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Abstract

The M-channel, a heterotetrameric voltage-gated potassium channel formed by

KCNQ2 and KCNQ3 subunits, critically regulates neuronal excitability, with

dysfunction linked to epilepsy and developmental encephalopathies. Despite its

physiological importance, structural mechanisms governing its unique heteromeric

assembly and subthreshold gating have remained unresolved. We present cryo-EM

structures of human M-channels revealing unprecedented stoichiometric plasticity,

with all possible KCNQ2:KCNQ3 configurations (1:3 to 3:1) observed.

Electrophysiology of engineered concatemers shows these assemblies recapitulate

native function. Structural analyses uncover that KCNQ3’s voltage-sensing domain

(VSD) adopts a more depolarized conformation than KCNQ?2, explaining its signature

subthreshold activation. Leveraging these insights, we developed CLM142, a

structure-guided activator with 10-fold greater potency and specificity than

withdrawn retigabine. CLLM142 enabled open-state structure determination, revealing

how PIP; binding couples VSD movement to pore opening. Our work provides an

atomic-resolution framework for understanding M-channel’s unique assembly,

physiology, disease mechanisms, and targeted therapeutic design.
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The M-channel, a heteromeric voltage-gated potassium (K,) channel composed of KCNQ2
and KCNQ3 subunits (/-3), governs neuronal excitability by generating a slowly activating,
non-inactivating potassium current (/v) that dampens repetitive firing (2, 4-6). First
identified in sympathetic neurons for its suppression by muscarinic acetylcholine receptor
signaling (hence "M"-channel) (4), it is now recognized as a master regulator of action
potential threshold and spike-frequency adaptation across the central and peripheral
nervous systems (6-12). The molecular identity of /m was established with the cloning

of KCNQ?2 and KCNQ?3 (1, 2, 13-16), which form heteromeric channels with biophysical
properties precisely matching native M-currents—distinct from their homomeric
counterparts (2, 3, 17, 18). Dysfunction of these subunits underlies a spectrum of severe
neurological disorders, including benign familial neonatal seizures (BFNS) (3, 5, 13, 15,
19-29), developmental epileptic encephalopathies (DEE7) (23, 30-33), and autism-
associated phenotypes (34-37), underscoring their critical physiological and therapeutic

relevance (38).

Despite decades of research, fundamental questions regarding the M-channel’s
architecture and gating mechanisms remain unresolved (36, 39). A central controversy
concerns its heteromeric stoichiometry (36): while biochemical and functional studies
suggested a 2:2 (KCNQ2:KCNQ3) assembly (2, 40), others proposed variable or
asymmetric arrangements (41, 42). This uncertainty has obscured how subunit composition
dictates the channel’s unique subthreshold activation—a hallmark feature enabling /v to
stabilize resting membrane potentials (2, 4, 6). Although recent structures of homomeric

KCNQ channels have revealed their canonical architecture (39, 43-48), the absence of
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heteromeric M-channel structures has precluded mechanistic understanding of its distinct
gating properties and subunit cooperativity (36, 49, 50). Resolving these questions is
critical for both ion channel biology and drug discovery, particularly given the M-channel's

validation as a target for epilepsy and neuropsychiatric disorders (49, 51-54).

Therapeutic targeting of the M-channel has faced significant hurdles (57, 55).
Retigabine, the first-in-class M-channel activator approved for refractory epilepsy was
withdrawn due to dose-limiting off-target effects (e.g., bladder toxicity and retinal
discoloration) linked to its activity across multiple KCNQ subtypes (53, 54, 56-61).
Developing subtype-selective activators requires precise structural insights into the
heteromeric channel’s drug-binding sites and activation mechanisms—a goal hindered by

the lack of M-channel structures.

Here, we resolve these longstanding questions through cryo-electron microscopy
(cryo-EM) structures of the human M-channel in multiple functional states. Our findings
reveal unexpected stoichiometric flexibility in KCNQ2:KCNQ3 assemblies and identify a
markedly depolarized conformation of the voltage-sensing domain (VSD) in KCNQ3
compared to KCNQ2, providing the first structural explanation for the channel's
characteristic subthreshold activation. Electrophysiological characterizations of engineered
concatemers and chimeric constructs corroborate these structural insights. Leveraging this
knowledge, we developed CLM 142 (1), a potent and selective M-channel activator that

enabled determination of the open-state structure. Our work not only elucidates
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fundamental principles of M-channel assembly and gating but also establishes a framework

for structure-guided development of targeted therapies.

Structure of the human M-channel reveals unexpected stoichiometric plasticity

We determined cryo-EM structures of the human M-channel using both wild-type
KCNQ2/KCNQ3 heteromers and engineered constructs where flexible N- and C-terminal
regions and the disordered loop between HA and HB helices were removed to improve
biochemical stability (Fig. 1A, figs. S1 to S11, and Tables S1 to S5). This approach enabled
us to resolve four distinct structural states: the wild-type M-channel (M-channelVT; Fig.
1A), engineered constructs without ligands (M-channel®°; fig. S3A), constructs bound to
the activator CLM142 (M-channel“™!42; fig. S3B), and constructs with both CLM 142 and
phosphatidylinositol 4,5-bisphosphate (PIP») to stabilize the open state (M-channel°P"; fig.

S30).

Analysis of these preparations revealed the M-channel exists in four distinct
stoichiometric configurations (Fig. 1A and fig. S3). These include a 3:1 KCNQ2:KCNQ3
assembly (M2223), two 2:2 assemblies with either adjacent (M2233) or alternating
(M2323) subunit arrangements, and a 1:3 assembly (M2333). Intriguingly, the relative
proportions of these assemblies varied significantly between preparations. Under our
standard co-expression conditions for wild-type subunits, the KCNQ2-rich M2223
configuration was the least prevalent (6.45%), indicating an inherent assembly preference
under these conditions that favors incorporation of KCNQ3. This resulted in a population

dominated by the balanced 2:2 stoichiometries (M2323, 38.38%; M2233, 32.6%) and the
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113 KCNQ3-rich M2333 configuration (22.57%) (Fig. 1A). In contrast, engineered constructs
114  exhibited a pronounced redistribution, with the M2223 configuration becoming dominant
115 (53.2% in M-channel®®) (fig. S3), correlating with higher expression levels of KCNQ2
116  relative to KCNQ3 (fig. S2B).

117

118 This stoichiometric plasticity was further quantified through systematic

119  transfection experiments using defined KCNQ2-GFP:KCNQ3 plasmid ratios (1:1, 1:4, and
120 1:9), which showed that the ratio of GFP fluorescence (reporting KCNQ2 incorporation) to
121  total protein yield (UV absorbance) decreased progressively (146, 128, and 54 mV/mAu,
122 respectively) with reduced KCNQ2 plasmid input (fig. S12). Together, these data

123 demonstrate that the observed stoichiometric flexibility is an inherent property of M-

124 channel assembly—at least in our heterologous expression system—and that the final

125  population distribution is a direct consequence of the relative expression levels of the

126  constituent subunits within the heterologous system.

127

128 All resolved structures adopted the canonical voltage-gated K* channel

129  architecture, with four voltage-sensing domains (VSDs) surrounding a central pore domain
130  (PD; Fig. 1, B and C) (62). However, unlike homomeric channels, the M-channel's central
131  pore and VSDs are formed by asymmetric arrangements of KCNQ2 and KCNQ3 subunits
132 (39, 43-46, 48). Three key structural features enabled unambiguous discrimination between
133 subunits: first, the VSD of KCNQ3 adopts a distinct orientation relative to the central pore
134 compared to KCNQ2 (Fig. 1, D and E); second, KCNQ3 possesses a significantly longer

135  extracellular loop (ECL) which yields a pronounced density difference (Fig. 1F and fig.
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S1); and third, the high resolution (~2.8 A) of the central pore region allowed
discrimination of non-conserved residues, including Y284 in KCNQ2 versus T323 in
KCNQ3, F316 in KCNQ2 versus L355 in KCNQ3, and Y226 in KCNQ?2 versus C255 in

KCNQ3 (Fig. 1G and fig. S1).

The high-resolution structure enables precise structural alignment of the subunit
interface (S5 and S6 helices) of KCNQ2 and KCNQ3, revealing an exceptional degree of
conservation in both sequence (>90% similarity) and tertiary structure (RMSD = 0.437 A;
fig. S13). This near-perfect structural compatibility explains the M-channel's remarkable
stoichiometric plasticity, permitting all combinatorially possible configurations (M2223,
M2233, M2323, and M2333) to assemble with comparable thermodynamic stability.
Crucially, this structural degeneracy establishes an expression-level-dependent assembly
paradigm, where the relative abundances of distinct configurations are principally
determined by the relative availability of constituent subunits rather than preferential

binding affinities.

Concatemeric constructs of KCNQ2 and KCNQ3 recapitulate electrophysiological
properties of the wild-type M-channel

To validate the physiological relevance of the observed stoichiometric assemblies, we
engineered concatemers with defined subunit ratios matching our structural findings: 3:1
(M2223), two distinct 2:2 arrangements (M2323 and M2233), and 1:3 (M2333) (Fig. 2B).
These constructs enabled precise control over subunit composition while maintaining native

inter-domain connectivity.
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159

160 We performed comprehensive electrophysiological characterization using both
161  whole-cell and single-channel recordings (Fig. 2). Wild-type M-channels (co-expressed
162  KCNQ2/KCNQ3) served as functional benchmarks (Fig. 2, A and C), while KCNQ2

163  homomers provided baseline references for homomeric channel properties (Fig. 2C).

164  Whole-cell recordings demonstrated that all four concatemer configurations produced

165  current-voltage (I-V) relationships superimposable with wild-type M-channels, with

166  activation thresholds consistently shifted toward hyperpolarized potentials compared to
167  KCNQ2 homomers (Fig. 2C). Quantitative analysis revealed that each concatemer

168  exhibited half-maximal activation voltages (V1) statistically indistinguishable from wild-
169  type M-channels (p > 0.05) yet significantly more hyperpolarized than KCNQ2 homomers
170 (p <0.001), recapitulating the hallmark sub-threshold activation profile of native M-

171 channels (2).

172

173 Single-channel analyses provided mechanistic corroboration at the molecular level.
174 All concatemer variants displayed unitary current amplitudes (Fig. 2E), single-channel
175  conductance (Fig. 2F), and open probabilities (Fig. 2G) matching wild-type M-channels
176  within experimental error (p > 0.05 for all parameters across constructs). This functional
177  equivalence across distinct stoichiometries demonstrates that each assembly configuration
178  faithfully reproduces the fundamental biophysical properties of native M-channels (63).
179

180 The KCNQ3 voltage-sensing domain confers hyperpolarized activation kinetics
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The M-channel’s physiological importance stems from its unique ability to activate at
subthreshold membrane potentials, a property critical for regulating neuronal excitability
(2, 4, 6). Despite its functional significance, the structural basis for this distinctive gating

behavior has remained elusive.

In voltage-gated ion channels, VSD activation is defined by the positions of S4
arginine residues (R1-R6) relative to the charge transfer center (CTC), which comprises a
conserved phenylalanine (F137 in KCNQ2; F167 in KCNQ3) flanked by two acidic
residues (E130/E140 in KCNQ2; E160/E170 in KCNQ3; Fig. 3A and fig. S1) (64).
Comparative structural analysis of M-channel?° revealed striking differences between
subunits: while R4 (R207) in KCNQ2 forms cation-mn interactions with F137 and sits
slightly above it, KCNQ3’s R4 (R236) resides farther above F167, with R5 (R239) instead
forming the cation-n interaction below (Fig. 3A). This conformational disparity indicates
that KCNQ3's VSD favors the activated state at more hyperpolarized potentials than
KCNQ2, suggesting its VSD requires less depolarization to activate. These structural
observations provide a plausible mechanism for the M-channel’s hyperpolarized activation

threshold relative to KCNQ2 homomers.

To test whether KCNQ3’s VSD drives subthreshold activation, we engineered
chimeric constructs by swapping VSDs between subunits: VSD,-PD3 (KCNQ2 VSD +
KCNQ3 pore) and VSD3-PD;, (KCNQ3 VSD + KCNQ2 pore) (Fig. 3B and fig. S1).
Electrophysiological characterization revealed that channels containing only KCNQ2 VSDs

(VSD»-PD3 + KCNQ?2) exhibited activation thresholds similar to KCNQ2 homomers
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(Figures 3C and 3D). Conversely, channels with exclusively KCNQ3 VSDs (VSDs3-PD, +
KCNQ3) activated at even more hyperpolarized potentials than wild-type M-channels, with
the native heteromer’s threshold intermediate between these extremes (Fig. 3, C and D).
These results definitively establish that KCNQ3’s VSD is both necessary and sufficient for

the M-channel’s subthreshold activation phenotype.

Molecular mechanism for the potent activation of CLM142 on human M-channel
The withdrawal of retigabine (Fig. 4B), the first clinically approved M-channel activator,
due to off-target effects across KCNQ subtypes (fig. S15), highlighted the critical need for
selective therapeutics (49, 51, 53, 54, 56-61). Through structure-guided drug design
informed by both the M-channel architecture and retigabine's activation mechanism, we
developed CLM142 (1; Fig. 4A), a next-generation activator identified via an integrated

virtual screening and electrophysiological validation approach.

CLM142 features three key structural elements: (1) a fluorophenyl group linked
via (2) an amide bond to (3) an indazole core with cyclopropyl and ethynyl substitutions
(Fig. 4A). These strategic modifications yielded significant pharmacological improvements,
demonstrating a 10-fold greater potency than retigabine on human M-channel (ECso = 0.19
+ 0.09 uM versus 2.16 = 0.15 uM for G-V curve shifts) while achieving an enhanced
subtype specificity, as evidenced by its negligible effects on KCNQ4 channel (Fig. 4, C to
G, and fig. S14A). At 1 uM concentration, CLM 142 produced a AV, shift of -32.49 + 1.64
mV (Fig. 4, C and D) and significantly modulated channel kinetics, accelerating activation

(118.09 £9.21 ms versus 172.09 = 17.19 ms at 0 mV; fig. S14B) while slowing

10
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deactivation (126.54 £ 12.98 ms versus 19.51 + 2.72 ms; fig. S14C). These properties
establish CLM142 as a promising therapeutic candidate combining submicromolar potency

with improved selectivity for human M-channel.

To elucidate its mechanism of action, we determined the cryo-EM structure of M-
channel®™142 at 3.1 A resolution (Fig. 5, A and B, and figs. S3, S4, and S10). CLM142
occupies the inter-subunit pocket between S5 and S6 helices (Fig. 5C) - the canonical
activator binding site shared with retigabine (fig. S15) - but establishes a unique interaction
network through its distinct chemical architecture (Fig. 5D) (39, 45). The compound binds
in a characteristic orientation where its fluorophenyl group extends intracellularly while the
cyclopropyl/ethynyl moieties project extracellularly, creating extensive interactions (Fig.
5D). The amide carbonyl forms a crucial hydrogen bond with S303/S342 on S6, while the
central indazole core engages in n-w stacking with the highly conserved W236/W265 on S5.
Simultaneously, the cyclopropyl/ethynyl groups are positioned within a hydrophobic pocket
formed by F240/F269 on S5 and L299/1.338-F305/F344 on S6, while the fluorophenyl
group makes complementary van der Waals contacts with F304/F343, L221/1L.250,
V225/1254 and L312/1L.352. This sophisticated interplay of directional hydrogen bonding
and extensive hydrophobic complementarity synergistically enables CLM 142 to bind and

activate M-channel.

Despite dramatical modifications, CLM142 activates the channel through a similar
mechanism to retigabine, promoting pore domain opening by displacing S5 and S6 helices

in a clockwise rotation (viewed from intracellular side; Fig. 5D) (39, 45, 65). This

11
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movement is evidenced by significant displacement of W236 in KCNQ2/W265 in KCNQ3
on S5 (Fig. 5D), confirming that both compounds share a common activation pathway

despite their distinct binding geometries.

Open-state structure of M-channel reveals its activation mechanism

To elucidate the structural basis of M-channel activation, we determined the open-state
structure of the human M-channel (M-channel°”®") in complex with CLM142 and PIP; (Fig.
6, A and B, figs. S3, S4, and S11). While maintaining the four CLM 142 molecules bound
between S5-S6 helices observed in the closed state (Fig. 6B), the intracellular gate formed
by L318 in KCNQ2 (L357 in KCNQ3) of the open structure undergoes significant dilation,
expanding from less than 1 A to over 2 A in radius (Fig. 6, C and D). This pore opening
results from a coordinated clockwise rotation of S6 helices (viewed intracellularly) initiated
at the conserved G313 in KCNQ2 (G352 in KCNQ3) within the GSG motif, coupled with
outward displacement of the gate-forming leucine side chains (L318/L357) (Fig. 6E and
figs. S1 and S16). These movements align with established activation mechanisms in

voltage-gated channels (45, 65).

The structure captures four weak densities beneath the VSDs, which we assign as
PIP: based on three lines of evidence (Fig. 6F): (i) their exclusive appearance in PIP»-
supplemented samples, (ii) the open conformation's dependence on PIP2 in KCNQ channels
(50, 66-69), and (ii1) congruence with PIP2 binding sites in other open-state KCNQ
structures (39, 44, 46-48, 70). These lipids engage multiple positively charged residues,

including R87/R117 and R89/R119 in the VSD, R213/R242 and R214/R243 in the S4-S5

12
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linker, and K327/K366 in the extended S6 helix through electrostatic interactions,
consistent with previous studies (44, 46-48). These interactions support an activation
mechanism whereby PIP> binding to this basic residue-rich interface couples S4 movement
to S6 displacement, facilitating gate opening. The pivotal role of the conserved GSG motif
(G313/G352) as a gating hinge is underscored by its position at the initiation point of these

conformational changes (fig. S1).

Discussion

Our systematic structural and functional characterization of the human M-channel resolves
several long-standing questions in the field while providing new insights into its
physiological regulation, pathophysiological mechanism and therapeutic targeting (fig.

S17).

Our cryo-EM structures reveal unexpected stoichiometric plasticity in the M-
channel, which can adopt all possible KCNQ2:KCNQ3 configurations (M2223, M2233,
M2323, and M2333). This remarkable structural flexibility likely stems from the high
degree of sequence conservation and structural similarity between KCNQ2 and KCNQ3
subunits. The relative abundance of these assemblies varies across preparations, correlating
with differential expression levels of KCNQ2 and KCNQ3. This structural flexibility
resolves previous conflicting reports about M-channel composition, where some studies
proposed fixed 1:1 stoichiometry while others suggested variable ratios (2, 40-42). The
discrepancy likely stems from unaccounted variations in subunit expression levels across

experimental systems.

13
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This plasticity may represent an important endogenous mechanism for tuning
neuronal excitability, particularly given the established spatiotemporal expression patterns
of KCNQ subunits (/2, 16, 71-73). During development, KCNQ?2 expression stabilizes
rapidly while KCNQ3 shows gradual accumulation to its peak levels (16, 71, 72).
Furthermore, distinct brain regions exhibit characteristic KCNQ2/KCNQ?3 expression ratios
(12, 74, 75). Such systematic variations in subunit availability would naturally produce
different distributions of M-channel assemblies and KCNQ2 homomers, creating a
spectrum of channel populations fine-tuned to specific physiological requirements across

neuronal circuits and developmental stages.

Despite structural heterogeneity, all four configurations exhibited remarkably
similar electrophysiological properties. This surprising functional homogeneity may reflect
either: (1) dominant activation by the first responsive subunit as proposed previously, or (2)
limitations in detecting subtle gating differences with current methodologies (76). If
confirmed, such functional equivalence would imply that stoichiometric variation primarily
modulates channel density rather than biophysical properties—a possibility that warrants

further investigation.

Through chimeric constructs and high-resolution structures, we established that
KCNQ3's VSD drives the M-channel's characteristic subthreshold activation. While the
VSDs of KCNQ2 and KCNQ3 share overall architecture, subtle sequence variations create

distinct electrostatic landscapes that alter voltage sensitivity. Future studies mapping these

14
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sequence-activity relationships could reveal precise molecular determinants of gating

differences.

Our development of CLM 142 addresses the critical need for specific M-channel
therapeutics following retigabine's withdrawal (57-54, 56, 57, 59-61, 77, 78). This
optimized compound shows major improvements over retigabine, demonstrating both 10-
fold greater potency and superior specificity. Structural analysis revealed that it establishes
distinct interactions with S5/S6 helices while preserving retigabine's activation mechanism.
These structural innovations likely account for CLM142's improved pharmacological

properties, though further optimization may yield additional clinical benefits.

Our open-state structure suggests PIP>» mediates VSD-pore coupling through a
conserved basic residue interface (R87/R117, R89/R119, R213/R242, R214/R243,
K327/K366). The activation mechanism revealed by the structure is in agreement with prior
studies (44, 46-48). While current densities were poorly resolved, future studies using PIP»-
incorporated nanodiscs or liposomes may better capture these critical interactions and

reveal additional mechanistic details.

It is worth noting that our findings are subject to several limitations. First, both the
structural observations and functional characterizations are based on recombinant proteins
expressed in heterologous systems, which may not fully recapitulate the native neuronal
environment. Second, the enhanced potency and subtype specificity of CLM 142, while

rigorously established under patch-clamp conditions, require further validation in
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physiological disease models and clinical studies to substantiate its therapeutic superiority

over retigabine.

By elucidating the M-channel's structural principles, we have: (1) reconciled
conflicting stoichiometry models through demonstration of expression-dependent assembly,
(2) provided the first structural explanation for subthreshold activation, and (3) developed
CLM142 as a precision therapeutic candidate. These advances establish a framework for
understanding M-channel physiology and developing targeted treatments for epilepsy and

related disorders.
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352 MATERIALS AND METHODS

353  Cell culture and transient transfection

354  Baculovirus was generated using Sf9 insect cells cultured in Sf900-II SFM medium (GIBCO)
355  at 28°C. Recombinant proteins were expressed in HEK293F cells maintained in SMM 293-
356 T II serum-free medium (Sino Biological) at 37°C in a humidified incubator with 5% COs..
357  Cells were infected when the density reached 2.0-3.0x10¢ cells/mL. HEK293T and CHO-K1
358 cells were used for electrophysiological recordings. HEK293T cells were cultured in
359  Dulbecco’s Modified Eagle Medium (DMEM; BI) supplemented with 4.5 mg/mL glucose
360 and 10% (v/v) fetal bovine serum (FBS; BI). CHO-K1 cells were maintained in DMEM/F12
361  medium (Gibco) supplemented with 10% FBS and 1% (v/v) penicillin—streptomycin (Gibco).
362  All mammalian cells were incubated at 37°C in a 5% CO- atmosphere. Plasmids were
363  transfected when the cells reached ~70% confluency. HEK293T or CHO-K1 cells were
364 transiently transfected with 2.5 pg plasmid DNA per well using Lipofectamine 3000
365  (Invitrogen) following the manufacturer’s instructions.

366

367 Cloning, expression, and purification of M-Channel

368  Gene encoding human KCNQ2 (UniProt: 043526) and KCNQ3 (UniProt: O43525) were
369  synthesized by GENEWIZ and confirmed by sequencing. KCNQ2 and KCNQ3 full-length
370  were cloned into a pEGBacMam expression vector with an N-terminal 8xHis-GFP-tag and
371  FLAGe-tag, respectively (79). Expression products of the two plasmids were NHis-GFP-
372  KCNQ2 (WT) and NFlag-KCNQ3 (WT). To improve the stability and increase the
373  production, amino acids (353-533AA) between HA and HB of the truncated KCNQ?2 (64-

374  674AA) were replaced by GS-linker (GGGSGGGS), KCNQ3 was also truncated and kept
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375  the 93-691AA. High-resolution structures, including M-channel®°, M-channel“*M!42 and M-
376  channel°P®", were obtained using plasmids engineered as described above. All plasmids were
377  confirmed by DNA sequencing.

378  To express M-channel, recombinant baculoviruses was generated using Bac-to-Bac system
379  (Thermo Fisher Scientific) as previously described (79). When cell density reached
380  approximately 2.5x10° cells/mL, P2 viruses of KCNQ2 and KCNQ3 were co-infected into
381  the cells at a ratio of 1:10 (v/v). After 8 h of culturing, 10 mM sodium butyrate (Sigma) was
382 added to the medium to boost protein expression at 30 °C. Cells were harvested after
383  ~48hours of culturing and frozen in liquid nitrogen before being stored in a —80 °C
384  refrigerator for future use.

385  For the purification of M-channel, 6L cells were solubilized in extraction buffer containing
386 20 mM Tris-HCI pH 8.0, 200 mM KCI, 1% DDM/CHS (10:1, w/w; Anatrace), 2 uM
387  leupeptin, 1 uM pepstatin A, 1 ug/mL aprotinin, | mM PMSF for 2 hours at 4°C. Solubilized
388 cell lysis were clarified by centrifugation at 13,000 rpm for one hour. The resulting
389  supernatant was applied to Anti-Flag G1 Affinity Resin (GenScript) and the loaded resin was
390  washed by wash buffer containing 20 mM Tris-HCI pH 8.0, 200 mM KCI, ImM PMSF and
391  0.03% GDN (Anatrace). The protein was eluted with 200 pg/mL FLAG peptide in wash
392  buffer and then loaded onto High Affinity Ni-Charged Resin (QIAGEN). The resin was
393  washed by wash buffer supplemented with 30 mM imidazole and the protein was eluted with
394 300 mM imidazole. The eluent was concentrated by 100 kDa MWCO Amicon Ultra-4
395  centrifugal filter (Millipore) and then applied to size-exclusion chromatography (Superose 6
396 Increase, 10/300 GL, GE Healthcare) in buffer containing 20 mM Tris-HCI pH 8.0, 150 mM

397 KCIl, ImM PMSF and 0.03% GDN. The peak fractions containing the KCNQ2/KCNQ3
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398  complex were concentrated to about 12 mg/mL for further experiments. To prepare the
399  sample of the M-channel with CLM142, concentrated protein was incubated with 1mM
400 CLM142 at least 30 minutes at 4 °C prior to Cryo-EM sample preparation. To obtain the
401  open conformation of M-channel, the purified protein was incubated with 1 mM PIP2 and
402 1mM CLM142. CLM142 was synthesized by the laboratory of Professor Huaiyu Yang (East
403  China Normal University). The PIP, we used is 1,2-dioctanoyl-sn-glycero-3-phospho-(1°-
404  myo-inositol-4’,5’-bisphosphate) (ammonium salt) purchased from Avanti.

405

406  Cryo-EM sample preparation and data collection

407  To prepare Cryo-EM sample, the concentrated complex mixture (3.5 pulL) was placed on
408  glow-discharged holey carbon grids (Quantifoil Au R1.2/1.3), which were blotted for 3.5 s
409  and flash-frozen in liquid ethane cooled by liquid nitrogen with Vitrobot (Mark IV, Thermo
410  Fisher Scientific). The grids were loaded onto a 300 kV Titan Krios (Thermo Fisher Scientific
411  Inc.) equipped with K3 Summit detector (Gatan) and GIF Quantum energy filter. Automated
412  data collection was performed using EPU software (Thermo Fisher Scientific) in super-
413  resolution mode at nominal magnification of 81,000%, with a slit width of 20 eV on the
414  energy filter. A defocus series ranging from —1.5 um to —2.0 um was used. Each stack was
415  exposed for 2.56 s with an exposure time of 0.08 s per frame, resulting in a total of 32 frames
416  per stack and the total dose was approximately 50 e/A2 for each stack. The stacks were
417  motion corrected with MotionCor2 and binned 2 fold, resulting in a pixel size of 1.087
418  A/pixel (80). Meanwhile, dose weighting was performed (87). The defocus values were
419  estimated with Getf (82).

420
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421  Cryo-EM data processing

422  The data processing workflow for the M-channel is illustrated in figs. S5 to S7. All steps
423  were conducted in CryoSPARC v4.6.2 (83). For M-channel™7, a total of 5,393 micrographs
424  were collected. Using the template picker, 5,223,566 particles were automatically selected.
425  After particle extraction, multiple rounds of 2D classification, ab initio reconstruction, and
426  heterogeneous refinement were performed, resulting in a dataset of 727,947 selected particles.
427  These particles were subjected to non-uniform refinement with C1 symmetry. To distinguish
428  between the KCNQ2 and KCNQ3 components, non-uniform refinement with C4 symmetry
429  was performed to align the symmetry axis along the Z-axis. A new particle stack was
430  subsequently generated via symmetry expansion using C4 symmetry. The expanded dataset
431  was classified into two distinct VSD domain states through multiple rounds of 3D
432  classification, using a focused mask on the VSD region. Particles corresponding to each state
433  were grouped based on their stoichiometric ratios by intersecting different VSD
434  classifications. The resulting particle stacks were further processed using heterogeneous
435  refinement followed by non-uniform refinement to enhance map quality and improve
436  resolution. A total of 16,214, 15,162, and 27,141 micrographs were collected for M-
437  channel®°, M-channel®®M!42 and M-channel°P®", respectively. Two strategies were applied
438  for the data processing. The first one followed the same procedure as described for the M-
439  channel"T. The second conducted 3D classification using four separate masks, each
440  enclosing an individual VSD domain. Particles of identical stoichiometries were combined
441  and refined via non-uniform refinement. CryoSieve was used to exclude unwanted particles
442  (84). The resolution was estimated with the gold-standard Fourier shell correlation 0.143

443  criterion with high resolution noise substitution (85, 86).
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444

445  Model building and structure refinement

446  The AlphaFold-predicted models of KCNQ3 (AlphaFold DB ID: 043525) and KCNQ2
447  (AlphaFold DB ID: 043526) were initially docked into the final cryo-EM density maps using
448  UCSF ChimeraX (87-89). Manual model building and adjustment were subsequently
449  performed in Coot v0.9.8.1, with careful attention to the chemical properties of individual
450  amino acid residues (90). Due to insufficient electron density, the N-terminal and C-terminal
451  regions were not modeled. Several putative lipid molecules were tentatively placed into the
452  observed densities.

453  Real-space refinement was performed using phenix.real space refine in PHENIX 1.20, with
454  secondary structure and geometry restraints applied throughout (97). To avoid overfitting,
455  gold-standard refinement was employed by alternately refining against one of the two
456  independently calculated half-maps and validating against the other. Final refinement
457  statistics and map quality metrics are summarized in Tables S1 to S5.

458

459  Design of KCNQ2 and KCNQ3 concatemers

460  Concatemeric constructs were created by the sequential insertion of individual subunits into
461 a pEGBacMam expression vector with an N-terminal 8xHis-GFP-tag. Every subunit of
462 KCNQ2 or KCNQ3 was of wild type without deletions or truncations. Four concatemers
463  were generated: M23, M2333, M2233, and M2223. Adjacent subunits were linked by a GS-
464  linker (GGGGSSGGGGSSGGGGSS). The accuracy of the final sequence was confirmed by
465  both inserts digestion and the third-generation long-read DNA sequencing.

466
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467  Whole-cell Electrophysiology

468  For the whole-cell electrophysiological experiments of the KCNQ2/KCNQ3 concatemers
469  and chimeric constructs, the whole-cell K* currents were recorded in HEK293T cells using
470  an EPC-10 amplifier with Patchmaster 2x92 software (HEKA Elektronik) and glass
471  micropipettes (2.5-4 MQ) made by P-1000 pipette puller (Sutter Instrument). To record the
472  KCNQ current, the pipette solution contained 100 mM KCI, 50 mM KF, 5 mM EGTA, 10
473  mM HEPES, adjusted to pH 7.2 with KOH, and the bath contained 130 mM NaCl, 20 mM
474  KCl, 1 mM CaCly, 2 mM MgCl,, 5 mM D-Glucose, 10 mM HEPES, adjusted to pH 7.2 with
475  NaOH. Fitmaster 2x92 (HEKA Elektronik) and Prism 10.1.2 (GraphPad Software) were used
476  for data analysis.

477  To record the currents, a series of 2,000 ms depolarizing steps (holding potential -80 mV)
478  was applied from -90 mV to +80 mV in 10 mV increments. Then, the cells were stimulated
479 by -120 mV for 250 ms to obtain tail currents. The linear component of leak current and
480  capacitive transients was subtracted using the -P/4 procedure and the voltage errors were
481  minimized using series resistance compensation. The normalized tail current amplitude of
482  the activation curves was plotted against step potentials and fitted by the Boltzmann

483  Sigmoidal function:

I 1

484 _
Vi, —V
Iax 1+ exp (—1/ 2 T ™)

485  Where I refers to the tail current, Vi, refers to the voltage for half-maximal activation, Vi,
486  refers to the test potential, and k refers to the slope of the curve.
487  Whole-cell K" currents of the M-channel/ KCNQ2/KCNQ4 with CLM142/retigabine were

488  recorded at room temperature using HEKA EPC-10 amplifier. The series resistance (Rs) was
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489  70-80% compensated using the internal compensation program of the amplifier. The patch
490  pipettes (World Precision Instruments) were pulled to a resistance of 3-5 MQ. The pipette
491  solution consisted of 140 mM KCI, 3 mM MgCl,, 5 mM EGTA, 5 mM K,;ATP and 10 mM
492  HEPES (pH 7.3, adjusted with KOH, all from Sigma-Aldrich). The extracellular solution
493  contained 145 mM NaCl, 5 mM KCIl, 1 mM CaCl,, 3 mM MgCl,, 10 mM D-glucose and 10
494  mM HEPES (pH 7.3, adjusted with NaOH).

495  To construct the M-channel/KCNQ2/KCNQ4 activation curves, cells were held at -80 mV
496  and currents were elicited by a series of 2,000-ms depolarizing steps from -90 mV to +80
497 mV in 10-mV increments, followed by -120 mV to record tail currents. Activation curves
498  were fitted by the Boltzmann equation: Iwil = ( Imax — Imin )/[1 + exp( Vi2 — Vi )k ] + Inin ,
499  where il is the normalized tail current recorded immediately after stepping to -120 mV from
500 different preceding Vm levels, Inax and Imin are the maximum and minimum normalized tail
501  currents, respectively, Vi, is the half-maximal activation voltage, and k is the slope factor of
502  the curve. Also, this protocol was used to study the M-channel channel activation kinetics.
503 The M-channel deactivation kinetics were measured by tail currents elicited by a
504  hyperpolarizing voltage of -120 mV for 1,200 ms after a 2,000-ms depolarized potential of
505 +50 mV, with a holding potential of -80 mV. The activation and deactivation traces were
506 fitted to a single exponential function: I = A % [1 — exp(—t/tau)] + lo, where I is the current, Io
507 1is the steady-state amplitude of the current, A is the difference between the peak and steady-
508  state current amplitudes; t is time; and tau is the time constant. The concentration—response
509  curves were analyzed by three parameters logistics regression model. For recordings of
510  KCNQ4 channel currents, pipettes were filled with the intracellular solution of the following

511  composition: 150 mM KCI, 3 mM MgCl,, 5 mM EGTA and 10 mM HEPES (pH 7.3, adjusted
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512 with KOH). Extracellular solution contained 145 mM NaCl, 5 mM KCI, 1 mM CacCl,, 3 mM
513  MgCl; and 10 mM HEPES (pH 7.4, adjusted with NaOH). The methods used to record
514 KCNQ4 were the same as those used to record M-channel currents.

515  Processed by Clampfit 10.4, patch clamp data were analyzed in GraphPad Prism 8.0.2. An
516  unpaired two-tailed Student’s #-test was used to determine significance between groups. n.s.
517  indicates no significance. *p < 0.05, **p <0.01, ***p <0.001, and ****p <0.0001. All data
518 are presented as mean = SEM.

519

520  Imside-out single-channel recordings

521  Inside-out recordings were performed 48 hours after transfection using EPC10-USB
522  amplifier (HEKA). Patch recordings were digitized at 10 kHz and filtered at 2 kHz. The bath
523  solution contained 175 mM KCI, 4 mM MgCl,, and 10 mM HEPES (pH 7.4, adjusted with
524 KOH). The pipette solution was 150 mM NaCl, 5 mM KCI, 1 mM MgCl,, and 10 mM
525  HEPES (pH 7.4, adjusted with NaOH). The patch pipette was pulled to a resistance of 8—12
526  MQ. Single-channel statistical analysis was conducted by Clampfit 10.4 software. All-point
527  histograms were fitted with Gaussian functions to obtain the mean single-channel current (i).
528  Single-channel conductance (y) was obtained by the equation y =1/(V — Vi), where V is the
529  test potential and VE is the reversal potential of potassium.

530

531  Synthetic scheme of CLM142
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/

532 CLM142 (1)
533

534  Synthetic Route:

Br h{/
H
N N W F
N Pd(OAc KsPOa, Pcys ‘N pyridine, 0° c 0.5h N cho DMF, RT, 16h
toluene, H 0, 100°C, 16h H
Hy
2

535 cLm142 (1)
536  Step 1: 7-cyclopropyl-1H-indazol-3-amine

537  7-bromo-1H-indazol-3-amine (2, 2.00 g, 9.43 mmol) was dissolved in toluene (20 mL) and
538  water (6 mL). Cyclopropylboronic acid (5.67 g, 66.01 mmol), tricyclohexylphosphine (0.53
539 g, 1.89 mmol), potassium phosphate (6.01 g, 28.29 mmol) and palladium acetate (0.42 g,
540  1.89 mmol) were added sequentially. Under nitrogen protection, the mixture was heated to
541 100 °C and stirred for 16 hours. TLC (PE:EA = 1:1, Rf = 0.1) indicated the complete

542  consumption of the starting material. The reaction solution was cooled to room

543  temperature, filtered through Celite, quenched with water (10 mL), and extracted with ethyl
544  acetate (10 mL x 3). The combined organic phases were washed with saturated brine (20
545 mL x 3), dried over anhydrous sodium sulfate, and concentrated. The crude product was
546  purified by silica gel column chromatography (PE:EA = 2:1 - 2:3) to afford the title

547  compound 3 as a white solid (0.69 g, yield 42%).

548  LC-MS: m/z=174.2 [M+H]"
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Step 2: N-(7-cyclopropyl-1H-indazol-3-yl)-4-fluorobenzamide

Compound 3 (380 mg, 2.19 mmol) was dissolved in pyridine (2 mL), cooled to 0 °C, and 4-
fluorobenzoyl chloride (347 mg, 2.19 mmol) was added dropwise. The mixture was stirred
at this temperature for 30 minutes. TLC (PE:EA = 1:1, Rf = 0.4) showed the complete
reaction of the starting material. The reaction was quenched with water (10 mL) and
extracted with ethyl acetate (10 mL X 3). The combined organic phases were washed with
saturated brine (20 mL x 3), dried over anhydrous sodium sulfate, and concentrated. The
crude product was purified by silica gel column chromatography (PE:EA = 5:1 - 2:1) to
obtain the title Compound 4 as a brown solid (325 mg, yield 50%).

LC-MS: m/z=296.1 [M+H]"

Step 3: N-(7-cyclopropyl-1-(prop-2-yn-1-yl)-1H-indazol-3-yl)-4-fluorobenzamide
Compound 4 (80 mg, 0.27 mmol) was dissolved in N,N-dimethylformamide (2 mL). 3-
bromopropyne (39 mg, 0.33 mmol) and potassium carbonate (75 mg, 0.54 mmol) were
added at room temperature, and the mixture was stirred at room temperature for 16 hours.
TLC (PE:EA =2:1, Rf = 0.4) indicated a small amount of starting material remaining. The
reaction was quenched with water (10 mL) and extracted with ethyl acetate (10 mL x 3).
The combined organic phases were washed with saturated brine (20 mL x 3), dried over
anhydrous sodium sulfate, and concentrated. Purification by preparative HPLC (TFA) gave
the title compound CLM142 (1) as a white solid (18 mg, yield 20%).

LC-MS: m/z = 334.2 [M+H]"

HPLC:99.10% purity, 220 nm
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570  'HNMR (400 MHz, DMSO-d6) & 10.88 (s, 1H), 8.15 (dd, ] = 8.4, 5.6 Hz, 2H), 7.53 (d, ] =
571 8.4 Hz, 1H), 7.39 (t, ] = 8.8 Hz, 2H), 7.17 (d, ] = 7.2 Hz, 1H), 7.04 (t, ] = 8.0 Hz, 1H), 5.56
572 (d,J=1.6 Hz, 2H), 3.44 (s, 1H), 2.49-2.44 (m, 1H), 1.10-1.05 (m, 2H), 0.89-0.83 (m, 2H).

573
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Figure legends

Fig. 1 | Structural architecture and stoichiometric flexibility of the human M-channel.
(A) Cryo-EM reconstructions of the four distinct M-channel stoichiometries (M2223,
M2233, M2323, M2333) with their relative abundances indicated. KCNQ2 and KCNQ3
subunits are colored blue and yellow, respectively. (B) Representative cryo-EM density
map for the M22232° configuration. (C) Atomic model corresponding to the map in (B),
displayed in three orthogonal views. (D) Differential positioning of the voltage-sensing
domains (VSDs) relative to the pore domain (PD) in KCNQ2 versus KCNQ3, illustrated by
a comparison of their tilt angles. (E) Structural alignment of M2223%° and KCNQ2
homotetramer highlighting the differential positioning of their VSDs. (F) The extracellular
loop (ECL) of KCNQ3 is markedly longer than that of KCNQ?2, resulting in a pronounced
difference in cryo-EM density. (G) High-resolution features that enable unambiguous
subunit discrimination, including characteristic side chain densities for Y284, Y226, and
F316 in KCNQ2 and T323, C255, and L355 in KCNQ3 within the pore domain. All

structure figures are generated in ChimeraX (92).

Fig. 2 | Concatemeric KCNQ2/KCNQ3 channels recapitulate wild-type M-
channel properties. (A) Left: Whole-cell recording protocol. Right: Representative
current traces from wild-type M-channels (KCNQ2/KCNQ3 co-expression). Currents
were elicited by 2 s depolarizing steps from —90 to +80 mV in 10 mV increments from
a holding potential of —-80 mV, followed by a —120 mV tail pulse (250 ms). (B)
Schematic representations of the engineered concatemeric constructs with defined

KCNQ2 (blue) and KCNQ3 (yellow) subunit stoichiometries. (C) Whole-cell current-
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856  voltage (I-V) relationships for the indicated concatemers and wild-type channels. (D)
857  Half-maximal activation voltages (V1) show that all concatemeric channels exhibit
858  significantly hyperpolarized activation compared to KCNQ2 homomers, recapitulating
859  the wild-type M-channel phenotype. (E) Representative single-channel current traces
860  for each concatemeric variant. Scale bars: 1.5 pA (vertical), 500 ms (horizontal). (F)
861  Summary of unitary current amplitudes from single-channel recordings. (G) Summary
862  of open probability (Po) for each concatemeric channel. Data in (C), (D), (F), and (G)
863  are presented as mean = SEM (n > 10). Statistical significance was determined by an
864  unpaired two-tailed Student’s z-test (*p < 0.05, **p < 0.01, ***p <0.001, ****p <
865  0.0001).

866

867  Fig.3 | The KCNQ3 voltage-sensing domain confers hyperpolarized activation
868  Kkinetics. (A) Structural comparison of the voltage-sensing domains (VSDs) from

869  KCNQ2 (blue) and KCNQ3 (yellow) in the M22232%° structure. The relative positions
870  of the S4 arginine residues (R2—R6) to the charge transfer center (CTC) on S2 reveal
871  that the KCNQ3 VSD adopts a more depolarized conformation. (B) Design strategy
872  for chimeric constructs in which the VSDs were swapped between KCNQ2 and

873  KCNQ3, creating VSD;3-PD; and VSD»-PDs3 subunits. (C) Whole-cell current-voltage
874  (I-V) relationships for wild-type and chimeric channels. (D) Half-maximal activation
875  voltages (Vi2) show that channels incorporating the KCNQ3 VSD (VSD3-PD> +

876  KCNQ3) activate at more hyperpolarized potentials, while channels with the KCNQ2

877  VSD (VSD2-PDs + KCNQ?2) exhibit depolarized activation akin to KCNQ?2

36



Langtaosha (LTS) Preprint doi: https://doi.org/10.65215/r3rdbv84. This version posted December 16, 2025. The copyright holder for this preprint (which was not certified by
peer review) is the author/funder. Creative Commons license: CC Attribution-NonCommercial-NoDerivatives 4.0 https://creativecommons.org/licenses/by-nc-nd/4.0

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

Wang et al

homomers. Data are presented as mean = SEM (n > 12). Statistical significance was

determined by an unpaired two-tailed Student’s #-test (****p < 0.0001).

Fig. 4 | CLM142 is a potent and selective M-channel activator with superior properties
to retigabine. (A) Chemical structure of the novel M-channel activator CLM 142, with key
functional groups labeled. (B) Chemical structure of the canonical M-channel activator
retigabine for comparison. (C) Representative whole-cell current traces from M-channel
showing potent activation by 1 uM CLM142. (D) Left: Concentration-dependent
conductance-voltage (G-V) relationships for CLM142. Right: Summary of the
concentration-dependent hyperpolarizing shifts in the half-maximal activation voltage
(AV1)2) induced by CLM142. (E) Left: Concentration-dependent G-V relationships for
retigabine. Right: Summary of the AV, shifts induced by retigabine. CLM 142 exhibits an
approximate 10-fold greater potency (ECso = 0.19 = 0.09 uM) than retigabine (ECso = 2.16
+ 0.15 uM). (F) G-V curves showing the weak effect of CLM 142 on homomeric KCNQ4
channels. (G) Quantitative comparison of the AV, induced by CLM142 on human M-
channel versus KCNQ4, demonstrating CLM142's high selectivity for the neuronal M-

channel. Data in (D-G) are presented as mean = SEM (n > 5).

Fig. 5 | Structural basis for potent activation of the M-channel by CLM142. (A) Cryo-
EM density map of the M2223¢IM142 complex. (B) Atomic model of the

M2223CIMI42 complex, displayed in two orthogonal views. (C) Detailed architecture of the
CLM142 binding pocket, located at the interface between the S5 and S6 helices of adjacent

subunits. Four drug molecules (black) are present per tetramer. CLM142 forms extensive
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hydrophobic and n-r stacking interactions with surrounding residues, with the atomic
model showing excellent agreement with the high-resolution cryo-EM density. (D)
Activation mechanism. Binding of CLM 142 induces a displacement of the conserved
tryptophan (W236 in KCNQ2; W265 in KCNQ3) and a clockwise rotation of the S5 helices

(intracellular view), which favors the activation of the pore domain.

Fig. 6 | Structural elucidation of the PIP,-dependent M-channel open state. (A) Cryo-
EM density map of the PIP>-bound M2223°P¢" structure. (B) Atomic model of the activated,
PIP>-bound M2223°P" structure, displayed in two orthogonal views. (C) Structural
visualization of the pore radius in the closed (M2223°M142 [eft) and open (M2223°P¢n,
right) states. Key constriction residues are labeled. (D) Quantitative analysis of the pore
radius along the ion permeation pathway for the closed (blue) and open (red) states,
confirming gate opening. (E) Conformational changes in the S6 helices during channel
activation, highlighting the rearrangement that underlies pore dilation. (F) The PIP> binding
site at the interface of the voltage-sensing domain (VSD), S4-S5 linker, and S6 helix. The
negatively charged PIP, headgroup is coordinated by a constellation of basic residues
(R87/R117, R89/R119, R213/R242, R214/R243, K327/K366; KCNQ2/KCNQ3

numbering).
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959  Fig. S1 | Sequence alignment of human KCNQ channels. Multiple sequence alignment of
960 human KCNQI through KCNQS5, performed with Clustal Omega (93) and colored with
961  ENDscript 2 (94). Invariant residues are shaded red, and conserved residues are printed in
962 red. Key functional motifs are highlighted: residues forming the selectivity filter (SF) are
963  shaded yellow and colored red; gating charge residues in the S4 helix and the F137/F167
964  residue (KCNQ2/KCNQ3 numbering) of the charge transfer center (CTC) are colored yellow.
965  The extended extracellular loop between the S5 segment and the pore helix (PH) in KCNQ3,
966  along with other key residues used for subtype discrimination between KCNQ2 and KCNQ3,
967 are indicated with green triangles.

968  UniProt accession numbers: KCNQ1 (P51787), KCNQ2 (043526), KCNQ3 (043525),
969 KCNQ4 (P56696), KCNQS (QINRS2).
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971

972  Fig. S2 | Protein purification of human M-channel®?°. (A) Representative size-exclusion
973  chromatography (SEC) profile of the heteromeric KCNQ2/3 (M-channel®°) complex. (B)
974  SDS-PAGE analysis (Coomassie Brilliant Blue staining) of the peak fractions from the SEC
975  run. The fractions concentrated for cryo-EM grid preparation are indicated in red.
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Fig. S3 | Cryo-EM reconstructions of M-channel in three functional states. (A-C)
Cryo-EM reconstructions of the heteromeric KCNQ2/3 channel in the apo (A), CLM142-
bound (B), and PIP>-bound open (C) states. The relative proportions of the distinct
stoichiometric assemblies (M2223, M2233, M2323, M2333) identified in each
reconstruction are indicated. KCNQ2 and KCNQ3 subunits are colored blue and yellow,

respectively.
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Fig. S4 | Fourier shell correlation (FSC) curves for M-channel reconstructions. (A)

Gold-standard FSC curves for the M22232° M2223CEM142 and M2223°P¢" reconstructions,

determined without symmetry expansion. (B) FSC curves for all four different

stoichiometric assemblies (M2223, M2233, M2323, M2333) reconstructions of M-

channelVT, M-channel®°, M-channel“™'42| and M-channel°P®", determined using C4

symmetry expansion during processing.
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1021  Fig. S10 | Cryo-EM densities of M2223CIM142_ Representative cryo-EM density maps for

1022 the M2223¢MI42 atomic model, visualized in UCSF ChimeraX. Select residues with large
1023  side chains are labeled.
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1026  Fig. S11 | Cryo-EM densities of M2223°P¢", Representative cryo-EM density maps for the
1027  M2223°P" atomic model, visualized in UCSF ChimeraX. Select residues with large side
1028  chains are labeled.
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1031  Fig. S12 | Expression and assembly of KCNQ2 and KCNQ3 at varying transfection
1032 ratios.

1033 Size exclusion chromatography (SEC) profiles of heteromeric KCNQ2/KCNQ3 complexes
1034  co-expressed at 1:1 (black), 1:4 (blue), and 1:9 (green) transfection ratios, with the total
1035  plasmid amount kept constant (1.5 mg/L). Solid lines represent total protein UV absorbance;
1036  dashed lines correspond to GFP fluorescence (tagged on KCNQ?2), indicating the relative
1037  amount of KCNQ?2 incorporated into the complexes.
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Fig. S13 | Structural and sequence conservation of the pore domain in KCNQ2 and

KCNQ3. (A) Architecture of the pore domain in the M22232° structure, formed by the S5

and S6 segments from three KCNQ2 subunits (blue) and one KCNQ3 subunit (yellow). (B)

Structural superposition of the pore domains from KCNQ2 and KCNQ3, demonstrating

high conformational similarity (RMSD = 0.437 A). (C) Sequence alignment of the S5 and

S6 segments between KCNQ2 and KCNQ3, highlighting strong conservation with >80%

identity and >90% similarity.
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Fig. S14 | Functional characterization of CLM142 specificity and kinetics. (A) Whole-
cell patch-clamp recordings from non-transfected cells before and after application of 10
uM CLM142, demonstrating the compound has no direct effect on endogenous currents.
(B) Analysis of activation time constants (t activation) for KCNQ2/KCNQ3 channels in the
absence and presence of 1 uM CLM142. (C) Analysis of deactivation time constants (t
deactivation) for KCNQ2/KCNQ3 channels in the absence and presence of 1 uM CLM142.

Data are presented as mean = SEM.
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Fig. S15 | Retigabine binding in KCNQ2 and KCNQ4. (A) Molecular interactions

between retigabine (black) and the pore domain of KCNQ2 (PDB: 7CR2),(39) with key

coordinating residues shown as sticks. (B) Molecular interactions between retigabine

(black) and the pore domain of KCNQ4 (PDB: 7BYM),(45) with key coordinating residues

shown as sticks.
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Fig. S16 | Structural comparison of M2223¢IM142 apnd M2223°P¢", (A) Structural
alignment of the M2223¢M142 and M2223°P°" complexes reveals subtle conformational
changes. While the four bound CLM142 molecules undergo slight positional shifts, their
key interacting residues in KCNQ2 and KCNQ3 remain largely unchanged. (B)
Intracellular view of the activation-associated structural transitions of the pore domain,

highlighting the displacement of the CLM 142 molecules during pore opening.
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Fig. S17 | Structural mapping of M-channel diesease mutations. Structural mapping of

disease-related mutations in human KCNQ2 and KCNQ?3 subunits. Mutations associated
with Benign Familial Neonatal Seizures 1 (BFNS1) and Developmental and Epileptic
Encephalopathy 7 (DEE7) in KCNQ2, and Benign Familial Neonatal Seizures 2 (BFNS2)

in KCNQ3, are highlighted on the M-channel structure.
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Wang et al

1080  Table S1 | Statistics for data collection and structural refinement for M22232P°,

1081  M2223CEM142 and M2223°P°" determined without using symmetry expansion.

Data collection

M?22232°

M2223CLMI42 M?22230pen

EM equipment
Voltage (kV)
Detector

Energy filter

Pixel size (A)
Electron dose (e/A?)
Defocus range (um)

Number of collected movie stacks
Reconstruction
Software
Number of used particles
Symmetry
Overall resolution (A)
Map sharpening B-factor (A?)
Refinement
Software
Cell dimensions
a=b=c (A)
o=p=y ()
Model composition
Protein residues
Side chains assigned
Ligands

R.m.s deviations
Bonds length (A)
Bonds angle (%)
Ramachandran plot statistics (%)
Preferred
Allowed
Outlier

Titan Krios (Thermo Fisher Scientific Inc.)

300
Gatan K3 Summit

Gatan GIF Quantum, 20 eV slit

1.0773

16,214

125,662
Cl
2.98
126.1

258.552
90

975
975

GDN: 3
9PE: 3

0.004
0.946

93.12%
6.47%
0.42%

1.087 1.087
50
-1.5~-2.0
15,162 27,141
CryoSPARC v4
117,930 85,732
Cl1 Cl1
3.07 3.75
131.7 157.7
Phenix
260.88 260.88
90 90
975 938
975 938
LIG: 4 LIG: 4
GDN: 3 PIO: 3
9PE: 3
0.003 0.006
0.731 0.952
93.01% 92.21%
6.78% 7.13%
0.21% 0.66%
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1083  Table S2 | Statistics for data collection and structural refinement for M-channel™'

1084  determined using C4 symmetry expansion.

Data collection

M2223WT

M2233WT M2323WT

M2333WT

EM equipment
Voltage (kV)
Detector

Energy filter

Pixel size (A)
Electron dose (e/A?)
Defocus range (um)

Number of collected movie
stacks
Reconstruction
Software
Number of used particles
Symmetry
Overall resolution (A)
Map sharpening B-factor (A?)
Refinement
Software
Cell dimensions
a=b=c (A)
o=p=y (")
Model composition
Protein residues
Side chains assigned
Ligands

R.m.s deviations

Bonds length (A)

Bonds angle (%)
Ramachandran plot statistics
(%)

Preferred

Allowed

Outlier

102,370
Cl1
3.76
129.3

975
975

GDN: 3
9PE: 3

0.003
0.763

93.01%
6.78%
0.21%

Titan Krios (Thermo Fisher Scientific Inc.)

300
Gatan K3 Summit

Gatan GIF Quantum, 20 eV slit

1.087
50
-1.5~-2.0

5,393

CryoSPARC v4
80,651 47,614
Cl1 C2
3.69 3.75
134.8 137.8

Phenix

260.88
90

971 968
971 968

GDN: 2 GDN: 2
9PE: 2 9PE: 2

0.003 0.003
0.730 0.694

93.19% 92.33%
6.81% 7.56%
0.00% 0.11%

74,317
Cl
3.70
122.8

964
964

GDN: 1
9PE: 1

0.004
0.753

91.67%
8.02%
0.32%
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1086  Table S3 | Statistics for data collection and structural refinement for M-channel?P°

1087  determined using symmetry expansion.

Data collection M22232p° M22332° M23232p° M23332p°
EM equipment Titan Krios (Thermo Fisher Scientific Inc.)
Voltage (kV) 300
Detector Gatan K3 Summit
Energy filter Gatan GIF Quantum, 20 eV slit
Pixel size (A) 1.0773
Electron dose (e/A?) 50
Defocus range (um) -1.5~-2.0
Number of collected movie
stacks 16,214
Reconstruction
Software CryoSPARC v4
Number of used particles 98,612 49,105 41,685 38,664
Symmetry Cl1 C1 C2 Cl
Overall resolution (A) 3.26 3.48 3.30 3.51
Map sharpening B-factor (A?) 128.0 124.1 132.0 119.5
Refinement
Software Phenix
Cell dimensions
a=b=c (A) 258.552
o=p=y () 90
Model composition
Protein residues 975 971 968 964
Side chains assigned 975 971 968 964
Ligands GDN: 3 GDN: 2 GDN: 2 GDN: 1
9PE: 3 OPE: 2 9PE: 2 9PE: 1
R.m.s deviations
Bonds length (A) 0.003 0.003 0.003 0.004
Bonds angle (%) 0.657 0.745 0.896 0.729
Ramachandran plot statistics
(%)
Preferred 93.85% 93.09% 92.44% 92.62%
Allowed 5.94% 6.81% 7.25% 6.96%
Outlier 0.21% 0.10% 0.32% 0.42%
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1090

determined using symmetry expansion.
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Table S4 | Statistics for data collection and structural refinement for M-channel€-M142

Data collection

M2223CLM142

M2233CLM142

M2323CLM142

M2333CLM142

EM equipment Titan Krios (Thermo Fisher Scientific Inc.)
Voltage (kV) 300
Detector Gatan K3 Summit
Energy filter Gatan GIF Quantum, 20 eV slit
Pixel size (A) 1.087
Electron dose (e/A?) 50
Defocus range (um) -1.5~-2.0
Number of collected movie
stacks 15,162
Reconstruction
Software CryoSPARC v4
Number of used particles 120,340 72,450 40,103 20,199
Symmetry Cl1 C1 C2 Cl
Overall resolution (A) 3.56 3.68 3.60 3.93
Map sharpening B-factor (A?) 123.8 126.2 123.2 105.5
Refinement
Software Phenix
Cell dimensions
a=b=c (A) 260.88
o=p=y (") 90
Model composition
Protein residues 975 971 968 964
Side chains assigned 975 971 968 964
Ligands LIG: 4 LIG: 4 LIG: 4 LIG: 4
GDN: 3 GDN: 2 GDN: 2 GDN: 1
9PE: 3 OPE: 2 9PE: 2 9PE: 1
R.m.s deviations
Bonds length (A) 0.003 0.004 0.003 0.006
Bonds angle (%) 0.719 0.836 0.796 1.012
Ramachandran plot statistics
(%)
Preferred 94.06% 92.46% 93.28% 91.56%
Allowed 5.74% 7.23% 6.62% 8.33%
Outlier 0.21% 0.31% 0.11% 0.11%
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1092  Table S5 | Statistics for data collection and structural refinement for M-channel°P¢"

1093  determined using symmetry expansion.

Data collection

M?22230pen

M?22330pen M?23230pen

M?23330°pen

EM equipment Titan Krios (Thermo Fisher Scientific Inc.)
Voltage (kV) 300
Detector Gatan K3 Summit
Energy filter Gatan GIF Quantum, 20 eV slit
Pixel size (A) 1.087
Electron dose (e/A?) 50
Defocus range (um) -1.5~-2.0
Number of collected movie
stacks 27,141
Reconstruction
Software CryoSPARC v4
Number of used particles 52,315 43,583 22,329 52,965
Symmetry Cl1 C1 C2 Cl
Overall resolution (A) 4.07 3.90 3.82 3.83
Map sharpening B-factor (A?) 181.6 149.5 141.2 141.1
Refinement
Software Phenix
Cell dimensions
a=b=c (A) 260.88
o=p=y (") 90
Model composition
Protein residues 938 920 920 902
Side chains assigned 938 920 920 902
Ligands LIG: 4 LIG: 4 LIG: 4 LIG: 4
PIO: 3 PIO: 2 PIO: 2 PIO: 1
R.m.s deviations
Bonds length (A) 0.003 0.004 0.004 0.004
Bonds angle (%) 0.810 0.937 0.867 0.859
Ramachandran plot statistics
(%)
Preferred 93.75% 92.60% 93.83% 93.46%
Allowed 5.81% 6.95% 5.49% 5.96%
Outlier 0.44% 0.45% 0.67% 0.57%
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