%	91.56%
Allowed	5.74%	7.23%	6.62%	8.33%
Outlier	0.21%	0.31%	0.11%	0.11%

1091

1092 **Table S5 | Statistics for data collection and structural refinement for M-channel^{open}**
1093 **determined using symmetry expansion.**

Data collection	M2223^{open}	M2233^{open}	M2323^{open}	M2333^{open}
EM equipment		Titan Krios (Thermo Fisher Scientific Inc.)		
Voltage (kV)		300		
Detector		Gatan K3 Summit		
Energy filter		Gatan GIF Quantum, 20 eV slit		
Pixel size (Å)		1.087		
Electron dose (e ⁻ /Å ²)		50		
Defocus range (μm)		-1.5 ~ -2.0		
Number of collected movie stacks		27,141		
Reconstruction				
Software		CryoSPARC v4		
Number of used particles	52,315	43,583	22,329	52,965
Symmetry	C1	C1	C2	C1
Overall resolution (Å)	4.07	3.90	3.82	3.83
Map sharpening B-factor (Å ²)	181.6	149.5	141.2	141.1
Refinement				
Software		Phenix		
Cell dimensions				
a=b=c (Å)		260.88		
α=β=γ (°)		90		
Model composition				
Protein residues	938	920	920	902
Side chains assigned	938	920	920	902
Ligands	LIG: 4 PIO: 3	LIG: 4 PIO: 2	LIG: 4 PIO: 2	LIG: 4 PIO: 1
R.m.s deviations				
Bonds length (Å)	0.003	0.004	0.004	0.004
Bonds angle (°)	0.810	0.937	0.867	0.859
Ramachandran plot statistics (%)				
Preferred	93.75%	92.60%	93.83%	93.46%
Allowed	5.81%	6.95%	5.49%	5.96%
Outlier	0.44%	0.45%	0.67%	0.57%

1094